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Introduction

The last decade has seen a revolution in neutrino physics. The establishment of
a non-vanishing neutrino mass in neutrino oscillation experiments is one of the ma-
jor achievements. Neutrinos are neutral leptons which are difficult to be detected,
due to the fact that they interact very weakly with other matter. These tiny elemen-
tary particles travel through space at a speed close to the speed of light. There exist
three types of neutrinos: electron neutrinos νe, muon neutrinos νµ and tau neutrinos
ντ . These classifications are referred to as neutrinos’s “flavors”, and they may oscil-
late from one flavor to another. This phenomenon was first observed in 1998 by the
Japanese Super-Kamiokande experiment and some others like Sudbury Neutrino Ob-
servatory (SNO), in which muon neutrinos generated in the atmosphere were found to
”disappear”, presumably turning into tau neutrinos.

Neutrino oscillation occurs when neutrinos have mass and non-zero mixing. Neu-
trino mixing is governed by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing
matrix which relates the mass eigenstates to the flavor eigenstates. The PMNS mixing
matrix is constructed as the product of three independent rotations (a unitary matrix
with three mixing angles and one phase). From there, the numbers are often shown
in a graphical form called the unitary triangle, giving rise to CP violation (which cor-
responds to the vertex of the triangle), thus explaining the subtle differences between
matter and anti-matter. The area of the triangle is a measurement of the amount of
CP violation caused by the weak force. This CP violation partly explains why we live
in a matter-dominated universe rather than one full of antimatter or radiation.

The thesis is organized as follows:

• Chapter 1: The Standard Model is introduced as the best description of the
elementary particle at present. In this Model, neutrino mass is zero. However,
the neutrino oscillations are detected by experiments, indicating that neutrino has
mass and this is the only experimental evidence of physics beyond the description
of the Standard Model so far.

• Chapter 2: The neutrino oscillation theory is introduced and the unitary mixing
matrix is studied in detail. The unitary triangle representation is presented. Fur-
thermore, the possibility of a non-unitary neutrino mixing matrix is introduced
and the derived oscillation probability is shown.

viii



• Chapter 3: The numerical calculation for presenting the unitary triangle with
the current neutrino landscape is shown. A simple model for estimation of the
uncertainty for the triangle vertex is introduced. Lastly, based on the predicted
precision of oscillation parameters with the future neutrino experiments such as
Hyper-Kamiokande and DUNE, we show the expectations for the unitary triangle
representation in the future.

ix



Chapter 1

Neutrino in Standard Model

1.1 Introduction to Standard Model

In particle physics, the elementary particles or fundamental particles can be divided
into two groups: fermions (quarks, leptons, anti-quarks and anti-leptons) which gener-
ate matter and anti-matter in the Universe and bosons, including gauge bosons (which
are force carriers that mediate interactions among fermions) and scalar bosons. Each
fermion has its anti-fermion.

The Standard Model (SM) of particle physics explains how the basic building
blocks of matter interact, governed by three of the four known fundamental forces (the
electromagnetic, weak, and strong interactions, and not including the gravitational
forces) in the Universe, as well as classifying all known elementary particles.

In the SM, electroweak interactions (including electromagnetism and the weak
interactions) are combined with quantum chromodynamics. This theory is a gauge
theory, which means that the fermions interact with each others by exchanging vector
bosons. The electroweak SU(2) × U(1) section is called the Glashow - Weinberg -
Salam model. The local symmetry SU(3)C × SU(2)L × U(1)Y with the subscripts
C,L and Y denote color, left-handed charity and weak hypercharge, respectively. The
Lagrangian of these bosons does not change under the SU(3)C×SU(2)L×U(1)Y gauge
transformations, so such bosons are called gauge bosons. The bosons in the Standard
Model are
- Photon, intermediate particles in electromagnetic interactions
- W and Z boson, intermediate particles in weak interactions
- 8 gluons, intermediate particles in strong interactions
- Higgs bosons, which create the masses of quarks and leptons (electron, muon and
tau)
- Graviton is the hypothetical elementary particle that mediates the force of gravity,
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but it is not included in the SM.

Figure 1.1: Elementary particles included in the Standard Model.

The standard model group corresponds to product of three groups, SU(3)×SU(2)×
U(1) where SU(3) is the gauge group for strong interaction, SU(2) is the gauge group
describing the weak isospin and U(1) describes the hypercharge.

The elementary particles are arranged as doublets for chiral left-handed fields and
singlets for right-handed fields in the form [9](
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According to the weak interaction, Lagrangian is represented by columns are SU(2)
doublets and the right-handed components of the fermion fields (ν

′
eR, e

′
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′
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The Lagrangian in terms of the fermion fields for three generations, the boson fields
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and the Higgs doublet is shown below [17]

L = i
∑

α=e,µ,τ

lαL /DlαL + i
∑

α=1,2,3

qαL /DqαL

+ i
∑

α=e,µ,τ

lαR /DlαR + i
∑

α=d,s,b

dαR /DdαR + i
∑

α=u,c,t

uαR /DuαR

− 1

4
AµνA

µν − 1

4
BµνB

µν

+ (Dµφ)†(Dµφ)− V (φ)

−
∑

α=e,µ,τ

(Y
′l
αβ lαL φ lβR + Y

′l
αβ lβR φ

† lαL)

−
∑

α=1,2,3

∑
β=d,s,b

(Y
′d
αβ qαL φ dβR + Y

′d
αβ dβR φ

† qαL)

−
∑

α=1,2,3

∑
β=u,c,t

(Y
′u
αβ qαL φ̃ uβR + Y

′u
αβ uβR φ̃

† qαL), (1.1)

where
- The first two lines in Eq.(1.1) are the kinetic terms and the gauge couplings for SM
fermions
- The third line is the kinetic and self-coupling terms for the gauge bosons
- The fourth line is the kinetic term and the potential for the SM Higgs, φ is the Higgs
doublet and φ̃ = iτ2φ

∗

- The final three lines are the Higgs-fermion Yukawa couplings which generate the
fermions masses and quark mixing. Y

′l
αβ, Y

′d
αβ, Y

′u
αβ are the Yukawa couplings of leptons,

d-like quarks and u-like quarks, respectively.

The covariant derivative

/D = Dµγ
µ = (∂µ + i

g

2
Aµτα + i

g
′

2
Y Bµ)γµ, (1.2)

with
- Three differential operators Aµ = (Aµ1 , A

µ
2 , A

µ
3) are the three gauge bosons for the

SU(2) group,
- Bµ is the gauge boson associated with the generator Y of the group U(1),
- g and g

′
are two independent coupling constants associated with group SU(2) and

U(1),
- τα = (τ1, τ2, τ3) are the three Pauli matrices.

Under local gauge invariance, field derivatives transform into [7]

/DlαR = (∂µ − ig
′
Bµ)lαR,

/DlαL = (∂µ + i
g

′

2
Bµ − i

g

2
ταAµ)lαL. (1.3)

The SM fermions show are lepton doublets lαL, the quark doublets qαL, the lepton
singlets lαR and quark singlets uαR, dαR where subscripts L and R refer to left and
right chirality, respectively.
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The values of weak isospin I3, hypercharge Y and electric charge Q of the fermion
doublets and singlets are described in Table 1.1 [17].

Table 1.1: The eigenvalues of the weak isospin I, of the third component I3, of the
hypercharge Y and of the charge Q = I3 + Y/2 of the fermion doublets of the 1st

generation and singlets of the 1st family of the SM (e, u, d).

I I3 Y Q

Lepton doublet lL
L = (νeL eL)T

1/2 (1/2,−1/2)T -1 (0,−1)T

Lepton singlet lR 0 0 -2 -1

Quark doublet qL
qL = (uL dL)T

1/2 (1/2,−1/2)T 1/3 (2/3,−1/3)T

Quark singlet uR 0 0 4/3 2/3

Quark singlet dR 0 0 -2/3 -1/3

Higgs doublet
φ = (φ† φ)T

1/2 (1/2,−1/2)T 1 (1, 0)T

The charge of neutrino being 0 implies that neutrinos do not interact in the electro-
magnetic regime; they just participate in the weak interaction.

1.2 Neutrino and weak interaction

The SM Lagrangian of SU(2)×U(1) is re-written to be suitable considering the charge
of lepton doublets and singlets as shown in Table 1.1 (we just consider one-generation
case: e, u, d) [17]

LI = − 1

2
lL(g /Aτ − g′

/B)lL −
1

2
qL(g /Aτ +

1

3
g

′
/B)qL

+ g
′
lR /BlR −

2

3
g

′
uR /BuR +

1

3
g

′
dR /BdR. (1.4)

The leptonic parts in Eq.(1.4) are contained in the first and third term (one-generation
of leptons: e and νe)

LI,l = −1

2
(νeL eL)

(
g /A3 − g

′
/B g( /A1 − i /A2)

g( /A1 + i /A2) −g /A3 − g
′
/B

)(
νeL
eL

)
+ g

′
eR /BeR. (1.5)
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In Eq.(1.5), the charged current (CC) and the neutral current (NC) parts can be
separated explicitly into

LNCI,l = −1

2

[
νeL(g /A1 − g

′
/B)νeL − eL(g /A3 + g

′
/B)eL − 2g

′
eR /BeR

]
, (1.6)

LCCI,l = −g
2

[
νeL( /A1 − i /A2)eL + eL( /A1 + i /A2)νeL

]
. (1.7)

Charged current interaction
The charged vector boson field as shown here

W µ =
Aµ1 − iA

µ
2√

2
, (1.8)

annihilates W+ bosons and creates W− bosons.

The charged current of lepton is given by the expression below

jµW,l = νeγ
ν(1− γ5)e = 2 νeγ

µeL. (1.9)

As a consquence, we obtain

LCCI,l = − g

2
√

2
jµW,lWµ + hc. (1.10)

Neutral current interaction
The Weinberg angle or weak mixing angle is a parameter in the Weinberg-Salam theory
of electroweak interaction, and is denoted by θW .

g
′

g
= tan θW . (1.11)

The constants g and g
′

are related to the charge of electron through the expression

e = g sin θW = g
′
cos θW . (1.12)

Figure 1.2: Weinberg angle θW and relation between couplings g, g
′

and e
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The linear combination of Aµ3 and Bµ are given through θW(
Aµ

Zµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Bµ

Aµ3

)
, (1.13)

Aµ = sin θWA
µ
3 + cos θWB

µ,

Zµ = cos θWA
µ
3 − sin θWB

µ,
(1.14)

where Zµ is a vector boson field for weak interactions.

