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Abstract

The thesis gives a consice overview of the light-by-light scattering at leading order in
Quantum Electrodynamics. The obtained amplitudes as one- loop integrals are proven to
be ultra-violet finite by the aid of dimensional regularization. From these finite anylitical
expressions, FORM, a symbolic manipulation system, is ultilized to transform the ampli-
tudes in terms of tensor integrals, which can be calculated by COLLIER library. Finally, the
numerical results of cross sections are considered in various perspectives, so as to exhibit
the influence of polarization, and how important each fermion contributes to this scatter-
ing process. As for further investigation, we expect to study the light-by-light scattering
in more general theories, thus to feature the contributions from new particles beyond the
Standard Model.
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Chapter 0

Introduction

What phenomena could happen when two beams of light meet each other? We are
all familiar to the processes result from the linear superposition of electromagnetic waves
like interference, diffraction, or standing waves. But in the view of quantum mechanics,
the quanta of light, photon, in the virtue of a particle, can interact with the others (e.g.
Compton scattering) and themselves. The latter raises the question that is it possible for
the scattering between two zero-charged, zero-mass particles like photons? While this
known as light-by-light scattering is forbidden in classical EM theory, which bases on
Maxwell’s linear equations, it was early predicted by QED theory. In this thesis, we will
derive how QED explains LbyL process λλ→ λλ at LO. At this order, the photon scatters
off one another through the virtual fermion- anti fermion pair creation and annihilation.
It is also explained why that O(α4 = 3x10−9) process seldom occurs, make it difficult
to test experimentally. Untill 2015, LHC used the ultra- peripheral heavy ion collision in
ATLAS detector to study LbyL scattering. Doing that way increases the chance for this
rare process. Once again, QED is proved to be a simple but effective theory to describe
electromagnetic interaction.

Throughout this work, the QED Lagrangian for LbyL scattering is applied within the
framework of perturbation theory. Then Wick’s theorem helps to obtain the LO terms
in the perturbation series. They are 1-loop integrals which are UV- divergent seperately.
But when the sum of all possible processes is taken, it must be finite. With the help
of the Dimensional regularization method, we can see clearly how these divergent terms
compensate each other and vanish. For numerical calculations, FORM (Ref. [14]) was then
used symbolically to transform the analytic expression to terms that can be processed by
COLLIER’s library (Ref. [6]). The final results were obtained for all leptons and quarks,
each fermion behaves similarly, but differs by how important is its contribution to the
LbyL scattering
The structure of the thesis is presented as follows:

• CHAPTER 1: “Theoretical Background” covers the necessary theoretical aspects
for our problem. Firstly, we do a little review on QED. Then, we need to discuss
about the Perturbation theory, which identifies the range of our problem. We also
derive how Wick’s theorem helps to find the LbyL’s amplitude at our expected order
of perturbation. The last point is about the Dimensional Regularization method to solve
the UV divergences, which is often encoutered at loop orders.
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Figure 1: The first direct evidence of high-energy LbyL scattering

In this experiment, bunches of lead ions are accelerated to very high energy, pass close by
each other but at a distance more than twice the radius of lead ions. At this distance, EM
interaction is dominant while the strong interaction is bounded to the radius of a single
proton. The electromagnetic field is then enhanced up to 1025(V/m) and can be advanta-

geously treated as quasi- real photons (see Ref. [2]).
Source: ATLAS Collaboration/CERN (2018).

• CHAPTER 2: “LbyL scattering in QED” is the application of those theories to our
particular LbyL scattering. For simplicity, we first restrict our calculation by con-
sidering electron (positron) as the only fermion (anti- fermion). The probability
amplitudes and the corresponding diagrams for all possible processes as four-leg
loops are shown. One attribute of LbyL scattering is that it is independent of UV-
divergences when the sum of terms is considered. It can be proved in the light of the
Dimensional regularization. The convention to express the the amplitude in terms
of the tensor integrals is also introduced.

