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Introduction

Nowadays, the neutrino oscillations, masses and the flavor neutrino mixing have

been investigated by the experiments. The evidence for neutrino masses is now clear

(Nobel Prize in Physics 2015 for the discovery of neutrino oscillations, which shows that

neutrinos have mass[15]) and it turns out there are very interesting problems about

masses, mixings as well as CP phases. Neutrino masses imply mixings in the lepton

sector which include CP violating phases. These CP phases are not only interesting

due to their appearance in mixing matrix, but they can be very important physical

effects[3, 12]. CP violation in the neutrino sector is the essential ingredient in explaining

the baryon asymmetry of the universe.

We measure the values of parameters in the mixing matrix through many ex-

periments with high accuracy and it seems to exist a problem for measuring δCP and

θ13, the determination of the neutrino mass hierarchy and θ23 octant. That is the

parameter degeneracies which appear when a set of values of the oscillation probabil-

ities, P (να → νβ) and P (να → νβ) at a fixed neutrino energy and baseline, does not

determine uniquely the values of δCP and θ13, are intrinsic degeneracy, mass hierarchy

degeneracy and θ23 octant degeneracy.

The goal of my thesis is understanding clearly parameter degeneracies and look-

ing for the resolving in present and future experiments. My thesis is organized by four

chapters. Chapter 1 discusses neutrino oscillations in vacuum as well as in matter and

some characteristics of CP violation. Chapter 2 is about neutrino sources and types of

neutrino experiment. Chapter 3 shows parameter degeneracies and chapter 4 considers

the resolutions of them. Finally, Appendix A introduces briefly about Electroweak

interaction and some features of neutrino in Standard Model, appendix B illustrates

some calculations for CP violation asymmetry ACPeµ .
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Chapter 1

Neutrino oscillations

In the Glashow - Weinberg - Salam theory, neutrinos have the following properties:

• The masses of neutrinos are exactly zero,

• There are three flavor neutrinos νe, νµ, ντ ,

• Neutrinos and antineutrinos are distinct,

• The left-handed neutrinos and right-handed antineutrinos are active only.

If the neutrinos are massive, the three lepton families could mix up like the three quark

families and the neutrino masses could been revealed by the oscillation phenomenon

like the neutral K meson oscillations. Indeed, the observation of the neutrino oscillation

are evidences for the fact that neutrinos are mixed and massive. In addition, the CP

violation is also observed in the neutrino oscillations. These phenomenon are, however,

outside of the explaination of the Standard Model.

1.1 Neutrino oscillations in vacuum

In the theory of neutrino oscillations[6], a neutrino with flavor α and momentum

−→p , produced in a charged-current weak interaction process from a charged lepton or

together with a charged antilepton, is described by the flavor state

|να〉 =
∑
j

U∗αj |νj〉 (α = e, µ, τ) (1.1)

2



CHAPTER 1. NEUTRINO OSCILLATIONS

where U is the neutrino mixing matrix, |νj〉 is the massive neutrino state, having mass

mj 6= 0.

The number of massive neutrinos are not limited and must be equal to or greater

than three since there are three active flavor neutrinos, corresponding to νe, νµ, ντ .

The massive neutrino states |νj〉 are eigenstates of the Hamiltonian with eigen-

values Ej

H |νj〉 = Ej |νj〉 (1.2)

Ej =
√
−→p 2 +m2

j (1.3)

We consider the Schrödinger equation

i
d

dt
|νj(t)〉 = H |νj(t)〉 (1.4)

⇒ |νj(t)〉 = e−iEjt |νj〉 (1.5)

From (1.1) and (1.5), we have

|να(t)〉 =
∑
j

U∗αje
−iEjt |νj〉 (1.6)

such that

|να(t = 0)〉 = |να〉 (1.7)

The massive neutrino states can be written in terms of flavor states using the relation

U †U = I ⇔
∑
α

U∗αjUαk = δkj (1.8)

Hence,

|νj〉 =
∑
α

Uαj |να〉 (1.9)

Substituting (1.9) into (1.6), we get

|να(t)〉 =
∑

β=e,µ,τ

(∑
j

U∗αje
−iEjtUβj

)∣∣νβ〉 (1.10)

The amplitude of να → νβ transitions is

Aνα→νβ(t) ≡
〈
νβ|να(t)

〉
=
∑
j

U∗αjUβje
−iEjt (1.11)

3



CHAPTER 1. NEUTRINO OSCILLATIONS

Then we obtain the transition probability

Pνα→νβ(t) =
∣∣Aνα→νβ(t)

∣∣2 =
∑
j,k

UαkU
∗
βkU

∗
αjUβje

−i(Ej−Ek)t (1.12)

For ultrarelativistic neutrino, we have

Ej ≈ E +
m2
j

2E
(1.13)

Ej − Ek ≈
∆m2

jk

2E
(1.14)

where ∆m2
jk is the squared-mass difference

∆m2
jk = m2

j −m2
k (1.15)

and E is the neutrino energy

E ≈ |−→p | (1.16)

The transition probability is approximated by

Pνα→νβ(t) =
∑
j,k

UαkU
∗
βkU

∗
αjUβj exp

(
−i

∆m2
jkt

2E

)
(1.17)

The propagation time t can be approximated by the distance L between the source

and the detector, t ≈ L. Therefore,

Pνα→νβ(L,E) =
∑
j,k

UαkU
∗
βkU

∗
αjUβj exp

(
−i

∆m2
jkL

2E

)
(1.18)

We have the unitarity relation

UU † = I ⇔
∑
j

UαjU
∗
βj = δαβ (1.19)

Using (1.19), we get(∑
k

UαkU
∗
βk

)∑
j

U∗αjUβj = δαβ

⇔
∑
j,k

UαkU
∗
βkU

∗
αjUβj = δαβ

⇔
∑
j

|Uαj |2 |Uαj |2 + 2
∑
j>k

Re
[
UαkU

∗
βkU

∗
αjUβj

]
= δαβ

⇔
∑
j

|Uαj |2 |Uαj |2 = δαβ − 2
∑
j>k

Re
[
UαkU

∗
βkU

∗
αjUβj

]
(1.20)
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CHAPTER 1. NEUTRINO OSCILLATIONS

The probability is written in the form

Pνα→νβ(L,E) =
∑
j

|Uαj |2 |Uαj |2 + 2
∑
j>k

Re

[
UαkU

∗
βkU

∗
αjUβj exp

(
−i

∆m2
jkL

2E

)]
(1.21)

Hence,

Pνα→νβ(L,E) =
∑
j

|Uαj |2 |Uαj |2 + 2
∑
j>k

Re
[
UαkU

∗
βkU

∗
αjUβj

]
cos

(
∆m2

jkL

2E

)

+ 2
∑
j>k

Im
[
UαkU

∗
βkU

∗
αjUβj

]
sin

(
∆m2

jkL

2E

)
(1.22)

Substituting (1.20) into (1.22), then

Pνα→νβ(L,E) = δαβ − 2
∑
j>k

Re
[
UαkU

∗
βkU

∗
αjUβj

] [
1− cos

(
∆m2

jkL

2E

)]

+ 2
∑
j>k

Im
[
UαkU

∗
βkU

∗
αjUβj

]
sin

(
∆m2

jkL

2E

)
(1.23)

Therefore,

Pνα→νβ(L,E) = δαβ − 4
∑
j>k

Re
[
UαkU

∗
βkU

∗
αjUβj

]
sin2

(
∆m2

jkL

4E

)

+ 2
∑
j>k

Im
[
UαkU

∗
βkU

∗
αjUβj

]
sin

(
∆m2

jkL

2E

)
(1.24)

The oscillation probabilities with α 6= β are usually called transition probabilities and

with α = β are usually called survival probabilities.