The neutral currents for leptons are given by

jµγ,l = −eγµe,
jµZ,l = 2 gνLνeLγ

µνeL + 2 glLeLγ
µeL + 2 glReRγ

µeR.
(1.15)

The neutral current Lagrangian is given as follow

LNCI,l = LZI,l + LγI,l = −eγµe− g

2 cos θW
jµZ,lZµ. (1.16)

From the above, the neutrino interactions in the SM occur via mediation by W±

and Z bosons. The CC and NC interactions exchange W± and Z bosons, respectively.
In the above section, we assume only the first generation fermions. To extend to
the three flavor case, the CC interaction will have to be flavor dependent. Hence,
interactions of this kind can be used to label the flavor of neutrinos [17].

1.3 Masslessness of neutrino in Standard Model

Under the SM, neutrinos are predicted to be massless. To explain that, François
Englert and Peter Higgs introduced the Higgs mechanism which generates mass terms
for massive fields and guarantees that SU(2)×U(1) local gauge invariance is unbroken.
The complex Higgs fields forms an SU(2) × U(1) doublet [9]

φ(x) =

(
φ†

φo

)
, (1.17)

where
- φ†(x) is a charged complex scalar field
- φo(x) is a neutral complex scalar field.

The Lagrangian of the field φ as given in Eq.(1.1)

L = (Dµφ)†(Dµφ)− V (φ), (1.18)
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where the potential is given by

V (φ) = µ2φ†φ+ λ(φ†φ)2, (1.19)

where µ2 and λ are positive constants.

We define

v =

√
−µ

2

λ
, (1.20)

and neglecting the irrelevant constant term v4/4, the Higgs potential could be re-
written

V (φ) = λ
(
φ†φ− v2

2

)2
. (1.21)

The minimum of such a potential is

φ†φ =
v2

2
. (1.22)

There are two components of Higgs: one is neutral and the other is charged. Due to
the vacuum being electrically neutral, its state can be chosen to have the following
form

φvac =
1√
2

(
0
v

)
. (1.23)

We have I3(φ) 6= 0, Y (φ) 6= 0 and Q(φ) = 0. That means when Higgs boson is at the
minimum of the potential, SU(2)L × U(1)Y breaks to U(1)Q. The excitation state of
the scalar doublet φ around such minimum is given by

φvac =
1√
2

(
0

v + h(x)

)
. (1.24)

Subsituting Eq.(1.24) into Eq.(1.1), giving us

Lh,l = −v + h√
2

l
′

eLY
′ll

′

eR + hc, (1.25)

where l
′

eL = V l†
L leL and l

′
eR = V l†

R leR.

A complex matrix Y l can be diagonalized by a bi-unitary transformation, we have

Y
′l = V l†

L Y l V l
R = ylαδαβ, (α, β = e, µ, τ) (1.26)

where VL and VR are unitary matrices, Y l is a diagonal matrix whose elements are
positive.

We can re-write Eq.(1.25) as

Lh,l = −
∑

α=e,µ,τ

ylα√
2
v lαlα −

∑
α=e,µ,τ

ylα√
2
h lαlα, (1.27)
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where lα = lαL + lαR (α = e, µ, τ) are the fields of the charged leptons with defined
masses

Ee ≡ e, Eµ ≡ µ,Eτ ≡ τ. (1.28)

In conculsion, in the first term, there is only mass term of charged leptons given by

mα =
ylαv√

2
. (1.29)

And the second term describes the interaction of the massive neutrino and scalar
Higgs bosons. The neutrinos are massless because there are no right-handed neutrinos,
therefore the term in Eq.(1.25) vanish.

In the fact, the neutrino oscillation was discovered by the Super-Kamiokande Ob-
servatory and the Sudbury Neutrino Observatory and this discovery was recognized
with the 2015 Nobel Prize in Physics. We have observed the change of the neutrino
flavors through oscillations and it implies that neutrinos are massive. In this chapter,
under SM, neutrino are massless. As a experimental consequence, the phenomenon of
neutrino oscillations may signal new predictions beyond the SM and that would require
modifications to the SM of particle physics.
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Chapter 2

Neutrino mixing matrix

There exist three types of neutrinos: electron neutrinos νe, muon neutrinos νµ and
tau neutrinos ντ . These classifications are referred to as a neutrinos’s “flavors”. The
Standard Model states that neutrinos are massless and chargeless, and only undergo
weak interactions. However, it has been observed that neutrinos can change their
flavors during their travel. That is, a neutrino which was generated with a certain
flavor might end up having a flavor different from its initial flavor after travelling some
distance. For example, νe at the source may oscillate into νµ over a distance to the
detector. A neutrino flavor is determined as a superposition of the mass eigenstates.
In terms of neutrino flavors, mass eigenstates are mixed with each other and cannot be
determined at the same time. This only happens when at least one mass eigenstates
is non-zero. This phenomenon is called neutrino oscillation.

2.1 Unitarity of neutrino mixing matrix

2.1.1 Neutrino oscillation theory

Neutrino oscillations are a results of neutrino mixing via: the left-handed flavor neu-
trino fields. We denote mass eigenstates by Latin indices and flavor eigenstates by
Greek indices. If the neutrinos are massive, the weak interaction (or flavor) να(α =
e, µ, τ, · · · ) and mass eigenstates νi(i = 1, 2, 3, · · · ) do not coincide, leading to the phe-
nomenon of flavor transition. In general, the left-handed components of the neutrino
flavor fields are superpositions of the left-handed components of the neutrino fields
with defined mass mi [12].

ναL =
n∑
i=1

Vαi νiL, (α = e, τ, µ) (2.1)

9



where V is a unitary mixing matrix which comes from the diagonalization of the neu-
trino mass matrix from Eq.(1.26).

The number of massive neutrino fields n can be greater than or equal to 3. If n is larger
than 3, it means that there are sterile neutrinos that do not take part in the standard
weak interactions. In this section, we do not to consider the sterile neutrinos.

We have the charged lepton current Eq.(1.9) and the neutral lepton current Eq.(1.15)
in the mass basis [16]

CC : jCCµ = 2
3∑
i=1

νiL γµ(V †LVR)iαlαL, (2.2)

NC : jNCµ =
3∑
i=1

νiL γµνiL, (2.3)

where V † and V are diagonalizations of the charged lepton mass matrix in Eq.(1.26).
All the mixing matrix does is to define the charged lepton weak eigenstates in terms of
the mass eigenstates. Thus, V †LVR is the leptonic mixing matrix. Taking the unphysical
phases in V †LVR into account in the charged lepton fields, the mixing matrix is redefined.
The charged current becomes

jCCµ =
3∑
i=1

νiL γµUiαlαL, (2.4)

where U is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix.

The relationship between flavor and mass fields become

ναL =
3∑
i=1

UαiνiL. (α = e, τ, ν) (2.5)

Due to small neutrino mass differences, the neutrino flavor eigenstate is represented by
a coherent superposition of mass eigenstates 1. Let us assume that the initial state at
t = 0 can be expressed as follows

|να(0)〉 =
3∑
i=1

U∗αi|νi(0)〉. (2.6)

1By convention, a field operator creates anti-particles, a anti-field operator creates particles. The
relation between the mass basis and the flavor basis is

∗ Field operator ν
∗ One-particle states |ν〉
∗ Wave functions ν(x) = 〈x|ν〉

να = Uαiνi να = U∗
αiνi

|να〉 = U∗
αi|νi〉 |να〉 = Uαi|νi〉

να(x) = U∗
αiνi(x) να(x) = U∗

αiνi(x)
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At some arbitrary time t, the flavor eigenstates will have the following form

|να(t)〉 =
3∑
i=1

U∗αi|νi(t)〉. (2.7)

In vacuum, the mass eigenstates are given by

|νi(t)〉 = Ti(t, T )|νi(0)〉, (2.8)

such that

|να(t)〉 =
3∑
i=1

U∗αi Ti(t, L)|νi(t)〉, (2.9)

where Ti(t, L) gives the evolution of the mass eigenstate. The state νi has rest mass
mi and it obeys the Schrodinger equation

i
∂

∂τi
|νi(τi)〉 = mi|νi(τi)〉 (2.10)

⇔ |νi(τi)〉 = e−imiτi |νi(0)〉, (2.11)

where τi is the proper time for νi to travel from the neutrino source to the detector.
From (2.8), we have

Ti(t, L) = e−imiτi . (2.12)

Note that the energy of neutrino state is not defined since each component have an
energy E =

√
m2
i + p2i . Under Lorentz invariance, the phases miτi in the νi propagator

Ti(t, L) is given by the following form

miτi = Eit− piL. (2.13)

We have |νi〉 which is the state of neutrino with mass mi, momentum pi, and energy
E propagating from the neutrino source to the detector

pi =
√
E2 −m2

i = E

√
1− m2

i

E2
∼= E

(
1− 1

2

m2
i

E2

)
∼= E − m2

i

2E
. (2.14)

Substituting (2.13) into (2.12)

miτi ∼= E(t− L) +
m2
i

2E
L. (2.15)

In natural units, we have L = ct = t. Thus, the phases E(t− L) equals 0. So,

Ti(t, L) = exp
(
− im

2
i

2E
L
)
. (2.16)
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The probability amplitude of flavor transition να → νβ after time t, distance L in
vacuum and with energy E is given by

Aνα→νβ = 〈νβ|να(t, L)〉 =
∑
i,j

(
Uβj〈νj|

)(
Ti(t, L)U∗αi|νi〉

)
=
∑
i,j

UβjU
∗
αi Ti(t, L)〈νj|νi〉

=
∑
i,j

UβjU
∗
αi Ti(t, L)δij

=
∑
i

UβiU
∗
αi e

−im
2
i

2E
L, (2.17)

where
- Uαi is the amplitude to find the neutrino mass eigenstate |νi〉 in the state of the flavor
neutrino |να〉
- Uβi is the amplitude to find the neutrino flavor eigenstate |νβ〉 in the mass state of
neutrino |νi〉.
Hence, the probability amptitude 〈νi(0)|νi(τi)〉 it refers to the probability of finding
the initial state |νi(0)〉 in the state |νi(τi)〉.

The oscillation probability is obtained squaring the probability amplitude for να → νβ
(Derivation of this probability is given in Appendix B.1)

Pνα→νβ = |Aνα→νβ |2

= δαβ − 4
∑
j>i

Re(U∗αiUβiUαjU
∗
βj) sin2

(∆m2
ijL

4E

)
− 2

∑
j>i

Im(U∗αiUβiUαjU
∗
βj) sin

(∆m2
ijL

2E

)
, (2.18)

where ∆m2
ij = m2

i −m2
j .