• CHAPTER 3: “Numerical methods” introduces the tools to obtain the final numer-
ical results. First, FORM is used to transform the analytical expressions of transi-
tion amplitudes (as obtained from Wick’s theorem) to the forms as written in terms
of Passarino-Veltman loop integrals (A, B, C, D, . . . functions). These loop integrals
can be calculated by COLLIER’s library. The numerical results of LbyL scattering’s
amplitude is considered at different views: in each polarized case of photons, in
unpolarized case, in different cases of fermions, . . . for comparisions.

https://www.nikhef.nl/~form/
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Chapter 1

Theoretical Background

1.1 Overview of the Quantum Electrodynamics

1.1.1 Electromagnetic field

Electromagnetic (EM) field is described through the electric field ~E(x) and the mag-
netic field ~B(x), which satisfy Maxwell’s equations1:

~O.~E = ρ,

~O.~B = 0,

~Ox~E = −∂~B
∂t

,

~Ox~B =

(
~J +

∂~E
∂t

)
, (1.1)

in the presence of charge density ρ and current density ~J. Now, we define an anti-
symmetric 4-tensor Fµν (µ, ν = 0, 1, 2, 3) such that:

Ei = F0i;

Bi = εijkFjk, (1.2)

where εijk is the Levi- Civita tensor (i, j, k = 1, 2, 3).
We also introduce the 4-vector Aµ(x) so that:

Fµν = ∂µ Aν − ∂ν Aµ, (1.3)

while Aµ(x) is real. Hence, Maxwell’s equations are now expressed much more neatly as:

�Aν − ∂ν∂µ Aµ = Jν, (1.4)

where we have defined a 4-current Jµ = (ρ,~J). Since then, the EM field is simply de-
scribed by the vector- field Aµ(x). Applying the gauge transformation on the field Aµ(x)
with an arbitrary function χ(x):

Aµ(x)→ A′µ(x) = Aµ(x)− ∂µχ(x), (1.5)

1All the formulas are hence represented in natural units (see Appendix A)
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we obtain as if nothing really happens to the EM field:

F′µν = Fµν,

and �A′ν − ∂µ∂ν A′µ = J′ν, (1.6)

where the field is free when Jν = 0 or else interacting with a current Jν 6= 0.
So we say the free EM field is gauge invariant (Jν = 0).

Lagrangian of the free EM field

We should remark that the two most important physical constraints (or symmetries)
on the EM field are the Lorentz invariance and the gauge invariance. Thus, the Lagrangian
density (or Lagrangian) of the free EM field is built so that those two symmetries are
preserved. We may choose the preferred Lagrangian according to those requirements
as2:

LEM = −1
4

FµνFµν. (1.7)

The equation of motion for the free EM field is then derived to be:

�Aν − ∂ν∂µ Aµ = 0, (1.8)

i.e. the Maxwell’s equation Eq. (1.4) in the absence of charge Jν = 0.

Plane wave solution of the EM field

Special solutions for Aµ(x) from the equation of motion Eq. (1.8) are the plane waves:

Aµ(x) = wµ(~k)e±i(ωt−~k.~r), (1.9)

where wµ is a 4- vector, which represents the wave amplitude and~k = (k1, k2, k3) is an
arbitrary 3-wave vector so that ω =

∣∣∣~k∣∣∣. The vector wµ lives in an space spanned from four

basis vectors ε
µ
η (η = 0, 1, 2, 3), which will be considered as polarization vectors of photon.

We would see later that the number of basis vectors for the EM field no more equals to
four. Therefore, we obtain the general solution of Eq. (1.8) as the linear superposition of
Eq. (1.9) as:

Aµ(x) = ∑
η

∫
d3~k
[

aη
~k

ε
µ
η(~k)e−i(ωt−~k~r) + a∗η~k

ε
∗µ
η (~k)ei(ωt−~k~r)

]
, (1.10)

so that the requirement of real Aµ(x) is obtained.
Also remind the De- Broglie hypothesis of wave- particle duality:

(ω,~k) −→ (E,~p), (1.11)

2The Lagrangian of the EM field can also derived from the Lagrangian of a vector field, in which EM
field is the massless case (m = 0) because photon is massless.
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so that the EM field is also the field of its quanta- photons. Thus, we can rewrite Eq. (1.10)
as:

Aµ(x) = ∑
η

∫
d3~p

[
a~pε

µ
η(~p)e−ipx + a∗~pε

∗µ
η (~p)eipx

]
, (1.12)

where p = (E,~p) and x = (t,~x), then E = |~p| or p2 = 0 .