There are two rules of the conservation of probability[6] in which the oscillation

probabilities satisfy:

• In the transitions from a flavor neutrino να to all flavor neutrinos νβ (including

α = β), the sum of the probabilities is∑
β

Pνα→νβ(L,E) = 1 (1.25)

• In the transitions from any flavor neutrino να to a flavor neutrino νβ (including

α = β), the sum of the probabilities is∑
α

Pνα→νβ(L,E) = 1 (1.26)

5



CHAPTER 1. NEUTRINO OSCILLATIONS

For example, we introduce two massive neutrino states ν1 and ν2 such that(
νe

νµ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ν1

ν2

)
(1.27)

The states ν1 and ν2 at the time t > 0 is given by

ν1(t) = e−iE1tν1(0), ν2(t) = e−iE2tν2(0) (1.28)

where E2
i = −→p 2 +m2

i , i = 1, 2 and since mi � |pi| then |pi| ≈ E, Ei ≈ E +m2
i /2E

Substituting (1.28) into (1.27) we get

νe(t) =
(
e−iE1t cos2 θ + e−iE2t sin2 θ

)
νe(0) + cos θ sin θ

(
e−iE2t − e−iE1t

)
νµ(0) (1.29)

νµ(t) =
(
e−iE1t sin2 θ + e−iE2t cos2 θ

)
νµ(0) + sin θ cos θ

(
e−iE2t − e−iE1t

)
νe(0) (1.30)

The probability for νµ at t = 0 remains νµ[9] at t > 0 is

P1 = |〈νµ(t)|νµ(0)〉|2 = 1− 1

2
sin2 2θ +

1

2
sin2 2θ cos

(
∆m2

21

2E
t

)
(1.31)

where ∆m2
21 = m2

2 −m2
1.

The probability for νµ at t = 0 to be converted into νe at t > 0 is

P2 = |〈νe(t)|νµ(0)〉|2 =
1

2
sin2 2θ − 1

2
sin2 2θ cos

(
∆m2

21

2E
t

)
(1.32)

We have the approximation t ≈ L. Hence,

P1(L,E) = 1− 1

2
sin2 2θ +

1

2
sin2 2θ cos

(
∆m2

21

2E
L

)
(1.33)

P2(L,E) =
1

2
sin2 2θ − 1

2
sin2 2θ cos

(
∆m2

21

2E
L

)
(1.34)

The conditions for oscillations[9] are θ and ∆m2
21 have nonzero values, the traveling

distance L of the Neutrinos must not be too different from the oscillation length L0

L0 =
4πE∣∣∆m2

21

∣∣ (1.35)

Let us consider the antineutrinos. In this case, we also have

|να〉 =
∑
j

Uαj |νj〉 (α = e, µ, τ) (1.36)

6



CHAPTER 1. NEUTRINO OSCILLATIONS

With the same way in the neutrino oscillation probability, we obtain the antineutrino

oscillation, να → νβ, probability

Pνα→νβ(L,E) =
∑
j,k

U∗αkUβkUαjU
∗
βj exp

(
−i

∆m2
jkL

2E

)
(1.37)

Then,

Pνα→νβ(L,E) =
∑
j,k

UαkU
∗
βkU

∗
αjUβj exp

(
i
∆m2

jkL

2E

)
(1.38)

Finally, we have

Pνα→νβ(L,E) = δαβ − 4
∑
j>k

Re
[
UαkU

∗
βkU

∗
αjUβj

]
sin2

(
∆m2

jkL

4E

)

− 2
∑
j>k

Im
[
UαkU

∗
βkU

∗
αjUβj

]
sin

(
∆m2

jkL

2E

)
(1.39)

1.2 Neutrino oscillations in matter

In the experiments, when neutrinos propagate, they interact with the particles

forming the matter[6, 13]. The Hamiltonian of the neutrino system now is

Hm = H0 +Hint (1.40)

where H0 is the Hamiltonian in vacuum and Hint is the Hamiltonian describes the

interaction between the neutrinos and the particles of matter. Let us consider an

ultrarelativistic neutrino with flavor α (α = e, µ, τ) described by the flavor state

|να〉 =
∑
j

U∗αj |νj〉 (1.41)

The massive neutrino state |νj〉, with momentum −→p , is an eigenstate of the vacuum

Hamiltonian H0

H0 |νj〉 = Ej |νj〉 (1.42)

where Ej =
√
−→p 2 +m2

j

We have

Hint |να〉 = Vα |να〉 (1.43)

Vα is the effective potential of left-handed neutrino with flavor α propagating through

the medium.

7



CHAPTER 1. NEUTRINO OSCILLATIONS

The Schrödinger equation

i
d

dt
|να(t)〉 = Hm |να(t)〉 with |να(0)〉 = |να〉 (1.44)

The amplitude of να → νβ transitions is

Aαβ(t) =
〈
νβ|να(t)

〉
(1.45)

Hence, the transition probability is

Pνα→νβ =
∣∣Aαβ(t)

∣∣2 (1.46)

We have from (1.44)

i
d

dt

〈
νβ|να(t)

〉
=
〈
νβ|Hm|να(t)

〉
⇒i d

dt
Aαβ(t) =

〈
νβ|H0|να(t)

〉
+
〈
νβ|Hint|να(t)

〉
Note that 〈

νβ
∣∣H0 =

∑
j

Uβj 〈νj |H0 (1.47)

〈νj |H0 = Ej 〈νj | (1.48)

〈νj | =
∑
ζ

U∗ζj
〈
νζ
∣∣ (1.49)

〈
νβ
∣∣Hint = Vβ

〈
νβ
∣∣ =
∑
ζ

δβζVβ
〈
νζ
∣∣ (1.50)

Then,

i
d

dt
Aαβ(t) =

∑
j

UβjEj
∑
ζ

U∗ζj
〈
νζ |να(t)

〉
+
∑
ζ

δβζVβ
〈
νζ |να(t)

〉
=
∑
ζ

(∑
j

UβjEjU
∗
ζj + δβζVβ

)〈
νζ |να(t)

〉
(1.51)

Therefore,

i
d

dt
Aαβ(t) =

∑
ζ

(∑
j

UβjEjU
∗
ζj + δβζVβ

)
Aαζ(t) (1.52)

For ultrarelativistic neutrinos[6],

Ej ≈ E +
m2
j

2E
, p ≈ E, t ≈ x (1.53)

8



CHAPTER 1. NEUTRINO OSCILLATIONS

where x is the distance from the source.