Anti-neutrino
The anti-neutrino flavor states |ν̄α〉 are described by the anti-neutrino mass eigenstates
|ν̄i〉

|να〉 =
3∑
i=1

Uαi|νi〉. (2.19)

Notice that the probability amplitude for anti-neutrino differs from the corresponding
amplitude for neutrino, we have to exchange U → U∗ (taking the complex conjugate
of the product matrix). The anti-neutrino transition probability in vacuum [16]

Pνα→νβ(U) = Pνα→νβ(U∗). (2.20)
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The probability amplitude of oscillation να → νβ can be expressed as

Pνα→νβ = δαβ − 4
∑
j>i

Re(U∗αiUβiUαjU
∗
βj) sin2

(∆m2
ijL

4E

)
+ 2

∑
j>i

Im(U∗αiUβiUαjU
∗
βj) sin

(∆m2
ijL

2E

)
. (2.21)

It can be seen from the such expression that if neutrinos are massless, all the mass
squared splittings ∆m2

ij will vanish, then Pνα→νβ = δαβ (Pνα→νβ = δαβ). Hence, the
oscillation in vacuum of να into a different flavor νβ implies that neutrinos have non-
zero masses. Note that at least two neutrino flavors have to be non-degenerated so
that Pνα→νβ 6= δαβ (Pνα→νβ 6= δαβ). Finally, the probability of flavor change in vacuum
is a periodic function of L/E, so the phenomenon of flavor change became known as
“neutrino oscillations”.

The unitarity of U implies that the following probability conservation relation

Pνα→να = 1−
∑
β 6=α

Pνα→νβ . (2.22)

The probabilities (2.18) and (2.21) are called the transition probability and the survival
probability respectively, and they can be expressed in the following way

Pνα→να = Pνα→να = 1− 4
∑
j>i

[
|Uαi|2|Uαj|2 sin2(

∆m2
ijL

4E
)
]
. (2.23)

Converting to natural units, we have 1eV −1 of length = 1.97× 10−7m. The conversion
factor in such equation can be expressed for practical purposes

∆m2
ij[eV

2] L[eV −1]

4E[eV ]
=

∆m2
ij[eV

2] L[m]

4× 1.97× 10−7E[eV ]

= 1.269× 106
∆m2

ij[eV
2] L[m]

E[eV ]

= 1.269
∆m2

ij[eV
2] L[km]

E[GeV ]
. (2.24)

Two flavor case
One important special case is the one in which we consider only two flavors, due to
experiments being analysed under this simple assumption [12]. In this case, we have
only two mass eigenstates (ν1, ν2) and two mass eigenvalues (m1,m2). The mixing
matrix is simply given by (

|να〉
|νβ〉

)
=

(
c s
−s c

)(
|ν1〉
|ν2〉

)
. (2.25)
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We denote c = cos θ and s = sin θ, and θ is the mixing angle. At time t = 0, the initial
state with momentum pi is given by

|ν(t = 0)〉 = |να〉 = c|ν1〉+ s|ν2〉. (2.26)

the two mass components of such neutrinos have energies E1 and E2, as given by

Ei =
√
p2 +m2

i
∼= p+

m2
i

2p
∼= E +

m2
i

2E
. (2.27)

After time t, the neutrino state becomes

|ν(t)〉 = ce−iE1t|ν1〉+ se−iE2t|ν2〉. (2.28)

The probability of finding the neutrino |νβ〉 (α 6= β) is

P (να → νβ) = |〈νβ|να(t)〉|2 =
∣∣(−s〈ν1|+ c〈ν2|) |να(t)〉

∣∣2
=
∣∣(−s〈ν1|+ c〈ν2|) (ce−iE1t|ν1〉+ se−iE2t|ν2〉)

∣∣2
=
∣∣− sce−iE1t〈ν1|ν1〉+ cse−iE2t〈ν2|ν2〉

∣∣2
= c2s2

∣∣e−iE2t − e−iE1t
∣∣2

= cos2 θ sin2 θ(e−iE2t − e−iE1t)(eiE2t − eiE1t)

= cos2 θ sin2 θ(2− e−i(E1−E2)t − ei(E1−E2)t)

= cos2 θ sin2 θ
(

2− cos[(E1 − E2)t] + i sin[(E1 − E2)t]

− cos[(E1 − E2)t]− i sin[(E1 − E2)t]
)

= 2 cos2 θ sin2 θ
[
1− cos[(E2 − E1)t]

]
=

sin2 2θ

2

[
1− cos

(m2
2 −m2

1

2E
t
)]

=
sin2 2θ

2

[
1− cos

(∆m2

2E
t
)]

=
sin2 2θ

2
2 sin2

(∆m2

4E
t
)

= sin2 2θ sin2
(∆m2

4E
t
)
. (2.29)

For relativistic neutrinos, one can also approximate L ∼ t

P (να → νβ) = sin22θ sin2
(∆m2

4E
L
)
. (2.30)

The transition probability is determined by the factor L/E. The amplitude of
oscillation depends on mixing angle θ and the frequency depends upon the mass-squared
difference ∆m2.

Note that, if θ = 0 (no mixing) or ∆m2 = 0 (same or zero mass), neutrinos will
not oscillate. Also, flipping the sign of ∆m2 does not affect the probability. We cannot
distinguish the ordering of two mass states by measuring the oscillation probability
[17].
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2.1.2 The PMNS matrix

Up-to-date data on the parameters of neutrino oscillations have been collected assum-
ing 3 flavor neutrino mixing in vacuum. The currently available data on neutrino
oscillations come from sources, such as the solar (νe), atmospheric (νµ and νµ), re-
actor (νe), accelerator (νµ and νµ) neutrinos. In the case of having three standard
neutrino flavor families, the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix can
be parameterized by three mixing angles (θ12, θ23, and θ13), and one Dirac CP phase
(δCP ) or two Majorana phases (α1 and α2) depending on whether massive neutrinos
are Dirac or Majorana particles as well as two independent mass-squared splitting, for
example ∆m2

21 and ∆m2
31.

The form of the matrix U can be obtained using sequential rotations around the axes
spanned by massive neutrino states m1,m2,m3 [8].

U = R23R13R12,

with Rij describing rotations in the i-j plane by an angle of θij with additional phases
[23].

Atmospheric Reactor Solar Majorana phases

UPMNS =

1 0 0
0 c23 s23
0 −s23 c23

  c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 1

  c12 s2 0
−s12 c12 0

0 0 1

 eiφ1/2 0 0
0 eiφ2/2 0
0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

× diag (1, ei
φ1
2 , ei

φ2
2 )

(2.31)

where
- cij = cos θij and sij = sin θij,
- θij is mixing angle which θ12, θ13 and θ23 are the solar, reactor and atmospheric mixing
angles, respectively,
- δ, φ1, φ2 are CP-violating phases. In the experiments, we only detect CP violation
through δ since Majorana phases is not sensitive and plays no role in oscillation physics.

For two flavor case, it is clear that there is no CP violation because the mixing matrix
has no δCP - CP violating phases.

2.1.3 Unitary triangle representation of PMNS matrix

The neutrino oscillation probabilites can be generally formulated as follows νe
νµ
ντ

 =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 ν1
ν2
ν3

 . (2.32)
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UPMNS is square matrix, thus it has the following property

U †U =

 U∗e1 U∗µ1 U∗τ1
U∗e2 U∗µ2 U∗τ2
U∗e3 U∗µ3 U∗τ3

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 =

 1 0 0
0 1 0
0 0 1

 . (2.33)

Similarly,

UU † =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 U∗e1 U∗µ1 U∗τ1
U∗e2 U∗µ2 U∗τ2
U∗e3 U∗µ3 U∗τ3

 =

 1 0 0
0 1 0
0 0 1

 . (2.34)

So, PMNS leptonic mixing matrix U ∈ Cm×m is unitary (orthogonal in real case)

U †U = UU † = 1 (2.35)

→ U∗jiUjk = UijU
∗
kj = δik. (2.36)

The unitarity of mixing matrices ensures that probabilities sum to 1. The probability
of the oscillating neutrino having electron, muon or tau flavor should be equal to 1.
Eq.(2.33) gives the normalization of elements matrix, as follows

Ue1U
∗
e1 + Ue2U

∗
e2 + Ue3U

∗
e3 = 1

Uµ1U
∗
µ1 + Uµ2U

∗
µ2 + Uµ3U

∗
µ3 = 1

Uτ1U
∗
τ1 + Uτ2U

∗
τ2 + Uτ3U

∗
τ3 = 1.

(2.37)

Eq.(2.34) and Eq.(2.33) yield six unitary triangles, respectively
∗ Three Dirac triangles are governed by the orthogonality relations [19]

∆e : Uµ1U
∗
τ1 + Uµ2U

∗
τ2 + Uµ3U

∗
τ3 = 0

∆µ : Uτ1U
∗
e1 + Uτ2U

∗
e2 + Uτ3U

∗
e3 = 0

∆3 : Ue1U
∗
µ1 + Ue2U

∗
µ2 + Ue3U

∗
µ3 = 0.

(2.38)

∗ Three Majorana triangles are dictated by the orthogonality relations [19]

∆1 : U∗e2Ue3 + U∗µ2Uµ3 + U∗τ2Uτ3 = 0

∆2 : U∗e1Ue3 + U∗µ1Uµ3 + U∗τ1Uτ3 = 0

∆3 : U∗e1Ue2 + U∗µ1Uµ2 + U∗τ1Uτ2 = 0.

(2.39)

Unitarity requires

U∗e1Ue2 + U∗µ1Uµ2 + U∗τ1Uτ2 = 0 (2.40)

→ ~a + ~b + ~c = 0.

Such three vectors can be used to define a triangle in two dimension coordinates
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Figure 2.1: The triangle is used to represent Eq.(2.40).

The sides can be defined as follows

(a, b, c) = (|U∗e1Ue2|, |U∗µ1Uµ2|, |U∗τ1Uτ2|). (2.41)

Figure 2.2: The normalized unitary triangle.

We normalize the area of unitary triangle to get the relation

~a+~b+ ~c = 0

⇔ ~a

|~c|
+
~b

|~c|
+~1 = 0. (2.42)

The height of the triangle

h = Im
[a
c

]
= Im

[b
c

]
. (2.43)

The non-normalized area

S =
1

2
.Im

[a
c

]
.|c|2. (2.44)

Utilizing the following property given complex number z

Im(z) =
z − z̄

2i
. (2.45)
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So, the normalized area

S
′
=

1

2
h.1 =

1

2
. Im

[a
c

]
.1 =

1

4i

(a
c
− a∗

c∗

)
. (2.46)

We infer that

S = S
′ |c|2 =

1

4i

(a
c
− a∗

c∗

)
c∗c

=
1

4i
(ac∗ − a∗c) =

1

2
Im[ac∗]. (2.47)

Similarly, we have

S =
1

2
Im[ac∗] =

1

2
Im[cb∗] =

1

2
Im[ba∗]. (2.48)

Combining (2.40) and (2.48)

S =
1

2
Im
[
U∗e1Ue2Uτ1U

∗
τ2

]
=

1

2
Im
[
U∗τ1Uτ2Uµ1U

∗
µ2

]
=

1

2
Im
[
U∗µ1Uµ2Ue1U

∗
e2

]
.