Quantization of the EM field

The conjugate- momentum of the free EM field is derived from its Lagrangian as:

Πµ(x) =
∂L

∂Ȧµ(x)
= Fµ0. (1.13)

From the definition of Fµν (Eq. (1.3)), we obtain:

Π0 = 0 and Πi = Ei. (1.14)

For quantisation, we might expect the following commutation relations:
[

Aµ(t,~x), Πν(t, ~x′)
]
= iδµνδ3(~x− ~x′),[

Aµ(t,~x), Aν(t, ~x′)
]
=
[
Πµ(t,~x), Πν(t, ~x′)

]
= 0.

(1.15)

While the last two relations of Eq. (1.15) are automatically satisfied, there’s a problem
with the first relation due to: [

A0(t,~x), Π0(t, ~x′)
]
= 0. (1.16)

That problem comes from the commutation relations themselves when applying to such
a special case as EM field, and from the gauge invariance, which puts some more con-
straints on the field Aµ(x). To solve this problem, we use the gauge symmetry Eq. (1.5) to
impose the condition :

A0 = 0; and ~O.~A = 0. (1.17)

This gauge condition is the Coulomb gauge. The commutation relations for EM fields,
which is then modified according to the Coulomb gauge, become:

[
Ai(t,~x) , Πj(t, ~x′)

]
= i

∫
d3~k

δij −
kik j∣∣∣~k∣∣∣2

 ei~k(~x−~x′),

[
Ai(t,~x) , Aj(t, ~x′)

]
=
[
Πi(t,~x) , Πj(t, ~x′)

]
= 0,

(1.18)

where i, j = 1, 2, 3.
From Eq. (1.12), for A0(x) = 0, we would set ε0

η = 0. And from the gauge condition
Eq. (1.17), we obtain:

~k~εη = 0 (η = 1, 2). (1.19)
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Thus, for a specific 3-momentum~k, ~εη must exist in the plane orthogonal to~k. In other
words, there just needs two basis vectors. The number of basis vectors is also the number
of polarization states of photons, therefore is two.
By imposing the normalization condition on the basis vectors:

~ε∗η(~k)~εη′(~k) = δηη′ , (1.20)

so that the basis vectors can be chosen to fulfill the polarization sum (see Ref. [12]):

2

∑
η=1

ε
∗µ
η εν

η := −gµν, (1.21)

indeed this is the consequence of gauge symmetry in essence.
The quantization then treats aη

~k
and a∗η~k

as operators:

aη
~k

, a∗η~k
→ âη

~k
, â†η

~k
. (1.22)

Now, we re- express the Eq. (1.12) as:

Aµ(x) =
2

∑
η=1

∫ d3~k
(2π)3

√
2Ek

[
âη
~k

ε
µ
η(~k)e−ikx + â†η

~k
ε
∗µ
η (~k)eikx

]
, (1.23)

where Ek = k0 =
∣∣∣~k∣∣∣ and the factor in the denomiator just appear for normalization

condition of the field. From that and Eq. (1.18), we obtain the commutation relations of
those operators as: 

[
âη
~k

, â†η′

~k′

]
= (2π)3δηη′δ

3(~k− ~k′),[
âη
~k

, âη′

~k′

]
=
[

â†η
~k

, â†η′

~k′

]
= 0.