Then (1.52) can be written in the form as

i
d

dx
Aα = HFAα (1.54)

For instance, we consider the two neutrino mixing between νe, νµ and ν1, ν2.

The initial neutrino is an electron neutrino (α = e). The system of evolution equations

describing the να ↔ νβ oscillation in matter:

i
d

dx

(
Aee
Aeµ

)
=

1

4E

(
−∆m2 cos 2θ + ACC ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ − ACC

)(
Aee
Aeµ

)
(1.55)

where ∆m2 = m2
2 −m2

1 and θ is the mixing angle

ACC = 2
√

2EGFNe(t) ≈ 2
√

2EGFNe(x), GF is the Fermi constant, Ne is the electron

density in matter.

The initial condition of the equations (1.55) is(
Aee(0)

Aeµ(0)

)
=

(
1

0

)
(1.56)

The system of equations (1.55) can always be solved in numerical methods. The tran-

sition and survival probabilities are

Pνe→νµ(x) = |Aeµ(x)|2 , Pνe→νe(x) = |Aee(x)|2 (1.57)

In the case of the oscillations in matter with constant density: Ne(x) = const,

we have

Aee(x) = cos

(
∆m2

M

4E
x

)
+ i sin

(
∆m2

M

4E
x

)
cos 2θM (1.58)

Aeµ(x) = −i sin

(
∆m2

M

4E
x

)
sin 2θM (1.59)

where

∆m2
M =

√
(∆m2 cos 2θ − ACC)2 + (∆m2 sin 2θ)2 (1.60)

is the squared-mass difference in matter. The mixing angle in matter θM is given by

sin 2θM =
∆m2 sin 2θ

∆m2
M

, cos 2θM =
∆m2 cos 2θ − ACC

∆m2
M

(1.61)

9



CHAPTER 1. NEUTRINO OSCILLATIONS

Hence, the transition probability is

Pνe→νµ(x) = sin2

(
∆m2

M

4E
x

)
sin2 2θM (1.62)

and the survival probability is

Pνe→νe(x) = cos2
(

∆m2
M

4E
x

)
+ sin2

(
∆m2

M

4E
x

)
cos2 2θM (1.63)

In order to determine the parameters, especially CP phases, in the mixing matrix

from the data with high precision, we need the analytic expressions for the oscillation

probabilities in matter which should reveal the dependence of the probabilities on the

parameters as well as on the experiment characteristics and then the experimental

setup[1]. The probabilities are expanded in α = ∆m2
21/∆m

2
31, sin θ13 or in both of

them based upon the approximations α, sin θ13 � 1.

In my thesis, we use the expansion formulas for three-flavor neutrino oscillation prob-

abilities in constant matter density up to second order in both α and sin θ13[1].

P (νe → νe) = 1− α2 sin2 2θ12
sin2(A∆)

A2
− 4 sin2 θ13

sin2[(A− 1)∆]

(A− 1)2
(1.64)

P (νµ → νe) = 4 sin2 θ13 sin2 θ23
sin2[(A− 1)∆]

(A− 1)2
+

+ 2α sin θ13 sin 2θ12 sin 2θ23 cos(δ + ∆)
sin(A∆) sin[(A− 1)∆]

A(A− 1)

+ α2 cos2 θ23 sin2 2θ12
sin2(A∆)

A2
(1.65)

where

α =
∆m2

21

∆m2
31

,∆ =
∆m2

31L

4E
,A = 2

√
2GFN

man
e

E

∆m2
31

(1.66)

The probability of antineutrino oscillation can be obtained from the probability of

neutrino oscillation by changing the sign of the A and δ.

1.3 CP violation

Understanding the origin of CP violation is one of the challenges of elementary

particle physics. There are Dirac CP phases and Majorana CP phases in the neutrino

mixing matrix. We discuss CP phases through neutrino oscillations in vacuum and

matter.

10
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Under the CP transformation, neutrinos become antineutrinos:

να
CP

� να (1.67)

and the να → νβ channel becomes the να → νβ channel. The condition of CP

invariance[6] is:

Pνα→νβ = Pνα→νβ (1.68)

Then the CP violation in neutrino oscillation experiments can be measured in

transition between different flavors and could reveal by measuring the asymmetry:

ACPαβ = Pνα→νβ − Pνα→νβ (1.69)

In vacuum, from (1.24) and (1.39), we obtain

ACPαβ = 4
∑
j>k

Im
[
UαkU

∗
βkU

∗
αjUβj

]
sin

(
∆m2

jkL

2E

)
(1.70)

It can be seen that the quartic products UαkU
∗
βkU

∗
αjUβj depend only on the Dirac

phases in the mixing matrix, then CP violation depends only on the Dirac phases in

the mixing matrix.

For instance, in the case of three neutrinos mixing, the unitary mixing matrix:

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 = UDDM (1.71)

UD =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 (1.72)

DM = diag(1, eiλ2 , eiλ3) (1.73)

where cmn = cos θmn, smn = sin θmn, θmn are the three mixing angles (0 6 θmn 6 π/2)

(m,n = 1, 2, 3;m 6= n), δ is the Dirac CP violation phase (0 6 δ 6 2π) and λ2, λ3 are

the two physical Majorana CP violation phases.