(2.49)

From (2.21) and (2.18), we have

Pνα→νβ − Pνα→νβ = 4
∑
i>j

Im[U∗αiUβiUαjU
∗
βj] sin

(∆m2
ijL

2E

)
. (2.50)

Jarlskog invariant is defined

J = Im
[
U∗αiUβiUαjU

∗
βj

]
. (α 6= β, i 6= j) (2.51)

Comparing with the area of the triangle, as we have done before

J = 2S. (2.52)

In conclusion, these six unitary triangles have the same area which is equal to half of
the Jarlskog’s invariant. Eq.(2.40) could be compacted in the following form∑

k

UikU
∗
jk = 0. (2.53)

With any fixed and different i and j corresponding to each k, these numbers form
the sides of the triangle in the complex plane. There are six choices of i and j (three
independent) and hence six such triangles, each of which is called unitary triangle.

Their shapes are very different but they all have the same area, which is related
to CP violation phase. The area vanishes for the specific parameters in the Standard
Model for which there would be no CP violation. In other words, to have CP violating
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effects, J must be non-zero . Since the three sides of the triangles are open to direct
experiment, as are the three angles, a class of tests on the Standard Model is to check
that the triangle closes.

The angles in triangle representation
For the flavor neutrino oscillations, we consider the Dirac triangles

Uα1U
∗
β1 + Uα2U

∗
β2 + Uα3U

∗
β3 = 0. (2.54)

Let α, β, γ be the three triangle angles, each angle is the relative phases between two
adjacent sides [1]

α = arg
(
−
Uα3U

∗
β3

Uα2U∗β2

)
β = arg

(
−
Uα1U

∗
β1

Uα3U∗β3

)
γ = arg

(
−
Uα2U

∗
β2

Uα1U∗β1

)
.

(2.55)

Figure 2.3: The unitary triangle denotes three angles.

2.2 Non-unitarity of neutrino mixing matrix

In this previous section, we describe the neutrino mixing using a unitary matrix and
this basically describe our data well (with some exception), but there is still some place
for a non-unitary mixing matrix in neutrino oscillation. The phenomenological impact
of these new physics in neutrino oscillation measurement facilities are [6]
- The new mass scale is kinematically accessible in meson decays, the sterile states will
be produced in the neutrino beam
- The extra neutrinos are too heavy to be produced, the PMNS matrix will become a
non-unitarity matrix.

A generic feature of many Beyond the SM scenarios is the inclusion of one or more
new massive fermionic singlets, uncharged under the Standard Model (SM) gauge group
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SU(3)C × SU(2)L × U(1)Y . If n extra right-handed neutrinos are added to the SM
Lagrangian, the full mixing matrix is as shown [6]

U extended
PMNS =

(
N Θ
R S

)
, (2.56)

where
- N is the 3× 3 active-light sub block (PMNS matrix)
- Θ shows 3× n sub-block consists of the mixing between active and heavy states
- R and S sub-block represent the mixing of sterile states including light and heavy
states, respectively.

These new sterile states mix with the SM neutrinos and therefore, the true mixing
matrix is enlarged from the 3× 3 UPMNS matrix to a n× n matrix [14]

UExtended
PMNS =


Ue1 Ue2 Ue3 · · · Uen
Uµ1 Uµ2 Uµ3 · · · Uµn
Uτ1 Uτ2 Uτ3 · · · Uτn

...
...

...
. . .

...
Usn1 Usn2 Usn3 · · · Usnn

 (2.57)

2.2.1 The effective Lagrangian

In this section, we use the Einstein summation convention, in which we sum over the
repeated indices.

The effective Lagrangian in the mass basis
The leptonic unitary matrix UPMNS is replaced by a non-unitary one. Firstly, we
analyze the effective low-energy Lagrangian in the mass basis [3]

Leff =
1

2
(νii∂νi − νcimiνi + hc)− g

2
√

2
(W+

µ lαγµ(1− γ5)Nαiνi + hc)

− g

2 cos θW
(Zµνiγ

µ(1− γ5)(N †N)ijνj + hc) + · · · , (2.58)

where
- Nαi is a general non-unitary matrix,
- The first term is a kinetic term, the second one is neutrino mass term, the third one is
charged current interaction and the last one is to modify the neutral current coupling
[3].
Notice that a non-unitary matrix will include a Majorana mass term, albeit the anal-
ysed data would make no difference to consider neutrinos of the Dirac type.

For the non-unitary matrix, the mass eigenstates and flavor eigenstates are not or-
thonormal. Indeed, N connects the quantum fields in the mass basis with the flavor
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basis where the weak couplings are diagonal

να =
∑
i

Nαiνi. (2.59)

The mass eigenstates become orthonormal

〈νi|νj〉 = δij. (2.60)

The relation between mass state and flavor state is [3]

|να〉 =
1√

(NN †)αα

∑
N∗αi|νi〉 =

∑
i

Ñ∗αi|νi〉, (2.61)

where the normalization factor has been absorbed into the definition of Ñ on the
right-hand side. The flavor eigenstates are not orthogonal 2

〈νβ|να〉 = (ÑÑ †)βα 6= δαβ. (2.62)

The effective Lagrangian in the flavor basis
Re-writing the Lagrangian in Eq.(2.58) in the flavor basis using Eq.(2.59)

να = Nαiνi → νi = (Nαi)
−1να → νi = (N−1αi )∗να,

να = Nαiνi → να = N∗αiνi → νi = (N∗αi)
−1να,

It follows that [3]

Leff =
1

2

(
iνα∂(NN †)−1αβνβ − νcα[(N−1)tmN−1]αβνβ + hc

)
− g

2
√

2
[W+

µ lαγµ(1− γ5)να + hc]

− g

2 cos θW
[Zµναγ

µ(1− γ5)να + hc] + · · · , (2.63)

where m = diag(m1,m2,m3).

In this basis, the weak couplings (CC coupling and NC coupling) are diagonal. In
contrast, both the kinetic (the first term) and neutrino mass term (the second term)
are non-diagnonal, so they do not have the canonical form. To define the kinematic
properties, we transform the Lagrangian to ensure that canonical kinetic and mass term
are obtained in the neutrino fields. That means the neutrino mass term is diagonalized
by a unitary transformation and the kinetic term is both diagonalized and normalized,
to obtain canonical kinetic energies. At least two normalizations of neutrino fields
differ, a non-unitary weak mixing matrix, connecting the quantum fields in the flavor
basis with those in the mass basis in Eq.(2.59) [3].

2Notice that the flavor eigenstates are not orthonormal at low-energy. In the corresponding com-
plete high energy - hypothetical theory, it is possible to be orthonormal flavor basis [3].
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2.2.2 Oscillation probability

The free Hamiltonian Hfree describes free neutrino propagation. Time evolution of
the neutrino mass eigenstates is governed by Schrodinger equation [3]

i
d

dt
|νi〉 = Hfree|νi〉. (2.64)

Because of the orthogonality of the mass basis, we have

〈νj|Hfree|νi〉 = δijEi, (2.65)

where Ei are the eigenvalues.
Using the completeness relation in the mass basis

∑
j |νj〉〈νj| = 1, we have

i
d

dt
|νi〉 =

∑
j

|νj〉〈νj|Hfree|νi〉 = Ei|νi〉, (2.66)

which is the usual time propagation for free states.

Since the flavor basis is not orthonormal and have no completeness relation, as
∑

a |να〉〈να| 6=
1. The time evolution reads

i
d

dt
|να〉 =

∑
j

|νj〉〈νj|Hfree|να〉 =
∑
i,j

|νj〉〈νj|HfreeÑ
∗
αi|νi〉 =

∑
i,j

Ñ∗αiδijEi|νj〉

=
∑
i,j

Ñ∗αi(Ñ
∗
βj)
−1δijEi|νβ〉 =

∑
i

Ñ∗αi(Ñ
∗
βi)
−1Ei|νβ〉 (i = j)

=
∑
β

[Ñ∗E(Ñ∗)−1]αβ|νβ〉. (2.67)

where E = diag(E1, E2, E3).

The combination (Ñ∗E(Ñ∗)−1) is not Hermitian, albeit the free Hamiltonian is Her-
mitian. It means the evolution of the flavor bra states 〈να| differs from the flavor kets
|να〉, but both have the same probability equation [3].

Neutrino flavor evolution in space is governed by Schrodinger equation in the following
way [3]

i
d

dL
|νi〉 = Hfree|νi〉

→ |νi(L)〉 = e−iφ|νi(0)〉. (2.68)

where L is the distance traveled by the neutrino.
We infer that

|να(L)〉 =
∑
i

Ñ∗αi|νi(L)〉 =
∑
i

Ñ∗αie
−iφ |νi(0)〉 (2.69)
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The probability amplitude of flavor transition να → νβ after distance L in vacuum is
given by

Aνα→νβ = 〈νβ|να(L)〉 =
∑
i

〈νj|ÑβjÑ
∗
αie
−iφ|νi(0)〉

=
∑
i

Ñβie
−iφÑ∗αi

=
1√

(NN †)αα(NN †)ββ

∑
i

N∗αie
−iφNβi. (2.70)

The oscillation probability becomes

Pνα→νβ = |Aνα→νβ |2 =
1

(NN †)αα(NN †)ββ

∣∣∣∑
i

N∗αie
−iφNβi

∣∣∣2. (2.71)

We consider this term as the oscillation probability in vacuum (derivation of this equa-
tion is given in Appendix B.2). Hence, we have the oscillation probabililty for a neutrino
of initial flavor α and energy Eν to transit into a neutrino of flavor β after a distance
L as follows

Pνα→νβ =
1

(NN †)αα(NN †)ββ

{∣∣∣∑
i

N∗αiNβi

∣∣∣2
− 4

∑
j>i

Re[N∗αiNβiNαiN
∗
βi] sin2(

∆m2
jiL

4E
)

− 2
∑
j>i

Im[N∗αiNβiNαiN
∗
βi] sin(

∆m2
jiL

2E
)
}
, (2.72)

where now, without assuming unitarity, the leading term is not a fuction of
∆m2L

E
.

Eq.(2.72) has the term Im[N∗αiNβiNαiN
∗
βi] called Jarlskog invariants of CP violation.

Non-unitarity have 9 different Jarlskog invariants, and unitary triangles deformed to
become polygons [18].