(1.24)

We define the vacuum state to be the one that is annihilated by any operator â:

âη
~k
|0〉 = 0 for any~k, η (1.25)

and the state of a photon with a definite momentum k and polarization η as:

|k; η〉 =
√

2Ek â†η
~k
|0〉 . (1.26)

So that we can use â and â† to build out all states of quantized EM field. They are corre-
spondingly called the annihilation and creation operators.
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Photon propagator

We choose to find the propagator of photon through the contraction of fields (see
Eq. (1.96)).

iDFαβ(x1 − x2) = 〈0| Aα(x1)Aβ(x2) |0〉 = Aα(x1)Aβ(x2) =
[

A−α (x1), A+
β (x2)

]
, (1.27)

where we suppose t1 > t2, i.e. it relates to the amplitude for a photon propagating from
x2 to x1. The A+, A− parts are denoted for the terms of a† and a− in Eq. (1.23) correspond-
ingly. Thus we obtain:

iDFαβ(x1 − x2) =
∫ d3~k

(2π)3
√

2Ek

∫ d3~k′

(2π)3
√

2E′k

2

∑
η,η′=1

εα
η(~k)ε

∗β
η (~k′)

[
âη
~k

, â†η′

~k′

]
e−ikx1eik′x2 .

(1.28)
Using the commutation Eq. (1.24) and the chosen spin sum Eq. (1.21), after some trans-
formations, we have:

iDFαβ(x1 − x2) =
∫

d3~k
1

(2π)3 (−gαβ)

[
e−iEk(t1−t2)

2Ek

]
e−i~k(~x1−~x2). (1.29)

Now we denote:

f (E) =
e−iE(t1−t2)

E + Ek
. (1.30)

Using Cauchy integral theorem for Eq. (1.30), we have:

f (E) =
1

2πi

∮ f (k0)

k0 − Ek
dk0. (1.31)

Thus, the propagator is now:

iDFαβ(x1 − x2) =
∫

d3~k
1

(2π)3 (−gαβ) f (Ek)e−i~k(~x1−~x2)

=
∫

d3~k
1

(2π)3 (−gαβ)e−i~k(~x1−~x2)
1

2πi

∮
dk0

e−ik0(t1−t2)

(k0 + Ek)(k0 − Ek)
.

(1.32)

Firstly, we consider the integral in k0 in Eq. (1.32):
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1
2πi

∮
dk0

e−ik0(t1−t2)

(k0 + Ek)(k0 − Ek)

Ek→Ek−iς
= − 1

2πi

∮
C

dk0
e−ik0(t1−t2)

(k0 + Ek − iς)(k0 − Ek + iς)︸ ︷︷ ︸
=k2

0−E2
k+2iςE+η2=k2

0−E2
k+iε

∣∣∣
ς→0†

clock-wise

=− 1
2πi

∮
C

dk0
e−ik0(t1−t2)

k2
0 − E2

k + iε

∣∣∣
ε→0†

=
i

2π

[∫
A

dk0
e−ik0(t1−t2)

k2
0 − E2

k + iε
+
∫
B

dk0
e−ik0(t1−t2)

k2
0 − E2

k + iε

]

=
i

2π
lim

R→∞


∫ R

−R
dk0

e−ik0(t1−t2)

k2
0 − E2

k + iε
+ iR

∫ π

0
dθeiθ e−iR cos θ(t1−t2)︸ ︷︷ ︸

always finite

eR sin θ(t1−t2)

R2 − E2
k + iε︸ ︷︷ ︸

→0 when R→∞


=

i
2π

∫ ∞

−∞
dk0

e−ik0(t1−t2)

k2
0 − E2

k + iε
. (1.33)

Thus, Eq. (1.32) now becomes:

iDFαβ(x1 − x2) =
∫

d3~k
1

(2π)3 (−gαβ)e−i~k(~x1−~x2)
1

2πi
i

2π

∫ ∞

−∞
dk0

e−ik0(t1−t2)

k2
0 − E2

k + iε

=
∫ d4k

(2π)4

−igαβ

k2
0 − E2

k + iε
e−ik(x1−x2)

=
∫ d4k

(2π)4

−igαβ

k2 + iε
e−ik(x1−x2), (1.34)
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The last equation of Eq. (1.34) happens because E2
k =

∣∣∣~k∣∣∣2. We define here a new 4-

momentum k = (k0,~k), which is no more on-shell, k2
0 −

∣∣∣~k∣∣∣2 6= 0. What is important here
is the bringing of the positively infinitesimal ε so that the integrals are well-defined.
At last, we obtain the Feynman propagator of photon in momentum presentation as:

iDFαβ(k) =
−igαβ

k2 + iε
, (1.35)

with ε→ 0+.

