New results from MicroBooNE

Justin Evans

University of Manchester

Neutrinos: the 'standard' non-standard picture

Neutrinos are beyond-Standard-Model particles

- They have mass and change flavour
- Two well-measured oscillation rates

Neutrinos: the 'standard' non-standard picture

Neutrinos are beyond-Standard-Model particles

- They have mass and change flavour
- > Two well-measured oscillation rates

Two oscillation rates from two masssplittings

Neutrinos: the 'standard' non-standard picture

Neutrinos are beyond-Standard-Model particles

- They have mass and change flavour
- Two well-measured oscillation rates

Two oscillation rates from two masssplittings

Consistent with a three-flavour picture from Z-boson width measurements

Short-baseline anomalies

5

Short-baseline anomalies

Hard to build a coherent picture

JHEP 08, 010 (2018)

MiniBooNE

MiniBooNE

MiniBooNE could not distinguish photons from electrons

> And had no hadronic information

Photon-like excess?

- Mismodeled background?
- Electron-like excess?
 - Oscillation-driven excess? Sterile neutrino?
- e+e- excess?
 - > Even more exotic new physics?

0.6 0.8 cost

3.0

Ever (GeV)

We can see the hadronic final state

MicroBooNE

Took data from 2015 through to this year

- This analysis uses ~7x10²⁰ protons on target
- ~1/2 of the full MicroBooNE data sample

MicroBooNE physics goals:

- Demonstrate the power of the LArTPC paving the way for SBN and DUNE
- > Neutrino interaction measurements
- BSM searches
- Address the MiniBooNE low-energy excess

Firstic Obvorterserigysexcesseseeseeatich Analyses

Four independent analyses

Targeting six different final states

Single-photon analysis

- > NC $\Delta \rightarrow$ NY hypothesis
- ➢ 1γ0p, 1γ1p

Searches for a ν_e excess

- Quasi-elastic kinematics (1e1p)
- MiniBooNE-like final states (1eNp, 1e0p)
- All v_e final states (1eX)

Three independent reconstruction frameworks

Deep-learning-based

- Semantic segmentation
 & CNNs
- 1e1p topology

Pandora-based

- Single-photon search
 (1y1p, 1y0p)
- Pionless electron
 search (1eNp, 1e0p)

Wire-Cell-based

- Tomographic techniques
 & 3D imaging
- Fully inclusive electron search

Single photons: $\Delta \rightarrow N\gamma$

Several photon sources in MiniBooNE

NC π^0 misidentification

Measured in MiniBooNE with sidebands

Interactions outside the detector

> Eliminated using beam timing and radial cuts

$\mathsf{NC} \ \Delta \ \rightarrow \ \mathsf{N} \mathsf{Y}$

- NC delta radiative decay
- Not constrained directly by MiniBooNE
- Used π⁰ measurements and a theoretical branching ratio for the delta radiative decay

$\Delta \rightarrow N\gamma$: 1 γ 1p topology

$\Delta \rightarrow N\gamma$: 1 γ 0p topology

Current limits on NC $\Delta \rightarrow N\gamma$

- Not measured directly, but inferred from pion-nucleon and photon-nucleon scattering measurements
- Best direct limit (T2K) is x100 weaker than the predicted rate (90% C.L.)

Single photons: $\Delta \rightarrow N\gamma$

MiniBooNE need to scale their NC $\Delta \rightarrow N\gamma$ by x3.18 to best fit their excess

MicroBooNE therefore uses a x3.18 scaling of the nominal NC $\Delta \rightarrow N\gamma$ prediction as a benchmark model to test consistency with the MiniBooNE excess

Our nominal prediction comes from a custom tune of GENIE v3.0.6 (NIM A614, 87)

- Resonances modelled with Berger-Sehgal (PRD 76, 113004)
- GENIE then assumes branching ratios to decay the Δ to various final states

In the three years of MicroBooNE data analysed here, 124.1 NC $\Delta \rightarrow N\gamma$ events are predicted

Events

Single photon analysis

Understanding the detector

Electric field calibration with lasers and cosmic muons

Calorimetry calibration with crossing muons and π^{o} samples

Signal Processing:

From raw signals on wires to 2D reconstructed "hits"

JINST 13, P07006 (2018) JINST 12 P08003 (2017)

On the surface: cosmic background

- > 97% of triggered events have only cosmic activity
- Events with a neutrino typically contain 20 cosmic muons
- Matching with PMT flashes is used to identify the true beam neutrinos
- We use beam-off data to 'simulate' our cosmic overlays on simulated neutrino interactions

$\Delta \rightarrow N\gamma$: background rejection

$1p2\gamma$ and $0p2\gamma$ samples

High statistics: 1130 candidate π^0 interactions

Used to constrain the π^0 backgrounds in the $\Delta \rightarrow N\gamma$ signal samples

And validate shower reconstruction and energy measurement

Single-photon results

Single-photon results

No evidence for an enhanced rate of single photons from NC $\Delta \rightarrow N\gamma$ decay above nominal GENIE expectations

> x3.18 scaling disfavoured at 94.8% C.L.