The consequence of Eq.(2.72) is that the non-unitarity of N generates a ”zero distance”
effect. For instance, a flavor transition at the source before oscillations can take place.
Indeed, for L = 0, it reads [13]

Pνα→νβ(E,L = 0) =
|(NN †)αβ|2

(NN †)αα(NN †)ββ
6= 0. (2.73)

So, an effect can be tested in near detectors (with unitarity of the U matrix, Pνα→νβ =
δαβ at L = 0). Nevertheless, because of non-unitarity, the oscillation probability does
not sum up to a total probability of 100%. It also means that the total oscillation
probability is not necessarily equal to 1 or 0 in neutrino disappearance and appearance
experiments, respectively.
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Chapter 3

Calculations and results

In this chapter, we will use the ROOT - data analysis framework to calculate the
value of the unitary matrix and the draw unitary triangles with current data. We will
perform the following:

• From four measuared parameters (sin θ13, sin θ23, sin θ23 and δCP ), we calculate
the values of each element in the PMNS matrix. And then, using the ROOT
framework to draw unitary triangle.

• In the unitary triangle, coordinate of C vertex might be changed due to uncer-
tainties of the four parameters, especially δCP .

• Decreasing uncertainty of the δCP in T2K and DUNE experiments in the future,
we re-draw unitary triangle and then consider how the colored-region change.

3.1 The unitary triangle with our current neutrino

landscape

The current best-fit values from NuFit.org [22] are given in following table. The num-
bers in the second and third column are assuming Normal Ordering or Inverted Or-
dering (Appendix A) respectively and the numbers given are relative to the respective
global minimums. The table 3.1 contains not only the best-fit values but also includes
1σ uncertainty.
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Table 3.1: Three-flavor oscillation parameters from fit to global data as of November
2017.

Normal Ordering Inverted Ordering

best fit ±1σ best fit ±1σ

sin2 θ12 0.307+0.013
−0.012 0.307+0.013

−0.012

sin2 θ23 0.538+0.038
−0.069 0.554+0.023

−0.033

sin2 θ13 0.02206+0.00075
−0.00075 0.02227+0.00074

−0.00074

δCP /
o 234+43

−31 278+26
−29

We represent the current neutrino data with the unitary triangle. Each element of
matrix in Eq.(2.32) corresponds to each element of matrix in Eq.(2.31) Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


(3.1)

s212 + c212 = sin2 θ12 + cos2 θ12 = 1

s223 + c223 = sin2 θ23 + cos2 θ23 = 1

s213 + c213 = sin2 θ13 + cos2 θ13 = 1

(3.2)

Both the normal hierarchy and the inverted hierarchy are calculated independently.

The values of PMNS matrix are calculated as

Unormal =

 0.823 0.548 −0.087 + 0.120 ∗ i
−0.323 + 0.073 ∗ i 0.601 + 0.049 ∗ i 0.725
0.456 + 0.068 ∗ i −0.575 + 0.045 ∗ i 0.672



Uinverted =

 0.823 0.548 0.0206 + 0.148 ∗ i
−0.387 + 0.091 ∗ i 0.554 + 0.060 ∗ i 0.729
0.397 + 0.083 ∗ i −0.622 + 0.055 ∗ i 0.668


From PMNS matrix, there are six triangles having the same area, so that means we
just choose one of six others

∆2 : Ue1U
∗
e3 + Uµ1U

∗
µ3 + Uτ1U

∗
τ3 = 0 (3.3)
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Since the matrix U is unitary, any given pair of rows or columns can be used to define
a triangle in the complex plane. In such a figure, we obtain the triangle corresponding
to the unitarity conditions on the first and third columns. The unitary triangle for
normal hierarchy and for inverted hierarchy are shown
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Figure 3.1: Normal hierarchy.
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Figure 3.2: Inverted hierarchy.

3.2 Simple model for estimating uncertainty

The goal is calculate the confidence interal for the vertex C in each unitary trian-
gle. Theoretically, it is possible to take into account the uncertainties of coordinates of
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the C vertex in the triangle. However, it is complicated when calculating the complex
numbers from CP phase.

We keep two fixed points (A(0,0) and B(0,1)) and change C vertex with changing
four parameters on the uncertainties scale. The simplest way to handle uncertainty
is to assume Gaussian distribution for each parameter (a kind of Bayesian approach).
Each variable (three angles and one CP phase) is given randomly and assumed to obey
a Gaussian distribution.

The 1σ ranges of the magnitude of the elements of the three-flavor leptonic mixing
matrix is defined under the assumption of the matrix U being unitary. Each value
corresponds to a global minimum and global maximum.

|U | =

0.815→ 0.831 0.537→ 0.559 0.146→ 0.151
0.320→ 0.393 0.536→ 0.662 0.678→ 0.747
0.425→ 0.456 0.552→ 0.632 0.647→ 0.721

 (3.4)

After scaling and rotating the triangle, such that two of its vertices always co-
incide with (0,0) and (1,0), we plot the 1σ allowed regions of the third vertex. The
contours for normal (above) and inverted (bottom) ordering are defined according to
the common global minimum [22]. Figure (3.3) and Figure (3.4) show the unitary
triangle representation with the uncertainty of the C vertex’s coordinates [11].
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Figure 3.3: Normal hierarchy with 1σ uncertainties for 4 oscillation parameters.
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Figure 3.4: Inverted hierarchy with 1σ uncertainties for 4 oscillation parameters.

3.3 Unitary test with future neutrino experiments

Today, there are large-scale experiments that have been conducted to measure neu-
trinos: T2K, NOvA, MINOS and MINOS+. Furthermore, the status and prospects
of future long-based neutrino experiments are promising, with experiments Hyper-
Kamiokande and DUNE.

Hyper-Kamiokande experiment

The Hyper-Kamiokande (HK) detector is to be the third generation water Cherenkov
detector which will be hosted in the Tochibora mine, about 295 km away from the
J-PARC proton accelerator research complex in Tokai, Japan. It is designed to include
two half megaton tanks equipped with ultra high sensitivity photosensors and is big-
ger than its predecessor, Super-Kamiokande (SK). The Hyper-Kamiokande detector
is both a “microscope,” used to observe elementary particles, and also a “telescope”
for observing the Sun and supernovas, using neutrinos[21]. Hyper-Kamiokande will be
able to measure the highest precision of the leptonic CP violation that could explain
the baryon asymmetry in the Universe. The atmospheric neutrinos will allow us to
determine the neutrino mass ordering and be able to precisely test the three-flavor
neutrino oscillation paradigm and search for new phenomena.[17].
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DUNE experiment

The Deep Underground Neutrino Experiment (DUNE) is a cutting-edge, international
experiment for neutrino science and proton decay studies. DUNE will consist of two
neutrino detectors placed in the path of an intense neutrino beam. One detector will
record particle interactions near the source of the beam, at the Fermi National Accel-
erator Laboratory in Batavia, Illinois. A second, much larger, detector will be installed
more than a kilometer underground at the Sanford Underground Research Laboratory
in Lead, South Dakota - 1300 kilometers downstream of the source. These detectors
will enable us to search for new subatomic phenomena and potentially transform our
understanding of neutrinos and their role in the universe.[20].

In the future, the experiments will be done at Hyper-K and DUNE will be able to
decrease uncertainties of δCP .

For the Hyper-K experiment, the uncertainty of δCP is decreased to ±23o
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Figure 3.5: Leptonic unitarity triangle for uncertianty of δCP = ±23o

For combining expected data from Hyper-K and DUNE, the uncertainty value of the
δCP becomes ±15o
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In Figure (3.5) and (3.6), when the uncertainty of δCP is reduced from 234+43
−31 and

278+26
−29 (in this Table 3.1) to ±23o and ±15o for NO and IO, respectively, we see that

the area of colored-region is shrinked and is located near the peak of triangle, giving
us the precise value of best fit.
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Conclusion and Proposition

Conclusion

This thesis has studied basic problems of neutrino oscillation related to unitarity
of the mixing matrix. First, we gave an overview of neutrinos in the SM. Neutrino
interact via mediating W± and Z bosons. In the SM, neutrinos are not right-handed,
so neutrinos are massless.

In addition, we also introduced the unitary mixing matrix in leptonic sector.
Firstly, from neutrino oscillation theory, we derived probabilities for both oscillation
and survival. If Pνα→νβ 6= Pνα→νβ , it means that neutrino oscillation shows evidence
of existence of CP violation. Neutrino oscillation is described by the PMNS matrix
including three mixing angles, one Dirac phase and two Majorana phases. To ex-
tract oscillation parameters from data, we built the unitary triangle. From the unitary
PMNS matrix, we could derive six unitary triangles having the same area. The areas of
unitary triangles are proven to be equal to half of Jarlskog’s invariant. In other words,
the area of the unitary triangle is related to the CP violation phase.

Moreover, we extended the PMNS matrix for sterile neutrinos and heavy neutrinos,
from 3 × 3 matrix to n × n matrix. It is called a non-unitary matrix. We need to
modify the Lagragian in the mass basis and flavor basis by adding in a non-unitary
matrix instead of unitary one. Similar to the unitary matrix, we derived the oscillation
probability.

Finally, we derived the results based on current data from global fit framework
for ν oscillation [22]. The inputs for numerical calculation are put into ROOT, and
outputs for the values of the PMNS matrix elements are derived. From the derived
values, we can draw two unitary triangles corresponding to the normal and inverted
hierarchies.

Each oscillation parameter has its own uncertainty, so for each one, we generate
one million points which is varied around the best-fit value as a Gaussian distribution
and then follow the same procedure as the above section. Each set of value of the
oscillation parameter uncertainties gives a point C, the set of C points then form a
colored region which has a cresent shape as we can see in the figure.
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In the future, with more statistics, Hyper-K experiment will reduce the uncertainty
of δCP down to 23o, which will result in an uncertainty of 15o when combined with the
result of DUNE. The larger statistics will also make the colored region smaller and
closer to the best-fit value.

Currently, all measurements of the unitarity triangle are consistent with the peak
lying somewhere within the colored-region of uncertainties. By improving the current
measurements and performing new ones, the size of this allowed region will be reduced
to measure the position of the vertex ever more precisely. The absence of CP violation
implies a flat triangle, which means Im(z) = 0.

Especially, a precise study of CP asymmetry in the lepton sector is one of the
major goals of Hyper-K. The existence of CP violation is one of necessary conditions
to explain the matter-antimatter asymmetry of the Universe.

Proposition

After studying some aspects of the unitarity of matrix and the unitary triangle,
we realized that some further works should be done to have a better calculation and
also to extend this subject.

First, this thesis implemented Bayesian approach in which the C vertex is Gaussian
generated. However, this results in the best-fit value not lying at the center of the
generated 3σ region. Thus, to cross-check the obtained result, we will try another
method such as Chi-squared test.

Second, due to the time limit of the internship, we investigated only the effect of
δCP on the uncertainty area. In future work, we will include the effect of mixing angles
(s212, s

2
23 and s213) into the analysis. The neutrino oscillation experiments are measuring

the mixing angles with better and better precision, so we hope that by including the
newly measured values, the size of the uncertainty area will be reduced.