Substituting the mixing matrix into (1.70), we have (see Appendix B)

ACPeµ = 2 sin 2θ12 cos θ13 sin 2θ13 sin 2θ23 sin δ sin ∆21 sin ∆31 sin ∆32 (1.74)
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CHAPTER 1. NEUTRINO OSCILLATIONS

where

∆ij =
∆m2

ij

4E
L i = 2, 3, j = 1, 2 (1.75)

In matter, the oscillation probability expressions appear matter effect terms so CP

violation depends not only on the Dirac phases but also the matter effect terms. For

example, the formula (1.65) is the νµ → νe transition probability

P (νµ → νe) = 4 sin2 θ13 sin2 θ23
sin2[(A− 1)∆]

(A− 1)2
+

+ 2α sin θ13 sin 2θ12 sin 2θ23 cos(δ + ∆)
sin(A∆) sin[(A− 1)∆]

A(A− 1)

+ α2 cos2 θ23 sin2 2θ12
sin2(A∆)

A2
(1.76)

and the νµ → νe transition probability

P (νµ → νe) = 4 sin2 θ13 sin2 θ23
sin2[(A+ 1)∆]

(A+ 1)2
+

+ 2α sin θ13 sin 2θ12 sin 2θ23 cos(−δ + ∆)
sin(A∆) sin[(A+ 1)∆]

A(A+ 1)

+ α2 cos2 θ23 sin2 2θ12
sin2(A∆)

A2
(1.77)

We derive

ACPµe =P (νµ → νe)− P (νµ → νe)

=4 sin2 θ13 sin2 θ23
sin2[(A− 1)∆]

(A− 1)2
+

+ 2α sin θ13 sin 2θ12 sin 2θ23 cos(δ + ∆)
sin(A∆) sin[(A− 1)∆]

A(A− 1)

− 4 sin2 θ13 sin2 θ23
sin2[(A+ 1)∆]

(A+ 1)2

− 2α sin θ13 sin 2θ12 sin 2θ23 cos(−δ + ∆)
sin(A∆) sin[(A+ 1)∆]

A(A+ 1)
(1.78)
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Chapter 2

Neutrino experiments

2.1 Neutrino sources

2.1.1 Astrophysical neutrinos

Solar neutrinos

The solar energy is generated by the process of fusing hydrogen to helium

through some of the fusion reactions in the pp chain or CNO cycle and then the

solar neutrinos are produced as pure electron neutrinos. The solar neutrino flux is

about 60 billion per square centimeter per second. However, the neutrinos have very

low energy[16] (< 0.42 MeV) so the neutrino detectors have to be sensitive to such

low energy neutrinos. Solar neutrinos have been instrumental in studying neutrino

oscillations and from solar neutrino experiments, the data we get is still a key input

into calculations of neutrino mixing angles.

Supernova neutrinos

Two main types of supernovae are Type Ia supernovae, not expected to produce

many neutrinos, and Core-collapse supernovae[16]. We know 99% of the energy released

by a core-collapse supernova comes in the form of neutrinos.neutrino production in core-

collapse supernovae is an essential ingredient in understanding the chemical evolution of

the Galaxy. Furthermore, the neutrinos come from much deeper in the stellar collapse

than the light, and therefore have the potential to provide information from much

closer to the initial neutron star formation.
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CHAPTER 2. NEUTRINO EXPERIMENTS

Atmospheric neutrinos

The cosmic ray particles, mainly protons, from space hit the atmosphere, high

energy protons interact with air molecules to produce pions and also kaons[16]. After

that, pions decay to muons and muon neutrinos, muons decay to muon neutrinos and

electron neutrinos, kaons decay to muons or muon neutrinos or electron neutrinos.

Atmospheric neutrinos have a wide range of energies, so it is good to provide a means

of studying neutrino oscillations.

2.1.2 Artificial neutrinos

Accelerator neutrinos

At a high energy proton accelerator, to produce neutrino beams, a proton beam

is extracted from the accelerator and directed onto a nuclear target. From the colli-

sions, mesons are produced then decay to produce neutrinos (antineutrinos), with high

energy collisions, pions (kaons) are dominantly produced and also decay to produce

neutrinos (antineutrinos). The neutrino energy spectrum can be calculated from the

beam parameters and (or) derived from the measured muon spectrum[16].

Reactor neutrinos

There are mainly nuclear fission of four heavy isotopes, 235U, 238U, 239Pu and

241Pu [16]. Mostly pure electron antineutrinos are produced from β decays of fission

products. Modern reactor experiments use a near detector and a far detector to get

more neutrino information.

2.2 Detecting neutrinos

Neutrinos can be detected via their interations with detectors. There are two

ways that neutrinos interact: charged current interactions, the neutrinos convert into

the corresponding charged leptons through the exchange of W±, and neutral current

interactions, the neutrino remains a neutrino through the exchange of Z0.

Because electrons and muons are easy to identify, charged current interactions

are easier to detect, also if we have the signal of an electron then it came from an elec-

tron neutrino, but it must be enough energy to allow the lepton to be created. Depend-

14



CHAPTER 2. NEUTRINO EXPERIMENTS

ing on the requirements of the particular study, the features of a neutrino experiment

are follow: low energy threshold, good angular resolution, good particle identification,

good energy measurement, good time resolution, charge identification[16].

2.3 Neutrino oscillation experiments

As we know, there are two types of neutrino oscillation experiments[6]:

• Appearance experiments Measuring transitions between different neutrino

flavors. The final flavor is not present in the initial beam, if so, the background

can be very small. The experiment can be sensitive to small values of mixing

angles.

• Disappearance experiments Measuring the transitions between same neutrino

flavors. Since the number of events fluctuate statistically, it is very difficult to

reveal a small disappearance. Hence, this type is hard to detect small values of

mixing angles.

Furthermore, since the value of ∆m2 is fixed by nature[6], experiments can be

construct to be sensitive to different values of ∆m2 by choosing appropriate values of

L/E. In an experiment, the value of ∆m2 such that

∆m2L

2E
∼ 1 (2.1)

is so-called sensitivity to ∆m2.

Depending on the average value of the ratio L/E for an experiment, related to the

sensitivity, there are three types of the experiments: Short Baseline experiments, Long

Baseline experiments, Very Long-Baseline experiments.
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Chapter 3

Parameter degeneracies

In this chapter, we assume that the input true solution is (s1, δ1). The sign of

∆m2
31, we consider ∆m2

31 > 0 known as normal hierarchy (NH) and ∆m2
31 < 0 known

as inverted hierarchy (IH), θ23 > 45o is called higher octant (HO) and θ23 < 45o is

called lower octant (LO) (θ23 6= π/4)[2, 5, 10, 11]. We also discuss the probability of

νµ → νe transition and νµ → νe transition to look for the resolution of the degeneracies.