1.1.2 Dirac field

Lagrangian of free Dirac field

A spin 1/2- particle as a fermion (e.g.electron, positron,. . . ) with mass m is described
by a 4-component complex field , called spinor:

Ψ(x) =


Ψ1(x)
Ψ2(x)
Ψ3(x)
Ψ4(x)

 . (1.36)

The dynamics of the free field is contained in Dirac Lagrangian:

LD = Ψ(x)
(
iγµ∂µ −m

)
Ψ(x), (1.37)

where
Ψ = Ψ†γ0 = (Ψ∗1 , Ψ∗2 ,−Ψ∗3 ,−Ψ∗4), (1.38)

and the Dirac matrices γµ (µ = 0, 1, 2, 3), which are the 4 x 4 matrices, must satisfy the
algebra:

{γµ, γν} = 2gµν.1. (1.39)

We treat those matrices as the components of a matrix vector such that:

γµ =
(

γ0, γ1, γ2, γ3
)

, γµ =
(

γ0,−γ1,−γ2,−γ3
)

. (1.40)

We choose to express the Dirac matrices in the Dirac presentation from Pauli matrices
σ1,2,3 (see Appendix B) as the following way:

γ0 =

(
1 0
0 −1

)
, γk =

(
0 σk
−σk 0

)
. (1.41)

The Lagrangian of Dirac field produces the Dirac equation as the equation of motion:

iγµ∂µΨ(x) = mΨ(x), (1.42)

and for the conjugate field:
i∂µΨ(x)γµ = −mΨ(x). (1.43)
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Since now, we often denote /A = γµ Aµ for any 4-vector Aµ, thus /∂ = γµ∂µ.

Plane wave solution of Dirac field

There’re two special solutions of Dirac equation Eq. (1.42) as:

u(~p)e−ipx; v(~p)eipx (1.44)

corresponding to particle’s and anti-particle’s wave functions. Thus, the general solution
of Dirac field is a linear combination of those wave functions as:

Ψ(x) =
∫ d3~p

(2π)3
√

2Ep

2

∑
s=1

[
us(~p)cs

~pe−ipx + vs(~p)d∗s~p eipx
]

, (1.45)

Ψ(x) =
∫ d3~p

(2π)3
√

2Ep

2

∑
s=1

[
ūs(~p)c∗s~p eipx + v̄s(~p)ds

~pe−ipx
]

, (1.46)

where s corresponds to two helicities (spin) of fermions; p = (Ep,~p) so that p2 = m2.
Applying the solutions Eq. (1.46) to Eq. (1.42), we obtain Dirac equations in momentum
space as following:{

(/p −m) us(~p) = 0,
(/p + m) vs(~p) = 0

; and

{
ūs(~p) (/p −m) = 0,
v̄s(~p) (/p + m) = 0.

(1.47)

The normalization conditions on the spinors are imposed so as:

ūs(~p)ur(~p) = 2mδrs; v̄s(~p)vr(~p) = −2mδrs; (1.48)

Quantization of Dirac field

The quantization of Dirac field is formulated from an important property of fermions,
which says that no two fermions exists in the same state. So, the fermion field adopts the
anti-commuation relations instead of the commutation ones of the photon fields:

{
Ψa(t,~x), Ψ†

b(t, ~x′)
}
= δ3(~x− ~x′)δab,{

Ψa(t,~x), Ψb(t, ~x′)
}
=
{

Ψ†
a(t,~x), Ψ†

b(t, ~x′)
}
= 0,

(1.49)

in which, a, b = 1, 2, 3, 4 is the component field index. Note that, in case of Dirac field, the
momentum conjugate field Π(x) to Ψ(x) is its conjugate field Ψ(x).
The wave- function coefficients in Eq. (1.46) now become the operators:

c~p , c∗~p → ĉ~p , ĉ∗~p,

d~p , d∗~p → d̂~p , d̂∗~p. (1.50)

The vacuum state |0〉is defined to be annihilated by c~p, d~p:

ĉs
~p |0〉 = 0, (1.51)
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d̂s
~p |0〉 = 0, (1.52)

for any ~p, s. The state of a particle with a definite momentum p and spin s is built in the
following way:

|p; s〉 =
√

2Ep ĉ†s
~p |0〉 . (1.53)

And for the one of anti-particle:

|p; s〉 =
√

2Epd̂†s
~p |0〉 . (1.54)

Fermion propagator

Similarly, the contraction of fermion fields gives us its propagator (see Eq. (1.96)):

iSFab(x1 − x2) = Ψa(x1)Ψb(x2) =
{

Ψ−a (x1), Ψ+
b (x2)

}
. (1.55)

To obtain the propagator in momentum representation, we should follow the same pro-
cedure as in the case of photon propagator (see Eq. (1.1.1) ). At last, we would receive:

iSFab(p) = i /p + m
p2 −m2 + iε

, (1.56)

with a positively infinitesimal ε.

1.1.3 Interacting fields- QED Lagrangian

QED describes the interactions between photons and fermions (charged particle). The
essence of this theory is the requirement that it must be invariant under gauge transfor-
mation as following:

• For photon fields Aµ(x):

Aµ(x)→ A′µ(x) = Aµ(x) +
1
e

∂µα(x), (1.57)

where e is the electron charge.

• For fermion fields Ψ(x):

Ψ(x)→ Ψ′(x) = e−iα(x)Ψ(x),

Ψ(x)→ Ψ′(x) = eiα(x)Ψ(x). (1.58)

Now let us first consider the effect of gauge transformation on the fermion Lagrangian
Eq. (1.37). It is shown not to be gauge invariant, actually:

LD → L′D = LD + Ψ(x)γµ∂µα(x)Ψ(x), (1.59)

with an arbitrary function α(x) to localize the gauge transformation. We see that the
variant term is due to ∂µα(x), which is indeed a vector. Hoping to eliminate this term, we
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add a new massless vector field Aµ(x), which transforms in the same way as the photon
field Aµ(x) under gauge transformation Eq. (1.57) to Dirac Lagrangian as the following
way:

LA = LD − eΨ(x)γµAµ(x)Ψ(x). (1.60)

It’s easy to see that the new Lagrangian is invariant under gauge transformation. The new
Lagrangian term connects the spinor field Ψ(x) to the gauge field Aµ(x), thus describes
the interaction between those fields. Since QED is for the interaction between photons
and fermions, it should be right that the gauge field is the photon field Aµ(x) = Aµ(x).
Then we should obtain the Lagrangian for QED as:

LQED = iΨ(x)γµ
[
∂µ + ieAµ(x)

]
Ψ(x)−mΨ(x)Ψ(x) +

1
4

FµνFµν , (1.61)

where we have brought the free Lagrangian of the free photon field Eq. (1.7) there, so it
would fully describe the photon-fermion field system . We should check how the QED La-
grangian Eq. (1.61) be invariant under the gauge transformations of the fields (Eq. (1.57),
Eq. (1.58)). It is often that we express the QED Lagrangian as:

LQED = iΨ(x)γµDµΨ(x)−mΨ(x)Ψ(x) +
1
4

FµνFµν , (1.62)

where we have introduced the covariant derivative Dµ = ∂µ + ieAµ(x).

1.2 Overview of the Perturbation theory

The perturbation theory is used to solve the interacting problem. In free theories,
the solution is determined by the planar wave expansion. In contrast, the reality becomes
blurred when the particles interact with the other ones and then, disappear for something
else to appear. Fortunately, physics does its best to simplify a complicated scattering
by suitable assumptions. Firstly, we assume that the initial and the final states of the
process are asymptotic free fields. Secondly, by the perturbation theory, we split the total
Lagrangian (or Hamiltonian) into the free and the interaction parts. The latter, in cases
when the interaction is sufficently weak, is treated as a perturbation. This makes QED to
be a potential candidate because its dimensionless coupling constant is the fine structure
constant α ≈ 1/137. Due to the assumptions above, it has been shown easier to represent
the fields and the states in the interaction picture. Then the solution is expanded as a
series of perturbed orders. We will see how to pick up one of these terms for a specific
transition in question.