Finally, it would be interesting to study the correlation between δCP and each
parameter (sin2 θ13, sin2 θ23 and sin2 θ12) to show the effect of the parameters on δCP .
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Appendix A

Neutrino mass hierarchy

There are three neutrino types and until recently they were thought to be massless.
Due to the discovery of neutrino oscillation, it is now known that not only do they have
mass, but also that the masses of the three mass eigenstates (m1,m2,m3) are different.

Experiments observing the oscillations of neutrinos produced in the sun have measured
the squared difference of the masses m1,m2 and ∆m2

12 = m2
1 − m2

2, and the squared
difference of the masses m1 and m3 (∆m2

13) have been determined for oscillations of
neutrinos in the Earth’s atmosphere. The oscillation experiments just only probe the
squared difference of the masses, the absolute values of m1,m2, and m3 as well as
the question of whether or not m2 is heavier than m3 remain unknown. The latter
question is known as the “neutrino mass hierarchy problem.” If m2 is lighter than m3

(m1 < m2 < m3), the hierarchy is said to be “normal ordering” (NO). But if it is
heavier (m3 < m1 < m2), the hierarchy is called “inverted ordering” (IO) [21].

Figure A.1: Neutrino mass hierarchy. Though the value of the individual masses
m1,m2 and m3 are unknown, there are two possible orderings.
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Appendix B

The oscillation probability formula

B.1 For unitary matrix of neutrino mixing

The flavor eigenstates are related to the mass eigenstates by the 3× 3 unitary PMNS
matrix  νe

νµ
ντ

 =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 ν1
ν2
ν3

 . (B.1)

The mass eigenstates can be defined via flavor eigenstates ν1
ν2
ν3

 =

 U∗e1 U∗e2 U∗e3
U∗µ1 U∗µ2 U∗µ3
U∗τ1 U∗τ2 U∗τ3

 νe
νµ
ντ

 . (B.2)

From Eq.(B.1), we have the wave function at time t = 0

|Φ(0)〉 = |νµ〉 = U∗µ1|ν1〉+ U∗µ2|ν2〉+ U∗µ3|ν3〉. (B.3)

The time-dependent wave function

|Φ(~x, t)〉 = U∗µ1|ν1〉e
−iφ1 + U∗µ2|ν2〉e

−iφ2 + U∗µ3|ν3〉e
−iφ3 , (B.4)

expressed in compact form becomes

|να〉 =
3∑
i

U∗α,i|νi〉e−iφi , (B.5)

where φi = miτi =
m2
i

2E
L.

From Eq.(B.2) we have

|ν1〉 = Ue1|νe1〉+ Uµ1|νµ1〉+ Uτ1|ντ1〉
|ν2〉 = Ue2|νe2〉+ Uµ2|νµ2〉+ Uτ2|ντ2〉
|ν3〉 = Ue3|νe3〉+ Uµ3|νµ3〉+ Uτ3|ντ3〉.
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Eq.(B.4) can be written as

|Φ(~x, t)〉 = U∗µ1

(
Ue1|νe〉+ Uµ1|νµ〉+ Uτ1|ντ 〉

)
e−iφ1

+ U∗µ2

(
Ue2|νe〉+ Uµ2|νµ〉+ Uτ2|ντ 〉

)
e−iφ2

+ U∗µ3

(
Ue3|νe〉+ Uµ3|νµ〉+ Uτ3|ντ 〉

)
e−iφ3

=
(
U∗µ1Ue1e

−iφ1 + U∗µ2Ue2e
−iφ2 + U∗µ3Ue3e

−iφ3
)
|νe〉

+
(
U∗µ1Ue1e

−iφ1 + U∗µ2Ue2e
−iφ2 + U∗µ3Ue3e

−iφ3
)
|νµ〉

+
(
U∗µ1Ue1e

−iφ1 + U∗µ2Ue2e
−iφ2 + U∗µ3Ue3e

−iφ3
)
|ντ 〉

= ce|νe〉+ cµ|νµ〉+ cτ |ντ 〉. (B.6)

In compact form

|Φ(~x, t)〉 =
∑
i

U∗αiUβie
−iφi |νβ〉. (B.7)

The oscillation probability from muon neutrino to electron neutrino is

Pνµ→νe = |〈νe|Φ(~x, t)|2 = cec
∗
e

= |U∗µ1Ue1e−iφ1 + U∗µ2Ue2e
−iφ2 + U∗µ3Ue3e

−iφ3 |2. (B.8)

In general, oscillation probability is given by

Pνα→νβ =
∣∣∣∑

i

U∗αiUβie
−iφi
∣∣∣2. (B.9)

With three neutrino mixing, using the following property of complex number

|z1 + z2 + z3|2 = |z1|2 + |z2|2 + |z3|2 + 2Re|z1z∗2 + z1z
∗
3 + z2z

∗
3 |. (B.10)

Eq.(B.8) can be re-expressed as

Pνµ→νe = U∗µ1Ue1e
−iφ1 + U∗µ2Ue2e

−iφ2 + U∗µ3Ue3e
−iφ3 |2

= |U∗µ1Ue1|2 + |U∗µ2Ue2|2 + |U∗µ3Ue3|2

+ 2Re[U∗µ1Ue1Uµ2U
∗
e2e

i(φ2−φ1)]

+ 2Re[U∗µ1Ue1Uµ3U
∗
e3e

i(φ3−φ1)]

+ 2Re[U∗µ2Ue2Uµ3U
∗
e3e

i(φ3−φ2)]. (B.11)

We generlize that to

Pνα→νβ =
∑
i

|U∗αiUβi|2 + 2
∑
j>i

Re[U∗αiUβiU
∗
αjUβje

i(φj−φi)]. (B.12)

The unitary condition

|U∗µ1Ue1 + U∗µ2Ue2 + U∗µ3Ue3|2 = 0

⇔ |U∗µ1Ue1|2 + |U∗µ2Ue2|2 + |U∗µ3Ue3|2 + 2Re[U∗µ1Ue1U
∗
µ2Ue2 + U∗µ1Ue1U

∗
µ2Ue2 + U∗µ1Ue1U

∗
µ2Ue2] = 0

⇒
∑
i

|U∗αiUβi|2 + 2
∑
j>i

Re[U∗αiUβiU
∗
αjUβj] = σαβ. (B.13)
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This follows from Eq.(B.11) and Eq.(B.13)

Pνµ→νe = 2Re[U∗µ1Ue1Uµ2U
∗
e2(e

i(φ2−φ1) − 1)]

+ 2Re[U∗µ1Ue1Uµ3U
∗
e3(e

i(φ2−φ1) − 1)]

+ 2Re[U∗µ1Ue1Uµ2U
∗
e2(e

i(φ2−φ1) − 1)]. (B.14)

In short,

Pνα→νβ = σαβ + 2
∑
j>i

Re[U∗αiUβiU
∗
αjUβj(e

i(φj−φi) − 1)]. (B.15)

We have

Re
[
U∗αiUβiUαiU

∗
βi(e

i(φj−φi) − 1)
]

= Re
[
U∗αiUβiUαiU

∗
βi(cos(φj − φi)− 1 + i sin(φj − φi))

]
= Re

{(
Re[U∗αiUβiUαiN

∗
βi] + iIm[U∗αiUβiUαiN

∗
βi]
)(
− 2 sin2(

φj − φi
2

) + i sin(φj − φi)
)}

= −2Re[U∗αiUβiUαiU
∗
βi] sin2(

φj − φi
2

)− Im[U∗αiUβiUαiU
∗
βi] sin(φj − φi). (B.16)

We infer the oscillation probability

Pνα→νβ = σαβ − 4
∑
j>i

Re[U∗αiUβiUαiU
∗
βi] sin2(

φj − φi
2

)

− 2
∑
j>i

Im[U∗αiUβiUαiU
∗
βi] sin(φj − φi). (B.17)

From Eq.(2.12) and Eq.(2.16), we substitute φj − φi =
∆m2

ijL

2E

Pνα→νβ = σαβ − 4
∑
j>i

Re[U∗αiUβiUαiU
∗
βi] sin2(

∆m2
ijL

4E
)

− 2
∑
j>i

Im[U∗αiUβiUαiU
∗
βi] sin(

∆m2
ijL

2E
). (B.18)

B.2 For non-unitary matrix of neutrino mixing

From Eq.(2.70), we infer the oscillation probability

Pνα→νβ = |Aνα→νβ |2 =
1

(NN †)αα(NN †)ββ

∣∣∣∑
i

N∗αie
−iφNβi

∣∣∣2. (B.19)
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We consider this term as the oscillation probability in unitary matrix

Pνµ→νe =
1

(NN †)αα(NN †)ββ
|N∗µ1Ne1e

−iφ1 +N∗µ2Ne2e
−iφ1 +N∗µ3Ne3e

−iφ1|2

=
1

(NN †)αα(NN †)ββ

{
|N∗µ1Ne1|2 + |N∗µ2Ne2|2 + |N∗µ3Ne3|2

+ 2Re
[
N∗µ1Ne1Nµ2N

∗
e2 e

i(φ2−φ1)
]

+ 2Re
[
N∗µ1Ne1Nµ3N

∗
e3 e

i(φ3−φ1)
]

+ 2Re
[
N∗µ2Ne2Nµ3N

∗
e3 e

i(φ3−φ2)
]}
. (B.20)

Omitting this term ((NN †)αα(NN †)ββ)−1∣∣∣∑
i

N∗αie
−iφNβi

∣∣∣2 =
∑
i

|N∗αiNβi|2 + 2
∑
j>i

Re
[
N∗αiNβiNαiN

∗
βie

i(φj−φi)
]
. (B.21)

From the non-unitary condition for three neutrinos, we can derive∣∣∣∑
i

N∗αiNβi

∣∣∣2 =
∑
i

|N∗αiNβi|2 + 2
∑
j>i

Re
[
N∗αiNβiNαjN

∗
βj

]
. (B.22)

Combining the two equations, Eq.(B.21) and Eq.(B.22)∣∣∣∑
i

N∗αie
−iφNβi

∣∣∣2 =
∣∣∣∑

i

N∗αiNβi

∣∣∣2 − 2
∑
j>i

Re
[
N∗αiNβiNαjN

∗
βj

]
+ 2

∑
j>i

Re
[
N∗αiNβiNαiN

∗
βie

i(φj−φi)
]

=
∣∣∣∑

i

N∗αiNβi

∣∣∣2 + 2
∑
j>i

Re
[
N∗αiNβiNαiN

∗
βi(e

i(φj−φi) − 1)
]
. (B.23)

We have

Re
[
N∗αiNβiNαiN

∗
βi(e

i(φj−φi) − 1)
]

= Re
[(
N∗αiNβiNαiN

∗
βi

)(
cos(φj − φi)− 1 + i sin(φj − φi)

)]
= Re

{(
Re[N∗αiNβiNαiN

∗
βi] + iIm[N∗αiNβiNαiN

∗
βi]
)

(
− 2 sin2(

φj − φi
2

) + i sin(φj − φi)
)}

= −2Re[N∗αiNβiNαiN
∗
βi] sin2(

φj − φi
2

)− Im[N∗αiNβiNαiN
∗
βi] sin(φj − φi).