One-sided bound on the normalisation of NC $\Delta \rightarrow N\gamma$ events of $x_{\Delta} < 2.3$ (90% C.L.)

$$\mathcal{B}_{ ext{eff}}(\Delta
ightarrow N\gamma) < 1.38\%$$
 (90% C.L.)

More than 50 times better than the world's previous limit

Electron search

Three independent searches across multiple final states

Start with muon neutrinos

High-statistics CC ν_{μ} samples

Leverage ν_{μ} and ν_{e} correlations

- Common flux parentage
- Lepton universality

Use our ν_{μ} sample to create a data-driven ν_{e} prediction

- Systematic uncertainties incorporated through a covariance matrix
- This process reduces the uncertainty on the v_e prediction

1eX prediction before constraint

1eX prediction after constraint

Systematic uncertainties

1e1p sample, systematics before constraint

Neutrino interaction modeling

MicroBooNE drove the development of GENIE v3 Developed our own 'MicroBooNE GENIE tune'

- > Fit to 2016 T2K v_{μ} CC0 π data taken at similar energies
- Tune CCQE and CC2p2h models
- Varying >50 parameters to assess interaction uncertainties

We are the first to examine neutrino scattering in argon at these energies and with such high statistics

arXiv:2110.14028

Event reconstruction performance

Neutrino energy reconstruction based on calorimetry with particle ID information

- > 15-20% resolution for fully-contained v_{μ} CC
- 10-15% resolution for fully-contained v_e CC

*FC "fully contained": events with reconstructed activity entirely within fiducial volume

Event reconstruction performance

Neutrino energy reconstruction based on calorimetry with particle ID information

- > 15-20% resolution for fully-contained v_{μ} CC
- 10-15% resolution for fully-contained v_e CC
- Track energy calibrated with muons and protons

Shower energy calibrated with $\pi^{\scriptscriptstyle 0}$ invariant mass

Detector uncertainties

We have made the first complete assessment of systematic uncertainties in a LArTPC

Many sources of uncertainty evaluated

 Space charge, recombination, optical model, GEANT4 uncertainties

Novel data-driven technique using wire responses

arXiv:2111.03556

v_e reconstruction validation with NuMI

Simple MiniBooNE excess model

Unfold the 2018 MiniBooNE excess under a ν_e hypothesis

Considering only E_v-dependence

Apply to MicroBooNE as a scaling to the intrinsic ν_{e} component

Allow only the normalisation of the excess to vary when we make statistical statements

Electron results

Electron results - hadronic energy

Electron results: lepton angle

Electron results

- Observe v_e candidate event rates in agreement with, or below, the predicted rates
- Reject the hypothesis that v_e CC interactions are fully responsible for the MiniBooNE excess at >97% C.L. in all analyses
- Inclusive analysis rejects our median MiniBooNE electronexcess model at 3.75σ

What next? Evolving theory landscape...

What next? Evolving theory landscape...

Already started probing with first LEE results									
Reco topology Models	1e0p	1e1p	1eNp	1eX	e ⁺ e ⁻ + nothing	e⁺e⁻X	1γ0p	1 7 1p	1γΧ
eV Sterile ν Osc	/	/	/	~					
Mixed Osc + Sterile ν	/ [7]	V [7]	V [7]	V [7]			/ [7]		
Sterile ν Decay	[13,14]	[13,14]	[13.14]	[13,14]			[4,11,12,15]	[4]	[4]
Dark Sector & Z' *	[2,3]				[2,3]	[2,3]	/ [1,2,3]	[1,2,3]	[1,2,3]
More complex higgs *					[10]	[10]	[6,10]	[6,10]	[6,10]
Axion-like particle *					/ [8]		[8]		
Res matter effects	V [5]	\$ [5]	/ [5]	[5]					
SM γ production							~	~	/

*Requires heavy sterile/other new particles also

Higgs-portal scalar boson search

Onwards to the SBN programme...

...and to DUNE

MicroBooNE has shown that liquid argon is the technology of choice for precision neutrino analyses

> We have performed end-to-end excess searches, cross-section measurements, BSM searches...

This confirms that there is an exciting future with DUNE

> CP violation, mass hierarchy, proton decay, supernovae...

Summary

Our first searches for low-energy excesses are now released

- ► No evidence for excesses of v_e or NC $\Delta \rightarrow N\gamma$
- But we don't know what the MiniBooNE excess was!

We have shown that liquid argon can perform precision neutrino physics analyses

- > Multiple channels and topologies
- Multiple reconstruction methods
- Reconstruction down to ~100 MeV
- Sidebands, systematics, detector response models, reconstruction algorithms...

MicroBooNE has a bright future as a BSM factory

> More data to analyse, and many more channels to investigate