1.2.1 Asymptotic fields

Let’s set up a system which changes over time t in such a way like this: Initally, we
have a system of different particles that are far enough from each other so that they can
move freely without any interaction. The system is now in a definite state |i〉. Noth-
ing changes until ti, the particles suddenly "feel" the others, i.e. begin to interact, and
"perturb" the system for a little while. The system is no more in |i〉 but kind of some
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complicated mixing state in a black box. As the time proceeds to t f , after the interaction,
new particles are born and moving far away from each other, the system turns to another
definite, free state | f 〉 as the final one. 3

Come back to our process, where all we know is only the initial state, the final state
and our interacting theory. The unknown is what’s happening during the interaction.

In fact, the timescales over which the interaction occurs are extremely short. So it is
close to the truth when we assume the fields in our interacting theory to behave asymtot-
ically as that way (Ref. [10]). There,

the initial state: |i〉 = |p1, p2; in〉 = a+in(p1)a+in(p2) |0〉 during −∞ ≤ t ≤ ti,

and the final state: | f 〉 = |k1, k2, . . . , kN; out〉 = a+out(k1) . . . a+out(kN) |0〉 during t f ≤ t ≤ ∞,

are well-defined particle states that live in the free theories (this assumption suits well for
the states in our scattering process, though it is no more reasonable for bound states). The
interaction is adiabatically switched on and off in the interval of time ti < t < t f . Note
that the free states are generated by creation operators a+in and a+out from the vaccum. And
this vacuum is stable and unique (which differs from the vacuum state at general time t in
the full interaction theory):

|0〉 = |0; in〉 = |0; out〉 . (1.63)

1.2.2 Interaction picture

The above discussion assumes that the particles behave free at asymtotic times t →
±∞ and the interaction only exists at intermediate times. We have derived the field oper-
ators in the free theories, they are constructed in the Heisenberg picture. While there, only
the operators evolve with time with the full Hamiltonian , and the states are unchanged.
That leads to solving a non- linear equation for the fields as the interaction part is added.
This solution for a general interaction seems to be impossible. Though different quantum

3The figures without source in the thesis are all created by a very helpful online tool- Mathcha
https://www.mathcha.io/

https://www.mathcha.io/
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pictures are physically equivalent, the interaction picture (I.P) (also called Dirac picture),
as its name suggests, ultilizes all those features of the perturbation formalism. To be clear,
let’s have a brief summary of quantum pictures in the table below:

Evolution Pictures
of: Schrodinger Heisenberg Dirac

Ket states |ψS(t)〉 = e−iHSt |ψS(0)〉 constant |ψI(t)〉 = eiH0,St |ψS(t)〉
Operators constant AH(t) = eiHSt ASe−iHSt AI(t) = eiH0,St ASe−iH0,St

Along the way, the full Hamiltonian H is divided into the free and the interaction parts:

H = H0 + Hi, (1.64)

where the lower indices S, H, I denoting for quantities in Schrodinger, Heisenberg and
interaction picture, correspondingly. Due to the above identifications, we have H0,S =
H0,I = H0. And here’s the thing, the time dependence is for both operators and states
in I.P, but each is controlled by one part of the Hamiltonian. While the time evolution of
the field operators just depend on the free Hamiltonian, only the interaction Hamiltonian
affects the state vectors. From the Schrodinger equation for |ΨS〉, we can easily prove
that:

i
d
dt
|ΨI(t)〉 = Hi,I(t) |ΨI(t)〉 . (1.65)

Also notice that:
AI(t)→ AH(t) when H = H0 (no interaction). (1.66)

Thus, two most important characteristics of the I.P that make it serves best for the
interacting theories are: First, the states in I.P are time- indepedent when the interaction
is turned off; second, the equation of motion for the field operators in I.P are the same to
the free ones in Heisenberg picture. And those are what we expect from the asymptotic
assumption, despite any complication from the interaction. Accordingly, we can therefore
retain the results of the free field theories, as we suppose to be known.