3.1 Intrinsic degeneracy

To determine δCP and θ13, we measure the oscillation probabilities P (να → νβ)

(α, β = e, µ, τ), for example P (νµ → νe), in the neutrino experiments with fixed

baseline (L) and energy (E). If we get the value of one oscillation probability from

the data, we would obtain the equation which has a continuous number (δCP , θ13)

solution[14]. Figure 3.1 is an equiprobability curve of P (νµ → νe), assuming from the

data P (νµ → νe) = 0.05, shows the correlation of δCP and θ13.
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Figure 3.1: Equiprobability curve for intrinsic degeneracy

Input parameter point: δCP = 3.79, sin2 θ13 = 0.0212 and other parameters[13] in the

above figure: L = 810 km, Eν = 2 GeV, sin2 θ12 = 0.297, sin2 θ23 = 0.425,

∆m2
21 = 7.37×10−5eV2, ∆m2

31 = 2.56×10−3eV2
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)eν→µνP(
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(

=0CPδ
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/2π
/2π

π
π

/2π3
/2π3

 = 2 GeVνL = 810 km, E

=0.021513θ2NH, sin

=0.02113θ2NH, sin

Figure 3.2: (δ, θ13) ambiguity with L = 810 km, Eν = 2 GeV, sin2 θ12 = 0.297,

sin2 θ23 = 0.425, ∆m2
21 = 7.37×10−5eV2, ∆m2

31 = 2.56×10−3eV2

In many cases, there are two or more value of δCP and θ13 can give the same

values of the probabilities for fixed values of the other parameters, it is known as the

intrinsic degeneracy or (δCP , θ13) degeneracy. The figure 3.2 is an example of intrinsic

degeneracy. It is two trajectories on the P − P plane which drawn by varying the CP
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violating phase, δ, from 0 to 2π and there are two crossing points of the two trajectories

corresponding with sin2 θ13 = 0.0215 and sin2 θ13 = 0.021 as in the figure.

From formula (1.65), we can write P ≡ P (νµ → νe) as a simple form[11]

P = Xs2 + Y s cos(δ + ∆) + Z (3.1)

where s = sin θ13. The functions X, Y, Z are

X = 4 sin2 θ23
sin2[(A− 1)∆]

(A− 1)2
(3.2)

Y = 2α sin 2θ12 sin 2θ23
sin(A∆) sin[(A− 1)∆]

A(A− 1)
(3.3)

Z = α2 cos2 θ23 sin2 2θ12
sin2(A∆)

A2
(3.4)

For the normal hierarchy and lower octant, in the νµ → νe channel, from (3.1), the

intrinsic degeneracy solutions (δj , sj) (j = 1, 2) are defined by

P = Xs21 + Y s1 cos(δ1 + ∆) + Z (3.5)

P = Xs22 + Y s2 cos(δ2 + ∆) + Z (3.6)

In the νµ → νe channel, we also have

P = X+s21 + Y +s1 cos(−δ1 + ∆) + Z (3.7)

P = X+s22 + Y +s2 cos(−δ2 + ∆) + Z (3.8)

where P ≡ P (νµ → νe)

X+ = 4 sin2 θ23
sin2[(A+ 1)∆]

(A+ 1)2
(3.9)

Y + = 2α sin 2θ12 sin 2θ23
sin(A∆) sin[(1 + A)∆]

A(1 + A)
(3.10)

From equations (3.5) to (3.8), we obtain

X

Y
(s21 − s22) + s1 cos(δ1 + ∆)− s2 cos(δ2 + ∆) = 0 (3.11)

X+

Y +
(s21 − s22) + s1 cos(−δ1 + ∆)− s2 cos(−δ2 + ∆) = 0 (3.12)

Hence, the expressions of cos δ2 and sin δ2 are

s2 cos δ2 =
C+

2 cos ∆
(s21 − s22) + s1 cos δ1 (3.13)

s2 sin δ2 =
C−

2 sin ∆
(s21 − s22) + s1 sin δ1 (3.14)
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where

C+ =
X+

Y +
+
X

Y
,C− =

X+

Y +
− X

Y
(3.15)

Therefore, the clone solution (s2 6= s1) is

s22 = s21 +

[
1 + s1

(
cos δ1
cos ∆

C+ +
sin δ1
sin ∆

C−
)]

sin2 2∆

(C+ sin ∆)2 + (C− cos ∆)2
(3.16)

Considering equations (3.16) and (3.14), when ∆ 6= nπ/2 (n ∈ Z), if sin δ1 = 0 then

sin δ2 6= 0 if C− 6= 0. It means that we can get (δ, θ13) degeneracy with the confusion

between CP violating and CP conserving solutions.

3.2 Mass hierarchy degeneracy

We still have problem of degeneracy, the sign of ∆m2
31, beside the intrinsic

degeneracy. That is some values of (δ, θ13) with ∆m2
31 > 0 and other values of (δ, θ13)

with ∆m2
31 > 0 can get equal probabilities, it is called mass hierarchy degeneracy[2, 11].

The two figures below give an example of the degeneracy, there are two crossing points

of two lines and each point indicates the value of (δ, θ13) that give the same value of the

probabilities. In the figure 3.3, the red curve is drawn by Pνµ→νe(θ13, δ,∆m
2
31) equals

to 0.001 and the blue one is drawn by equation Pνµ→νe(θ13, δ,−∆m2
31) = 0.001.
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Figure 3.3: Two equiprobability curves for mass hierarchy degeneracy
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Figure 3.4: Sign of ∆m2
31 ambiguity with sin2 θ13 = 0.01

Input parameters[13] in the above figures: L = 810 km, Eν = 2 GeV, sin2 θ23 = 0.425,

sin2 θ12 = 0.297, ∆m2
21 = 7.37×10−5eV2,

∣∣∆m2
31

∣∣ = 2.56×10−3eV2

For lower octant, we assume that the true solution (s1, δ1) corresponds with nor-

mal hierarchy (∆m2
31 > 0) and the solution (s3, δ3) corresponds with inverted hierarchy

(∆m2
31 < 0) satisfy the equations

P = Xs21 + Y s1 cos(δ1 + ∆) + Z (3.17)

P = X+s21 + Y +s1 cos(−δ1 + ∆) + Z (3.18)

P = X+s23 − Y +s3 cos(δ3 −∆) + Z (3.19)

P = Xs23 − Y s3 cos(δ3 + ∆) + Z (3.20)

From the above equations, we have

X

Y +
s21 +

Y

Y +
s1 cos(δ1 + ∆)− X+

Y +
s23 + s3 cos(δ3 −∆) = 0 (3.21)

X+

Y
s21 +

Y +

Y
s1 cos(−δ1 + ∆)− X

Y
s23 + s3 cos(δ3 + ∆) = 0 (3.22)

We obtain the expression of cos δ3 and sin δ3

s3 cos δ3 =
1

2 cos ∆

(
C+s23 −D+

)
(3.23)

s3 sin δ3 =
1

2 sin ∆

(
C−s23 +D−

)
(3.24)
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where

D+ =

(
X

Y +
+
X+

Y

)
s21 +

[
Y

Y +
cos(δ1 + ∆) +

Y +

Y
cos(−δ1 + ∆)

]
s1 (3.25)

D− =

(
X+

Y
− X

Y +

)
s21 +

[
Y +

Y
cos(−δ1 + ∆)− Y

Y +
cos(δ1 + ∆)

]
s1 (3.26)

Hence, we have the equation for s3

Hs43 +Ks23 +N = 0 (3.27)

where

H =
1

4 cos2 ∆
(C+)2 +

1

4 sin2 ∆
(C−)2 (3.28)

K =
1

2 sin2 ∆
C−D− − 1

2 cos2 ∆
C+D+ − 1 (3.29)

N =
1

4 cos2 ∆
(D+)2 +

1

4 sin2 ∆
(D−)2 (3.30)

Equation (3.27) is in the form of biquadratic equation and there would exist real

solutions if K2 − 4HN > 0. It means the degeneracy appears.

