

Current status of Hamamatsu detectors for High energy physics

Yuto Ohashi

Project promotion group, Business promotion, Solid State Division, Hamamatsu Photonics K.K.

Feb.17. 2022

Kensuke Suzuki

Business Promotion Group No.1, Electron Tube Division, Hamamatsu Photonics K.K

2

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

Company profile

Company Name : Hamamatsu Photonics K.K. Established : September 29, 1953 Number of Employees : 3,782 (Jan. 1st, 2020)

Main Product Lines : - Photomultiplier Tubes

- Light Sources, Imaging Tubes
- Opto-Semiconductor
- Imaging and Analyzing System

Inside the Super Kamiokande 11,200 PMT are used to catch the neutrinos

22,000 SSDs are used for the CMS tracker

Where We are Located

Division

Energetiq Technology

Solid State Division

Global Strategic Challenge Center

Systems Division

Laser Promotion Division

Electron Tube Division

• Approx. 90% PMT share of the world market.

Solid State Division

7

MPPC

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

>What is an MPPC[®]?

Multi-Pixel Photon Counter

 a new type of photon-counting device
 made up of multiple APD pixels
 operated in Geiger mode

Output is summation of all pixel output

➤Features

- High gain: 10⁵ to 10⁶
- Small size / light weight
- Low bias operation : ~60V
- Room temperature operation
- Excellent timing resolution
- Insensitive to magnetic fields
- Simple readout circuit operation

S15639-1325PS for LiDAR

- High sensitivity for NIR (905nm)

The experiments with MPPCs

2008

T2K experiment Near detector(ND280)

S10362-13-050C

Coupling with WLS fiber

• High PDE for WLS emission

New MPPCs will be used for ND280 upgrade

2014 MEG II experiment Liquid Xe γ ray detector

S10943-4372

- Designed for cryogenic condition (Liq.Xe)
- High PDE for VUV (175nm)

- 128ch custom MPPC array
- Coupling with fiber array

MPPC customization for HEP

- ✓ Chip design
- ✓ Package
- ✓ Large size array
- ✓ Connector output
- ✓ Temperature sensor assembly

MPPC array for Mu2e calorimeter

MPPC array for CMS calorimeter

MPPC array for the ASTRI gamma-ray astronomy project

- 8x8 ch. (7x7mm/elements)
- High sensitivity for Cherenkov light

Improvements of MPPCs

Measurement wavelength	Academic research	Measuring instruments (flow cytometers, microscope etc.)	PET scanners	
VUV/UV	For academic research experiments			
VIS	For wide dynamic range S14160 series ↓		For PET scanners S14160/S14161 series ↓	
	For precision measurement S13360/S13362 series			
		For precision measurement (TSV type) S13360/S13361/S13363 series	Ļ	
VIS to NIR		For visible light S14420/S14422 series ↓		
NIR				For near infrared S15639-1325PS ↓

S14160/S14161 series for PET scanner

- Higher PDE (50% at λ =450nm)
- Small dead space in effective photosensitive area
- Low operating voltage (VB=38V typ.)
- Resistance to a magnetic field environment

Gain, crosstalk probability, photon detection efficiency vs. overvoltage (typical example)

New MPPCs for PET based on S14160 series are under development

- Pixel pitch 50 µm
- PDE at 450 nm is 64% (S14160-3050HS : 60%)
- Improved CRT

PDE comparison at 7.0V excess voltage

CRT comparison with One-channel readout and 20mm scintillator

MPPCs with wide dynamic range

S14160 series with small pixels

- Small pixel pitch : 10µm, 15µm
- Wide dynamic range
- High fill factor & High sensitivity
- Low operating voltage (VB=38V typ.)
- Photosensitive area : 1.3x1.3mm², 3x3mm²

KAPDB0458E

UNDER DEVELOPMENT

New MPPCs

- Photosensitive area : 6x6mm2
- Thermal pad to release heat generated by detecting light

MPPCs for VUV and UV detection

VUV MPPC

• For Neutrino and Dark matter experiments using Liq. Ar or Liq. Xe

- VUV-MPPC (4th generation: VUV4) has VUV-sensitivity down to 120nm.
- Optical cross-talk is suppressed by the inter-pixel trench structure.
- Photon-counting capability is confirmed down to -196°C at HPK.