(B.24)
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The oscillation probability is given by

Pνα→νβ =
1

(NN †)αα(NN †)ββ

{∣∣∣∑
i

N∗αiNβi

∣∣∣2
− 4

∑
j>i

Re[N∗αiNβiNαiN
∗
βi] sin2(

φj − φi
2

)

− 2
∑
j>i

Im[N∗αiNβiNαiN
∗
βi] sin(φj − φi)

}
. (B.25)

After time t and distance L, the difference in phase of the mass eigenstates are written
as

φj − φi = mjτj −miτi =
m2
j

2E
L− m2

i

2E
L =

∆m2
ji

2E
L. (B.26)

We infer the oscillation probability

Pνα→νβ =
1

(NN †)αα(NN †)ββ

{∣∣∣∑
i

N∗αiNβi

∣∣∣2
− 4

∑
j>i

Re[N∗αiNβiNαiN
∗
βi] sin2(

∆m2
jiL

4E
)

− 2
∑
j>i

Im[N∗αiNβiNαiN
∗
βi] sin(

∆m2
jiL

2E
)
}
. (B.27)
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Appendix C

Inputs for numerical calculation

C.1 The unitary triangle code

bool isNormalHierarchy = true;

double sinsq12 = 0.307;

double sinsq23N = 0.538;

double sinsq23I = 0.544;

double sinsq23 = isNormalHierarchy?sinsq23N:sinsq23I;

double sinsq13N = 0.02206;

double sinsq13I = 0.02227;

double sinsq13 = isNormalHierarchy?sinsq13N:sinsq13I;

double deltaN = 1.3*TMath::Pi();

double deltaI = 1.544*TMath::Pi();

double delta = isNormalHierarchy?deltaN:deltaI;

cout<<"The global analysis input" <<endl;

cout<<"sinsq12: "<<sinsq12<<endl;

cout<<"sinsq23: Normal "<<sinsq23N<<" Inverted "<<sinsq23I<<endl;

cout<<"sinsq13: Normal "<<sinsq13N<<" Inverted "<<sinsq13I<<endl;

cout<<"deltacp: Normal "<<deltaN<<" Inverted "<<deltaI<<endl;

double s12=TMath::Sqrt(sinsq12);

double c12=TMath::Sqrt(1-sinsq12);

double s23=TMath::Sqrt(sinsq23);

double c23=TMath::Sqrt(1-sinsq23);

double s13=TMath::Sqrt(sinsq13);

double c13=TMath::Sqrt(1-sinsq13);

double scp=TMath::Sin(delta);
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double ccp=TMath::Cos(delta);

cpPhasePos = TComplex(ccp,scp);

cpPhaseNeg = TComplex(ccp,-scp);

if(isNormalHierarchy)

{

cout<<"Normal hierarchy" <<endl;

}

else

cout<<"Inverted hierarchy" <<endl;

{

cout<<"s12: "<<s12<<" c12 "<<c12<<endl;

cout<<"s23: "<<s23<<" c23 "<<c23<<endl;

cout<<"s13: "<<s13<<" c13 "<<c13<<endl;

cout<<"scp: "<<cpPhasePos.Re()<<" ccp "<<cpPhasePos.Im()<<endl;

double Ue1 = c12*c13;

double Ue2 = s12*c13;

TComplex Ue3 = cpPhaseNeg*s13;

TComplex Umu1 = -s12*c23 - c12*s23*s13*cpPhasePos;

TComplex Umu2 = c12*c23 - s12*s23*s13*cpPhasePos;

double Umu3 = s23*c13;

TComplex Utau1 = s12*s23 - c12*c23*s13*cpPhasePos;

TComplex Utau2 = -c12*s23 - s12*c23*s13*cpPhasePos;

double Utau3 = c23*c13;

cout<<"Ue1 "<<Ue1<<endl;

cout<<"Ue2 "<<Ue2<<endl;

cout<<"Ue3 Re "<<Ue3.Re() <<" Im "<<Ue3.Im()<<endl;

cout<<"Umu1 Re "<<Umu1.Re() <<" Im "<<Umu1.Im()<<endl;

cout<<"Umu2 Re "<<Umu2.Re()<<" Im "<<Umu2.Im()<<endl;

cout<<"Umu3 "<<Umu3<<endl;

cout<<"Utau1 Re "<<Utau1.Re()<<" Im "<<Utau1.Im()<<endl;

cout<<"Utau2 Re "<<Utau2.Re()<<" Im "<<Utau2.Im()<<endl;

cout<<"Utau3 "<<Utau3<<endl;

double norm_e = Ue1**2 + Ue2**2 + Ue3.Rho2();

double norm_mu = Umu1.Rho2() + Umu2.Rho2() + Umu3**2;

double norm_tau = Utau1.Rho2() + Utau2.Rho2() + Utau3**2;

cout<<"norm e "<<norm_e<<endl;

cout<<"norm mu "<<norm_mu<<endl;

cout<<"norm tau "<<norm_tau<<endl;
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TComplex *Ue1Ue3 = new TComplex(Ue1*(Ue3.Re()),-Ue1*Ue3.Im());

TComplex *Umu1Umu3 = new TComplex((Umu1.Re())*Umu3, (Umu1.Im())*Umu3);

TComplex *Utau1Utau3 = new TComplex((Utau1.Re())*Utau3,

(Utau1.Im())*Utau3);

cout<<"Ue1Ue3 Re "<<Ue1Ue3->Re()<<" Im "<<Ue1Ue3->Im()

<<" Amp "<<Ue1Ue3->Rho()<<endl;

cout<<"Umu1Umu3 Re "<<Umu1Umu3->Re()<<" Im "<<Umu1Umu3->Im()

<<" Amp "<<Umu1Umu3->Rho()<<endl;

cout<<"Utau1Utau3 Re "<<Utau1Utau3->Re()<<" Im "<<Utau1Utau3->Im()

<<" Amp "<<Utau1Utau3->Rho()<<endl;

TComplex *sideB = new TComplex((Ue1Ue3->Re()*Umu1Umu3->Re()

+ Ue1Ue3->Im()*Umu1Umu3->Im())/Umu1Umu3->Rho2(),

(-Ue1Ue3->Re()*Umu1Umu3->Im()

+ Ue1Ue3->Im()*Umu1Umu3->Re())/Umu1Umu3->Rho2());

TComplex *sideA = new TComplex((Utau1Utau3->Re()*Umu1Umu3->Re()

+ Utau1Utau3->Im()*Umu1Umu3->Im())/Umu1Umu3->Rho2(),

(-Utau1Utau3->Re()*Umu1Umu3->Im()

+ Utau1Utau3->Im()*Umu1Umu3->Re())/Umu1Umu3->Rho2());

cout<<"sideA Re "<<sideA->Re()<<" Im "<<sideA->Im()

<<" Amp "<<sideA->Rho()<<" angle beta "<<sideA->Theta()<<endl;

cout<<"sideB Re "<<sideB->Re()<<" Im "<<sideB->Im()

<<" Amp "<<sideB->Rho()<<" angle gamma "<<sideB->Theta()<<endl;

c = new TCanvas("c");

gROOT->SetStyle("Plain");

gStyle->SetOptStat(0); //tat bang thong ke

c->Range(-1.0,-1.0,1.0,1.0);

gPad->SetGrid();

gPad->SetTickx(1);

gPad->SetTicky(1);

if(isNormalHierarchy)

{

TH2D *h2 = new TH2D("h2","",200,-0.2,1.2,200, -0.2,0.6);

}

else

{

TH2D *h2 = new TH2D("h2","",200,-0.5,1.2,200, -0.2,0.55);

}

h2->GetXaxis()->SetTitle("Re(z)");

h2->GetYaxis()->SetTitle("Im(z)");
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h2->GetYaxis()->SetTitleOffset(1.2);

h2->GetXaxis()->CenterTitle();

h2->GetYaxis()->CenterTitle();

h2->GetXaxis()->SetNdivisions(505);

h2->GetYaxis()->SetNdivisions(505);

h2->Draw("AXIS");

TLine *linec = new TLine(0,0,1,0);

TLine *linea = new TLine(1,0,-1-sideA->Re(), -sideA->Im());

TLine *lineb = new TLine(0,0,sideB->Re(), sideB->Im());

linec->SetLineWidth(2);

linea->SetLineWidth(2);

lineb->SetLineWidth(2);

linec->Draw("same");

linea->Draw("same");

lineb->Draw("same");

if(isNormalHierarchy)

{

TLatex vertexA(0,-0.07,"A (0,0)"); //dinh

TLatex vertexB(0.9,-0.07,"B (0,1)");

TLatex vertexC(0.15,0.5,"C (0.200,0.467)");

TLatex texsideB(-0.1,0.25,"#left| #frac{U_{e1} U_{e3}^{*}}

{U_{#mu1} U_{#mu3}^{*}} #right|");

TLatex texsideA(0.7,0.25,"#left| #frac{U_{#tau1} U_{#tau3}^{*}}

{U_{#mu1} U_{#mu3}^{*}} #right|");

TLatex angleA(0.05,0.02,"#gamma = 66^{o}");

TLatex angleB(0.75,0.02,"#beta = 21^{o}");

}

else

{

TLatex vertexA(-0.05,-0.07,"A (0,0)"); //dinh

TLatex vertexB(0.9,-0.07,"B (0,1)");

TLatex vertexC(-0.25,0.41,"C (#minus 0.153,0.395)");

TLatex texsideB(-0.4,0.25,"#left| #frac{U_{e1} U_{e3}^{*}}

{U_{#mu1} U_{#mu3}^{*}} #right|");

TLatex texsideA(0.55,0.25,"#left| #frac{U_{#tau1} U_{#tau3}^{*}}

{U_{#mu1} U_{#mu3}^{*}} #right|");

TLatex angleA(0.03,0.02,"#gamma = 111^{o}");

TLatex angleB(0.65,0.02,"#beta = 25^{o}");

}
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texsideA.SetTextSize(0.035);

texsideB.SetTextSize(0.035);

vertexA.SetTextSize(0.04);

vertexB.SetTextSize(0.04);

vertexC.SetTextSize(0.04);

angleA.SetTextSize(0.04);

angleB.SetTextSize(0.04);

angleA.SetTextColor(46);

angleB.SetTextColor(46);

vertexA.SetTextColor(38);

vertexB.SetTextColor(38);

vertexC.SetTextColor(38);

vertexA.Draw("same");

vertexB.Draw("same");

vertexC.Draw("same");

texsideA.Draw("same");

texsideB.Draw("same");

angleA.Draw("same");

angleB.Draw("same");

if(isNormalHierarchy)

c->Print("triangle_NO.pdf")

else

c->Print("triangle_IO.pdf");