3.3 θ23 octant degeneracy

As mass hierarchy degeneracy, if we have

Pνα→νβ(θ13, δ, θ23) = Pνα→νβ(θ′13, δ
′, θ′23) (3.31)

and (or)

Pνα→νβ(θ13, δ, θ23) = Pνα→νβ(θ′13, δ
′, θ′23) (3.32)

where θ23 is lower octant and θ′23 is higher octant, then it turns out that θ23 octant

degeneracy would show up.
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Figure 3.5: Equiprobability curves for θ23 octant degeneracy
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Figure 3.6: θ23 octant ambiguity with sin2 θ13 = 0.0215

Input parameters[13] in the above figures: L = 810 km, Eν = 2 GeV, sin2 θ12 = 0.297,

∆m2
21 = 7.37×10−5eV2, ∆m2

31 = 2.56×10−3eV2

For normal hierarchy, we suppose the clone solution in this case is (s4, δ4) corre-

sponds with the higher octant (θ23 > 45o), and (s1, δ1) with the lower octant (θ23 < 45o)
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satisfy the following equations

P = Xs21 + Y s1 cos(δ1 + ∆) + Z (3.33)

P = Xfs
2
4 + Y s4 cos(δ4 + ∆) + Zf (3.34)

P = X+s21 + Y +s1 cos(−δ1 + ∆) + Z (3.35)

P = X+
f s

2
4 + Y +s4 cos(−δ4 + ∆) + Zf (3.36)

where

Xf = 4 sin2
(
π

2
− θ23

)
sin2[(A− 1)∆]

(A− 1)2
(3.37)

Zf = α2 cos2
(
π

2
− θ23

)
sin2 2θ12

sin2(A∆)

A2
(3.38)

X+
f = 4 sin2

(
π

2
− θ23

)
sin2[(A+ 1)∆]

(A+ 1)2
(3.39)

From the equations (3.33)-(3.36), we use the same way as the previous section to get

the following equations

s4 cos δ4 =
1

2 cos ∆

(
R+ − U+s24

)
(3.40)

s4 sin δ4 =
1

2 sin ∆

(
R− + U−s24

)
(3.41)

where

R+ = C+s21 + 2 cos ∆ cos δ1 +
(
Z − Zf

)( 1

Y
+

1

Y +

)
(3.42)

R− = C−s21 + 2 sin ∆ sin δ1 +
(
Z − Zf

)( 1

Y +
− 1

Y

)
(3.43)

U+ =
Xf

Y
+
X+
f

Y +
(3.44)

U− =
Xf

Y
−
X+
f

Y +
(3.45)

Therefore, we have the equation for s4

Ts44 + V s24 +W = 0 (3.46)

where

T =
1

4 cos2 ∆
(U+)2 +

1

4 sin2 ∆
(U−)2 (3.47)

V =
1

2 sin2 ∆
R−U− − 1

2 cos2 ∆
R+U+ − 1 (3.48)

W =
1

4 cos2 ∆
(R+)2 +

1

4 sin2 ∆
(R−)2 (3.49)

Equation (3.46) has real solutions when V 2 − 4TW > 0 which means there exists the

degeneracy.
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Resolution of parameter

degeneracies

4.1 Resolution of intrinsic degeneracy

If we measure the oscillation probabilities P (νµ → νe) and P (νµ → νe) with

the same L,E and other parameters, the continuous solution would change into two

solutions. For example, comparing figure 3.1 with figure 4.1, figure 4.1 shows two

equiprobability curves and it turns out that we have two solutions. Besides, there

exists the clone solutions that we do not identify exactly which solution is true[14].
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Figure 4.1: Two equiprobability curves for intrinsic degeneracy
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Input parameter point: δCP = 3.79, sin2 θ13 = 0.0212 and other parameters[13] in the

above figures: L = 810 km, Eν = 2 GeV, sin2 θ12 = 0.297, sin2 θ23 = 0.425,

∆m2
21 = 7.37×10−5eV2, ∆m2

31 = 2.56×10−3eV2

Moreover, from expression (3.16)

s22 = s21 +

[
1 + s1

(
cos δ1
cos ∆

C+ +
sin δ1
sin ∆

C−
)]

sin2 2∆

(C+ sin ∆)2 + (C− cos ∆)2
(4.1)

We have s2 = s1 when sin2 2∆ = 0 then ∆ = nπ/2 (n ∈ Z). Thus θ13 is no longer

degeneracy. For instance, figure 4.2 indicates the degeneracy resolution using baseline

L = 295 km, energy Eν = 0.6 GeV (∆ ≈ π/2) (blue curve) and baseline L = 810 km,

energy Eν = 2 GeV (red curve). Comparing figure 4.2 with figure 4.1, we can see the

degeneracy is almost eliminated.
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Figure 4.2: Equiprobability curves for resolving intrinsic degeneracy; sin2 θ12 = 0.297,

sin2 θ23 = 0.425, ∆m2
21 = 7.37×10−5eV2, ∆m2

31 = 2.56×10−3eV2, input parameter

point: δCP = 3.79, sin2 θ13 = 0.0212

4.2 Resolution of mass hierarchy degeneracy

In this case, we consider equation (3.27) of the clone solution s3

Hs43 +Ks23 +N = 0 (4.2)

The equation has no real solution if K2 − 4HN < 0. Moreover, mass hierarchy de-

generacy would be eliminated if there are not any clone solutions so it can be revealed
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the region of no sign ∆m2
31 degeneracy on the (sin2 θ13, δ) plane through the condition

K2 − 4HN < 0.