For MEG II experiment (S13371-6050CQ-02)

VUV MPPC next gen.(VUV5)

✓ Higher PDE for VUV

- 27% for 175nm (VUV4 : 24%)

✓ Low RI level package

- Suitable for cryogenic condition
- TSV multi-channel
- Surface mount type

✓ Low dark count rate

- Low dark count trend in cryogenic condition
- Nagoya Univ. evaluated plot types

Silicon package MPPC array (TSV type) 8x8 channel (3x3mm / element)

Data from the poster* in TAUP2019

*Characterization of new photo-detectors for the future dark matter experiments with liquid xenon

New MPPCs for Cherenkov telescope experiments

- Higher PDE : 50% at 350nm
- Faster pulse : FWHM 3ns (small but long tail)
- Pixel pitch : 75µm (based on S13360 series)

Improvements of MPPCs

- High sensitivity and Low CRT for PET
- Wide dynamic range with large photosensitive area

New MPPCs for VUV and UV detection

For Neutrino and dark matter experiments (VUV)

- High sensitivity and low dark count in cryogenic condition
- Low background package

For Cherenkov telescope experiments (UV)

- Higher sensitivity for UV range with faster output pulse

Direction

- Flexible for requirement to HEP field

Photomultiplier Tube

Photomultiplier tube (PMT)

Size : 3/8 inch (1 cm)~20inch(50.8 cm)

PMT assemblies

HPD(Hybrid Photo-Detector)

Photons are converted to electron and multiplied in vacuum tube. 1 electron is multiplied $\sim 10^6 - 10^7$ times!

Structure of PMT

Photon enter to the top of tube
Photocathode is inside of the tube
(Transmission mode photocathode)

Side-on PMT

a) Reflection Mode

Size : $13mm\phi$, $28mm\phi$

Application:

- Spectroscopic analysis
- Bioscience etc.
- Photon enter to the side of tube
 Photocathode is inside of the tube
 (Reflection mode photocathode)

Features of each PMT

- Wide variety for Active Area
- Good Uniformity
- > High Collection Efficiency

PHOTO-SENSITIVE AREA

Side-on PMT

a) Reflection Mode

Size : 13mmφ、28mmφ

Application:

- Spectroscopic analysis
- Bioscience etc.
- Compact against Light Axis
 Pin Compatible
 High Sensitivity(QE)

HAMAMATSU PHOTON IS OUR BUSINESS

PMT Components

Window(Faceplate) Photocathode Dynode

Transmittance of Window Materials

Gain characteristics of PMT

Typical spec for PMT

Supply voltage Gain *Depends on species of PMT

: 1000V : 1.0E+06 (10⁶ times)

 Signal current can be controlled by supplying voltage

$$(1.0E+03 \sim 1.0E+07)$$

Wide Dynamic range

Usable for Single Photon Counting \sim

Large Amount of Light Detection!

Photodevice for detecting single- to multi-photon event with containing the following contents.

- 1. Window(Faceplate) : Transmittance of the incident light
- 2. Photocathode : Sensitivity to each wavelength
- 3. Dynode : Gain of PMT

Applications

High Energy Physics

In general, PMT in Neutrino experiments is used with water, ice or liquid scintillator to detect Cherenkov light/scintillation light by interaction with neutrino.

IceCube

Super Kamiokande

5,160 pcs of 10-inch were deployed in south pole

 \sim 2,000 pcs of 17-inch/20-inch were used for KamLAND Project.

High Energy Physics – Related Products

8-inch: R5912, 10-inch: R7081, 20-inch: R12860

Features

- •Spectral Response: 300-650 nm
- •High Gain:1E+07
- •Good Time Characteristics
- Low Dark Count

High Energy Physics – Related Products

3-inch: R14374, 3.5-inch: R14689

Features

- •Spectral Response: 300-650 nm
- •High Gain:1E+07
- Good Time Characteristics
- TTS(FWHM): 1.3–1.5 ns Typ.

8-inch: R14688

Features

- ·Spectral Response: 300-650 nm
- •High Gain:1E+07
- •Good Time Characteristics TTS(FWHM): 1.0 ns Typ.
 - © Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved. 36

Parameter	Datasheet		Unit	
Diameter	202 / 8		mm/inch	
Minimum Effective Area	Φ 190		mm	
Cathode Luminous Sensitivity	Тур.	80		uA/lm
Cathode Blue Sensitivity index	Тур.	10		-
Radiant at 420 nm	Тур.	80		mA/W
Quantum efficiency at 390 nm	Тур.	25		%
Typical Gain	Typ.	1.0E+07		-
Applied voltage for gain of 1E+07	Тур.	1500	1750	V
Dark count	Тур.	4000		s ⁻¹
(After 15 hours storage in darkness)	Max.	8000		s ⁻¹
After Pulse	Max.	10		%
Rise Time	Тур.	3.6	2.2	ns
Electron transit time	Typ.	54	37	ns
Transit time spread(FWHM)	Typ.	2.4	1.0	ns

Rise Time, Transit Time and Transit time spread of R14688(new 8-inch PMT) are better compared to those of R5912(conventional 8-inch PMT)

www.hamamatsu.com

Distributor for Southeast Asia Hakuto Singapore Pte. Ltd.

https://www.hakuto.com.sg/