C.2 The uncertainties code

bool isNormalHierarchy = true;

ce = new TCanvas("ce");

gROOT->SetStyle("Plain");

gStyle->SetOptStat(0);

ce->Range(-1.0,-1.0,1.0,1.0);

gPad->SetTickx(1);

gPad->SetTicky(1);

gStyle->SetPalette(1);

TH2F *h2 = new TH2F("h2","",1000,-1,1.2,1000, -0.6,0.6);

h2->GetXaxis()->SetTitle("Re(z)");

h2->GetYaxis()->SetTitle("Im(z)");
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h2->GetYaxis()->SetTitleOffset(1.2);

h2->GetXaxis()->CenterTitle();

h2->GetYaxis()->CenterTitle();

h2->GetXaxis()->SetNdivisions(505);

h2->GetYaxis()->SetNdivisions(505);

h2->Sumw2();

double gsinsq12 = 0.307;

double gsinsq12va = 0.012;

double gsinsq23 = isNormalHierarchy? 0.538:0.554;

double gsinsq23va = isNormalHierarchy? 0.033:0.023;

double gsinsq13 = isNormalHierarchy? 0.02206:0.02227;

double gsinsq13va = isNormalHierarchy? 0.00075:0.00074;

double gcp = isNormalHierarchy? 1.3:1.544;

double gcpva = isNormalHierarchy? 0.083:0.083;

//The Uncertainties

const int n = 1000000;

double x,y;

for (int i=0; i<n; i++)

{

double sinsq12 = gRandom->Gaus(gsinsq12,gsinsq12va) ;

double sinsq23 = gRandom->Gaus(gsinsq23,gsinsq23va) ;

double sinsq13 = gRandom->Gaus(gsinsq13,gsinsq13va) ;

double delta = gRandom->Gaus(gcp,gcpva) ;

double s12 = TMath::Sqrt(sinsq12);

double c12 = TMath::Sqrt(1-sinsq12);

double s23 = TMath::Sqrt(sinsq23);

double c23 = TMath::Sqrt(1-sinsq23);

double s13 = TMath::Sqrt(sinsq13);

double c13 = TMath::Sqrt(1-sinsq13);

double scp = TMath::Sin(delta*TMath::Pi());

double ccp = TMath::Cos(delta*TMath::Pi());

cpPhasePos = TComplex(ccp,scp);

cpPhaseNeg = TComplex(ccp,-scp);

double Ue1 = c12*c13;

double Ue2 = s12*c13;

TComplex *Ue3 = new TComplex(cpPhaseNeg.Re()*s13,cpPhaseNeg.Im()*s13);

TComplex *Umu1 = new TComplex(-s12*c23-c12*s23*s13*(cpPhasePos.Re()),

-c12*s23*s13*(cpPhasePos.Im()));
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TComplex *Umu2 = new TComplex(c12*c23-s12*s23*s13*(cpPhasePos.Re()),

-s12*s23*s13*(cpPhasePos.Im()));

double Umu3 = s23*c13;

TComplex *Utau1 = new TComplex(s12*s23-c12*c23*s13*(cpPhasePos.Re()),

-c12*c23*s13*(cpPhasePos.Im()));

TComplex *Utau2 = new TComplex(-c12*s23-s12*c23*s13*(cpPhasePos.Re()),

-s12*c23*s13*(cpPhasePos.Im()));

double Utau3 = c23*c13;

TComplex *Ue1Ue3 = new TComplex(Ue1*(Ue3->Re()), -Ue1*Ue3->Im());

TComplex *Umu1Umu3 = new TComplex((Umu1->Re())*Umu3, (Umu1->Im())*Umu3);

TComplex *Utau1Utau3 = new TComplex((Utau1->Re())*Utau3,

(Utau1->Im())*Utau3);

TComplex *sideB = new TComplex(-(Ue1Ue3->Re()*Umu1Umu3->Re()

+ Ue1Ue3->Im()*Umu1Umu3->Im())/Umu1Umu3->Rho2(),

-(-Ue1Ue3->Re()*Umu1Umu3->Im()

+ Ue1Ue3->Im()*Umu1Umu3->Re())/Umu1Umu3->Rho2());

TComplex *sideA = new TComplex(-(Utau1Utau3->Re()*Umu1Umu3->Re()

+ Utau1Utau3->Im()*Umu1Umu3->Im())/Umu1Umu3->Rho2(),

-(-Utau1Utau3->Re()*Umu1Umu3->Im()

+ Utau1Utau3->Im()*Umu1Umu3->Re())/Umu1Umu3->Rho2());

x = sideB->Re();

y = sideB->Im();

h2->Fill(x,y);

}

TH2F *hc = new TH2F("hc","",1000,-1,1,1000, -1,1);

hc->Sumw2();

// Only vertex C at best fit value

double sinsq12f = 0.307;

double sinsq23f = isNormalHierarchy? 0.538:0.554;

double sinsq13f = isNormalHierarchy? 0.02206:0.02227;

double deltaf = isNormalHierarchy? 1.3:1.544;

double s12f = TMath::Sqrt(sinsq12f);

double c12f = TMath::Sqrt(1-sinsq12f);

double s23f = TMath::Sqrt(sinsq23f);

double c23f = TMath::Sqrt(1-sinsq23f);

double c13f = TMath::Sqrt(1-sinsq13f);
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double scpf = TMath::Sin(deltaf*TMath::Pi());

double ccpf = TMath::Cos(deltaf*TMath::Pi());

TComplex cpPhasePosf = TComplex(ccpf,scpf);

TComplex cpPhaseNegf = TComplex(ccpf,-scpf);

double Ue1f = c12f*c13f;

double Ue2f = s12f*c13f;

TComplex Ue3f = cpPhaseNegf*s13f;

TComplex Umu1f = -s12f*c23f - c12f*s23f*s13f*cpPhasePosf;

TComplex Umu2f = c12f*c23f - s12f*s23f*s13f*cpPhasePosf;

double Umu3f = s23f*c13f;

TComplex Utau1f = s12f*s23f - c12f*c23f*s13f*cpPhasePosf;

TComplex Utau2f = -c12*s23f - s12f*c23f*s13f*cpPhasePosf;

double Utau3f = c23f*c13f;

cout<<"Ue1f "<<Ue1f<<endl;

cout<<"Ue2f "<<Ue2f<<endl;

cout<<"Ue3f "<<Ue3f<<endl;

cout<<"Umu1f "<<Umu1f<<endl;

cout<<"Umu2f "<<Umu2f<<endl;

cout<<"Umu3f "<<Umu3f<<endl;

cout<<"Utau1f "<<Utau1f<<endl;

cout<<"Utau2f "<<Utau2f<<endl;

cout<<"Utau3f "<<Utau3f<<endl;

TComplex *Ue1fUe3f = new TComplex(Ue1f*Ue3f.Re(), -Ue1f*Ue3f.Im());

TComplex *Umu1fUmu3f = new TComplex((Umu1f.Re())*Umu3f,

(Umu1f.Im())*Umu3f);

TComplex *Utau1fUtau3f = new TComplex((Utau1f.Re())*Utau3f,

(Utau1f.Im())*Utau3f);

TComplex *sideBf = new TComplex(-(Ue1fUe3f->Re()*Umu1fUmu3f->Re()

+ Ue1fUe3f->Im()*Umu1fUmu3f->Im())/Umu1fUmu3f->Rho2(),

-(-Ue1fUe3f->Re()*Umu1fUmu3f->Im()

+ Ue1fUe3f->Im()*Umu1fUmu3f->Re())/Umu1fUmu3f->Rho2());

TComplex *sideAf = new TComplex(-(Utau1fUtau3f->Re()*Umu1fUmu3f->Re()

+ Utau1fUtau3f->Im()*Umu1fUmu3f->Im())/Umu1fUmu3f->Rho2(),

-(-Utau1fUtau3f->Re()*Umu1fUmu3f->Im()

+ Utau1fUtau3f->Im()*Umu1fUmu3f->Re())/Umu1fUmu3f->Rho2());

cout<<"sideAf Re "<<sideAf->Re()<<" Im "<<sideAf->Im()

<<" Amp "<<sideAf->Rho()<<endl;
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cout<<"sideBf Re "<<sideBf->Re()<<" Im "<<sideBf->Im()

<<" Amp "<<sideBf->Rho()<<endl;

const int m = 1;

double a,b;

for (int i=0; i<m ;i++)

{

a[i] = sideBf->Re();

b[i] = sideBf->Im();

cout<<"a: "<<a[i]<<endl;

cout<<"b: "<<b[i]<<endl;

hc->Fill(a,b);

}

h2->Draw("colz");

TLine *linei = new TLine(-0.9399,0,1.1455,0);

linei->SetLineWidth(2);

linei->SetLineColor(18);

linei->Draw("same");

TLine *linec= new TLine(0,0,1,0);

TLine *linea= new TLine(1,0,1-sideAf->Re(),-sideAf->Im());

TLine *lineb= new TLine(0,0,sideBf->Re(),sideBf->Im());

linec->SetLineWidth(2);

linea->SetLineWidth(2);

lineb->SetLineWidth(2);

linec->Draw("same");

linea->Draw("same");

lineb->Draw("same");

hc->SetMarkerColor(2);

hc->SetMarkerStyle(29);

hc->SetMarkerSize(2);

hc->Draw("same");

if(isNormalHierarchy)

{

TLatex texsideA(0.4,-0.3,"U_{#tau1} U^{*}_{#tau3}");

TLatex texsideB(-0.3,-0.2,"U_{e1} U^{*}_{e3}");

TLatex texsideC(0.5,0.05,"U_{#mu1} U^{*}_{#mu3}");

TLatex texsideD(0.5,0.4,"z = #minus #frac{U_{e1} U^{*}_{e3}}

{U_{#mu1} U^{*}_{#mu3}}");

}

else
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{

TLatex texsideA(0.6,-0.25,"U_{#tau1} U^{*}_{#tau3}");

TLatex texsideB(-0.2,-0.2,"U_{e1} U^{*}_{e3}");

TLatex texsideC(0.5,0.05,"U_{#mu1} U^{*}_{#mu3}");

TLatex texsideD(0.5,0.4,"z = #minus #frac{U_{e1} U^{*}_{e3}}

{U_{#mu1} U^{*}_{#mu3}}");

}

texsideA.SetTextSize(0.037);

texsideB.SetTextSize(0.037);

texsideC.SetTextSize(0.037);

texsideD.SetTextSize(0.04);

texsideA.Draw("same");

texsideB.Draw("same");

texsideC.Draw("same");

texsideD.Draw("same");

if(isNormalHierarchy)

ce->Print("NO.pdf");

else

ce->Print("IO.pdf");
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