Furthermore, the mass hierarchy degeneracy resolution also depends on the

matter effect as shown in the figure 4.3 and 4.4. It can be eliminated the degeneracy

by setting up the experiments with the baseline and neutrino energy that should be

included a large matter effect.
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Figure 4.3: The regions of no sign ∆m2
31 degeneracy in the sin2 θ13 − δ space
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Figure 4.4: The matter effect for sign ∆m2
31 degeneracy

4.3 Resolution of θ23 octant degeneracy

Similar to mass hierarchy degeneracy, we can also obtain no octant degeneracy

solution regions. From equation (3.46) of the clone solution s4

Ts44 + V s24 +W = 0 (4.3)
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We derive the condition of no real solution is V 2− 4TW < 0. Hence, the regions of no

octant degeneracy satisfy V 2−4TW < 0. Figure 4.5a indicates the resolving degeneracy

regions for baseline and energy in T2K experiment and figure 4.5b for baseline and

energy in NOνA experiment, they show that δCP in no degeneracy regions is around π/2

and 3π/2, octant degeneracy region intersperses with no octant degeneracy region. In

the experiments, we measure two channel such as νµ disappearance and νµ appearance

in the same L,E to resolve the degeneracy.
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(b) L=810 km, E=2 GeV, Ne=2.2NAcm−3

Figure 4.5: The regions of no θ23 octant degeneracy in the sin2 θ13 − δ space
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Conclusion

In my thesis, I have analyzed mathematically three parameter degeneracies

(intrinsic degeneracy, mass hierarchy degeneracy and θ23 octant degeneracy) for un-

derstanding the features of them to resolve through the oscillation probabilities and

the combination of experiments with different baseline and neutrino energy. In fact,

the resolution of degeneracies is complicated when they combine together (eight fold

degeneracies) and we have to set up proper baseline and neutrino energy for resolving

as well as measuring precisely parameters (δCP and θ13, the neutrino mass hierarchy

and θ23 octant).

At present, we have some long baseline experiments which are running have the

result with high accuracy such as T2K experiment, NOνA experiment. In the future,

Hyper - Kamiokande and DUNE are two neutrino experiments with more sensitive

on CP violation. We hope there will be more neutrino experiments which are higher

accuracy can resolve completely the degeneracies.
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Appendix A

An overview of Electroweak

interaction

The Electromagnetic interaction in QED [8] is

−iejemµ Aµ = −ie(ψγµQψ)Aµ (A.1)

where Q is the charge operator or the generator of the U(1) group

The Lagrangian of QED:

L = ψ(iγµ∂µ −m)ψ − eψγµQψAµ −
1

4
FµνFµν (A.2)

We have two basic Weak interactions [8]

−igJµWµ = −igϕLγµT.WµϕL (A.3)

−ig
′

2
jYµ B

µ = −ig′ψγµ
Y

2
ψBµ (A.4)

where Jµ is the isotriplet of Weak currents, three vector bosons Wµ, Weak hypercharge

current jYµ and a fourth vector boson Bµ. T and Y are the generators of the SU(2)L

and U(1)Y groups. We note that

W±µ =

√
1

2

(
W 1
µ ∓ iW 2

µ

)
(A.5)

W±µ are the fields describe massive charged bosons W± whereas W 3
µ , Bµ are neutral

fields.
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The transformations under SU(2)L × U(1)Y are

ϕL → ϕ′L = eiα(x)T+iβ(x)Y ϕL

ψR → ψ′R = eiβ(x)Y ψR (A.6)

where ϕL are the isospin doublets of the left-handed fermions and ψR are isosinglets

of the right-handed fermions.

The Electromagnetic current is related to the two neutral currents J3
µ and jYµ by

jemµ = J3
µ +

1

2
jYµ (A.7)

We take together two interactions (A.3) and (A.4). Thus, the Electromagnetic interac-

tion should be revealed. Indeed, we introduce Aµ and Zµ are the neutral gauge fields

having the form

Aµ = Bµ cos θW +W 3
µ sin θW (A.8)

Zµ = −Bµ sin θW +W 3
µ cos θW (A.9)

where θW is called the Weinberg angle and tan θW = g′/g.

Then, the Electroweak interaction [8] is

−igJµWµ − ig
′

2
jYµ B

µ (A.10)

We have the Electroweak neutral current interaction

− igJ3
µ(W 3)µ − ig

′

2
jYµ B

µ

= −igJ3
µ(Aµ sin θW + Zµ cos θW )− ig

′

2
jYµ (Aµ cos θW + Zµ sin θW )

= −i
(
gJ3

µ sin θW +
g′

2
jYµ cos θW

)
Aµ − i

(
gJ3

µ cos θW +
g′

2
jYµ sin θW

)
Zµ

= −iejemµ Aµ − ie

sin θW cos θW

(
J3
µ − sin2 θW j

em
µ

)
Zµ (A.11)

where e = g sin θW = g′ cos θW

Note that from (A.7) we get

ejemµ = eJ3
µ +

1

2
ejYµ = gJ3

µ sin θW +
g′

2
jYµ cos θW (A.12)

The Electroweak Lagrangian is required to be invariant under SU(2) × U(1)

transformation. For instance, the Lagrangian of the electron-neutrino pair:

L = ϕLγµ

[
i∂µ − g1

2
τWµ − g′(−1

2
)Bµ
]
ϕL

+ eRγµ
[
i∂µ − g′(−1)Bµ

]
eR −

1

4
WµνW

µν − 1

4
BµνBµν (A.13)
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where

Wµν = ∂µWν − ∂νWµ − gWµ ×Wν (A.14)

Bµν = ∂µBν − ∂νBµ (A.15)

ϕL =

(
νe

e−

)
L

with T =
1

2
, Y = −1

e−R with T = 0, Y = −2

However, there are not mass terms of the gauge bosons and fermions in the

Lagrangian (A.13). We have to find those mass terms which are gauge invariant and the

theory remains renormalizable. Hence, we use the Higgs mechanism and spontaneously

break the gauge symmetry.

We introduce the Lagrangian for the scalar fields (Higgs fields) φ that is SU(2)×U(1)

invariant[8] to add to the Lagrangian (A.13)

L′ =
∣∣∣∣(i∂µ − gT.Wµ − g′

Y

2
Bµ

)
φ

∣∣∣∣2 − V (φ) (A.16)

where

V (φ) = α2φ†φ+ λ
(
φ†φ
)2

(A.17)

φ =

(
φ+

φ0

)
with φ+ =

1√
2

(φ1 + iφ2) and φ0 =
1√
2

(φ3 + iφ4) (A.18)

In the case α2 < 0 and λ > 0, the minimum of the potential V (φ) is at

|φ| = 1

2

(
φ21 + φ22 + φ23 + φ24

)
= −α

2

2λ
(A.19)

We choose

φ1 = φ2 = φ4 = 0 and φ23 = −α
2

λ
= ρ2 (A.20)

Thus, the appropriate choice of a vacuum expectation value is

φ0 =
1√
2

(
0

ρ

)
(A.21)

with

T =
1

2
, T 3 = −1

2
, Y = 1
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Substituting (A.21) into the Lagrangian (A.16) we have the term∣∣∣∣(i∂µ − g

