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Outline

1. The Problem: Describe the problem we are trying to solve, how it has been
solved in the past, and what the new approach entails (with a little bit of
theory).

2. The Solution: Detail how we implement convolutional neural networks for
CHIPS, highlighting essential things for other water Cherenkov detectors.

3. The Results: How well does it all perform, do we understand what is going
on, and is it robust?



The Problem



What problem are we trying to solve?

There are a wide range of neutrino interactions recorded within our detector. How do
we determine useful properties about the interactions for use in neutrino oscillation
analyses?
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What tasks does this entail?

We want to efficiently select a pure beam CC v_ sample from a sizeable beam CC Vi
beam NC, and cosmic muon background whilst accurately estimating the neutrino

energy.
Primary Tasks: Secondary Tasks:
(essential for physics) (nice to have)
- Cosmic event rejection - Event containment
- Beam event classification - Vertex estimation
- Neutrino energy estimation - Lepton energy estimation
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How did we solve this problem?
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Dependent on a finite set of inputs that must be implemented in software.

If a physics process is overlooked then the algorithm has access to a reduced amount of information.
It can be a large amount of effort to implement and validate.

Requires a predefined hypothesis, each of which can take a while to run.




|s a different approach possible?

As neutrino experiments tend to effectively record an ‘image’ of each event, modern
computer vision algorithms can be used. Such as Convolutional Neural Networks

(CNNSs).
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What are convolutional neural networks?

Hidden
layers
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How do they work??
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The Solution



What is the main challenge?
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Example inputs

CC v,

o Hit-charge Hit-time Hough- helght
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Baseline model architecture

| Hit-charge

| [ Hittime | | Hough-height |
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Outputs + Training N
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The Results



Preselection cuts
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Preselection performance

Selection App CC v, CC vy, Beam CC v, NC Cosmic

Total events 4417+ 0.15 2045.9£5.8 35.06 £0.08 354.7+2.4 2100000 £ 4200
+ Preselection 41.21 £0.14 1889.5+ 5.6 33.52+0.08 243.2+2.0 430000 % 1900
+ Cosmic cut  41.10£0.14 18744455 33.35£0.08 241.6 2.0 ( <2

+ Escapes cut  40.68 £0.14  795.7+3.5 32.86 £0.08 233.0+2.0

<2

Cuts Eff 921+01% 389+0.1% 93.7+0.1% 65.7+0.3% L< 9.5 x 1077

Cosmics are not a problem, even without a veto



Results: CC vV, selection

I — Appeared CC v,
Selection CC v, sig CCuy, bkg CC v, bkg NC bkg Purity sig Purity CC p, = 8 Beam CC v,
o | — NC
Total events 44.17+0.15 20459 +5.8 35.06+0.08 354.7+24 178+0.02% 3.19+0.03% % i —— Survived CC
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< |
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Cuts Eff 921 +01% 389x+0.1% 93.7+0.1% 65.7x0.3% - - § i
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100 .

e Old methodology produced a maximum FOM 7
(efficiency*purity) of 0.132 compared to the 0.519 sof
now.

CC vy, efficiency
==.CC-vy-purity .

—— Efficiency x purity

e The 71% signal efficiency compares well to 62% and = ]
64% achieved by NOVA and T2k. But the purity is Z  — ]
much lower at 38% compared to 78% and 80% N ﬁ
reached by NOVA and T2k. _
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Results: CC v, selection

Selection

CC v, sig

App CC v, bkg

Beam CC v, bkg

NC bkg

Purity sig

Total events
+ Cuts
+ FOM-v,

20459 +£5.8
795.7 £ 3.5
756.4+ 3.4

44.17 £ 0.15
40.68 £ 0.14
1.293 + 0.03

35.06 £ 0.08
32.86 £ 0.08

1.315 4 0.02

3547+ 24
233.0+£ 2.0
29.0 £ 0.7

Cuts Eff
FOM-v, Eff

38.9+0.1%
37.0 £ 0.1%

92.1 +0.1%
2.9+ 0.1%

93.7 + 0.1%
3.8+ 0.1%

65.7 £ 0.3%
8.2+ 0.2%

® The signal efficiency of 37% compares well to the 31%
and 36% achieved by NOvA and T2K

® This is also the case for the signal purity of 96%
compared to the 98.6% and 94% purities of NOvA and

T2K.
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Results: Neutrino energy estimation

Neutrino energy resolution by Charged lepton energy resolution

component comparison
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Explainability
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t-SNE component 1

Explainability: Beam classification t-SNE
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Conclusions + Future Work



Conclusions

e Convolutional neural networks can be incredibly effective at solving neutrino
event characterisation problems (classification and regression) in water
Cherenkov detectors.



Any Questions?



Future Work

e Bilah Blah



Detector simulation

e \We use a modified version of WCSim (Geant4) for
simulating neutrino interactions within our

Top cap regiir/j
detector.

e It builds an n-sided regular polygonal prism
consisting of two endcaps and a barrel.

/r‘ \ ‘\\

e Individual unit cells are used to tile the walls of the el sesn Bfl i conf kg
detector with PMTs according to the configuration.



Event generation

For beam events, we use GENIE: The existing
NuMI beam simulation is used to generate fluxes.
Default cross-sections are used.

For cosmic events, we use CRY: We assume an
overburden of 50m of water and adjust the cosmic
muon flux accordingly.

~ 11.8 KHz cosmic muon rate ~ 2.1 million/year
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Eff/Pur vs Energy
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Different values of delta-cp?
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Robustness:
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Robustness: Charge
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Robustness: Noise
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