2
τ.Wµ −

g′

2
Bµ

)
φ

∣∣∣∣2 =
1

8

∣∣∣∣∣
(

gW 3
µ + g′Bµ g

(
W 1
µ − iW 2

µ

)
g
(
W 1
µ + iW 2

µ

)
−gW 3

µ + g′Bµ

)(
0

ρ

)∣∣∣∣∣
2

=
1

8
(gρ)2

[(
W 1
µ

)2
+
(
W 2
µ

)2]
+

1

8
ρ2
(
−gW 3

µ + g′Bµ
) (
−gW 3µ + g′Bµ

)
=

1

4
(gρ)2W+

µ W
−µ +

1

8
ρ2
[
g2
(
W 3
µ

)2 − 2gg′W 3
µB

µ + g′2B2
µ

]
(A.22)

We expect the Dirac mass term for a charged boson has the form M2
WW

+W− and

compare with (A.22). We have

MW =
1

2
gρ (A.23)

Consider the term

N =
1

8
ρ2
[
g2
(
W 3
µ

)2 − 2gg′W 3
µB

µ + g′2B2
µ

]
=

1

8
ρ2
(
gW 3

µ − g′Bµ
)2

+ 0
(
gW 3

µ + g′Bµ
)2

From (A.8)(A.9) and tan θW = g′/g, we have

N =
1

8
ρ2
(

g

cos θW

)2

Z2
µ + 0A2

µ (A.24)

The Dirac mass terms of the neutral bosons[8] have the form:

1

2
M2
ZZ

2
µ +

1

2
M2
AA

2
µ

So

MA = 0,MZ =
1

2

gρ

cos θW

The mass terms of the bosons have been identified.

To generate the mass of electron, we add the SU(2)× U(1) gauge invariant term:

L1 = −Ge

[
(νe, e)L

(
φ+

φ0

)
eR + eR

(
φ−, φ0

)(νe
e

)
L

]
(A.25)

After spontaneously breaking the symmetry, we choose

φ =
1√
2

(
0

ρ+ h(x)

)

We substitute into (A.25), so

L1 = −Ge√
2
ρ (eLeR + eReL)− Ge√

2
(eLeRh+ eReLh) (A.26)
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Then,

Me =
Geρ√

2

Hence,

L1 = −Meee−
Me

ρ
eeh (A.27)

For the quarks, we also use the same way to find the mass terms. However, to generate

the mass terms of the upper members of the quark doublets, we introduce the new

Higgs doublet[8]:

φc =

(
−φ0

φ−

)
(A.28)

Spontaneously breaking the symmetry, we have

φc =
1√
2

(
ρ+ h(x)

0

)
(A.29)

We include the quark Lagrangian

L2 = −Gijd
(
ui, d′i

)
L

(
φ+

φ0

)
djR −Giju

(
ui, d′i

)
L

(
−φ0

φ−

)
ujR + hermitian conjugate

(A.30)

where i, j = 1, 2, ..., n and n is the number of quark doublets

d′i =
∑
j

Uijdj (A.31)

with U is the CKM matrix.

Hence, we get the quark Lagrangian in the form

L2 = −M i
ddidi

(
1 +

h

ρ

)
−M i

uuiui

(
1 +

h

ρ

)
(A.32)

The masses depend on the couplings Gd and Gu.

The complete Lagrangian in the Glashow - Weinberg - Salam theory:

L =− 1

4
WµνW

µν − 1

4
BµνBµν + Lγµ

[
i∂µ − g1

2
τWµ − g′Y

2
Bµ

]
L

+Rγµ

[
i∂µ − g′Y

2
Bµ

]
R +

∣∣∣∣(i∂µ − g1

2
τWµ − g′

Y

2
Bµ

)
φ

∣∣∣∣2 − V (φ)

−G1LφR +G2LφcR + hermitian conjugate (A.33)

where L denotes a left-handed fermion doublet and R denotes a right-handed fermion

singlet.
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Appendix B

Compute the asymmetry ACPeµ

The three flavor neutrinos mixing matrix in vacuum:

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 = UDDM (B.1)

UD =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 (B.2)

DM = diag(1, eiλ2 , eiλ3) (B.3)

where cmn = cos θmn, smn = sin θmn, θmn are the three mixing angles (0 6 θmn 6 π/2)

(m,n = 1, 2, 3;m 6= n), δ is the Dirac CP violation phase (0 6 δ 6 2π) and λ2, λ3 are

the two physical Majorana CP violation phases.

We have general formula:

ACPαβ = 4
∑
j>k

Im
[
UαkU

∗
βkU

∗
αjUβj

]
sin

(
∆m2

jkL

2E

)
(B.4)

Thus,

ACPeµ = Im
[
Ue1U

∗
µ1U

∗
e2Uµ2

]
sin

(
∆m2

21L

2E

)
+Im

[
Ue1U

∗
µ1U

∗
e3Uµ3

]
sin

(
∆m2

31L

2E

)
+

+Im
[
Ue2U

∗
µ2U

∗
e3Uµ3

]
sin

(
∆m2

32L

2E

)
(B.5)
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From the mixing matrix, we derive

Im
[
Ue1U

∗
µ1U

∗
e2Uµ2

]
= Im

[
Ue2U

∗
µ2U

∗
e3Uµ3

]
=

1

8
sin 2θ12 cos θ13 sin 2θ13 sin 2θ23 sin δ

(B.6)

Im
[
Ue1U

∗
µ1U

∗
e3Uµ3

]
= −Im

[
Ue1U

∗
µ1U

∗
e2Uµ2

]
= −1

8
sin 2θ12 cos θ13 sin 2θ13 sin 2θ23 sin δ

(B.7)

Hence,

ACPeµ =
1

2
J

[
sin

(
∆m2

21L

2E

)
− sin

(
∆m2

31L

2E

)
+ sin

(
∆m2

32L

2E

)]
(B.8)

where

J = sin 2θ12 cos θ13 sin 2θ13 sin 2θ23 sin δ (B.9)

sin

(
∆m2

21L

2E

)
− sin

(
∆m2

31L

2E

)
+ sin

(
∆m2

32L

2E

)
= −2 cos

(
∆m2

21 + ∆m2
31

4E
L

)
sin

(
∆m2

32L

4E

)
+ sin

(
∆m2

32L

2E

)
= −2 cos

(
∆m2

21 + ∆m2
31

4E
L

)
sin

(
∆m2

32L

4E

)
+ 2 sin

(
∆m2

32L

4E

)
cos

(
∆m2

32L

4E

)
= 4 sin

(
∆m2

21L

4E

)
sin

(
∆m2

31L

4E

)
sin

(
∆m2

32L

4E

)
(B.10)

Therefore, we obtain the asymmetry ACPeµ

ACPeµ = 2 sin 2θ12 cos θ13 sin 2θ13 sin 2θ23 sin δ sin ∆21 sin ∆31 sin ∆32 (B.11)

where

∆ij =
∆m2

ij

4E
L i = 2, 3, j = 1, 2 (B.12)

37