1.2.3 The S-matrix expansion

Until now, we are ready to build the S-matrix for a scattering process. Our process
originates from a given initial state |i〉 at t = −∞ with definite properties (number of
particles, spin, momentums, . . . ). Thus we can redefine:

|i〉 = |Ψ(−∞)〉 . (1.67)

It evolves through the interactions and long after that, it finally reaches a free state |Ψ(∞)〉
at t = ∞ . We define S- matrix to be the one relates |Ψ(−∞)〉 and |Ψ(∞)〉 as:

|Ψ(∞)〉 = S |Ψ(−∞)〉 = S |i〉 . (1.68)

In other words, S- matrix contains all information of the transition process. If we want to
measure the probability that the transition ends at a particular state | f 〉, we can project
the state |Ψ(∞)〉 on the possible final eigenstate | f 〉 by taking their dot product as:

〈 f |Ψ(∞)〉 = 〈 f | S |Ψ(−∞)〉 = 〈 f | S |i〉 = S f i. (1.69)
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Thus, the S- matrix element S f i is defined as the probability amplitude for the transition
from |i〉 to a specific state | f 〉.
At the next step, we will derive the S- matrix, and then we will see the effect of the inter-
action exhibits on the perturbation series of the S- matrix.
We denote |Ψ(t)〉 as the state vector of the whole system at time t in our scattering pro-
cess. All the quantities are hence presented in I.P, so the label ”I” is omitted. From the
equation of motion for |Ψ(t)〉 in Eq. (1.65) and the condition of the initial state |i〉 , we can
rewrite the equation in the integral form as:

|Ψ(t)〉 = |i〉+ (−i)
∫ t

−∞
dt1Hi(t1) |Ψ(t1)〉 . (1.70)

That means our state at time t need the information of itself in the past (t1 < t). This kind
of equation can only be solved iteratively such that:

|Ψ(t)〉 = |i〉+ (−i)
∫ t

−∞
dt1Hi(t1)

(
|i〉+ (−i)

∫ t1

−∞
dt2Hi(t2) |Ψ(t2)〉

)
(1.71)

= |i〉+ (−i)
∫ t

−∞
dt1Hi(t1) |i〉+ (−i)2

∫ t

−∞
dt1

∫ t1

−∞
dt2Hi(t1)Hi(t2) |Ψ(t2)〉 , (1.72)

(1.73)

and so on. In the limit t→ ∞, make a comparision with Eq. (1.68), the S-matrix:

S =
∞

∑
n=0

(−i)n
∫ ∞

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtnHi(t1)Hi(t2) . . . Hi(tn). (1.74)

To make more progress on the form of the S-matrix, we first try with a particular term,
for example, with n = 2:

S(2) = (−i)2
∫ ∞

−∞
dt1

∫ t1

−∞
dt2Hi(t1)Hi(t2) (1.75)

= (−i)2
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

1
2

[
θ(t1 − t2)Hi(t1)Hi(t2) + θ(t2 − t1)Hi(t1)Hi(t2)

]
(1.76)

=
(−i)2

2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2T {Hi(t1)Hi(t2)} . (1.77)

For the Eq. (1.76) to happen, we have used the property of the theta function and the
symmetry of the function F(t1, t2, . . . , tn) = Hi(t1)Hi(t2) . . . Hi(tn) for any ti’s permuta-
tion (that requires Hi to contain an even number of fermion factors, as in QED case). For
there’s totally n! ways of time ordering n functions , then we must divide a factor n! for
each term. For the Eq. (1.77), we define here the time- ordered product T :

T {φ(t1)φ(t2)} =
{

φ(t1)φ(t2) t1 > t2,
φ(t2)φ(t1) t1 < t2

(1.78)

≡ θ(t1 − t2)φ(t1)φ(t2) + θ(t2 − t1)φ(t2)φ(t1). (1.79)

We can then generalize the definition of T -product of n functions T {φ(t1)φ(t2) . . . φ(tn)}
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so that the function of later times stands to the left of the one of earlier times. Finally, we
obtain the S- matrix in a more formal form, where all the functions are treated equally:

S =
∞

∑
n=0

(−i)n

n!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 . . .

∫ ∞

−∞
dtnT {Hi(t1)Hi(t2) . . . Hi(tn)}. (1.80)

We can rewrite Eq. (1.80) in terms of the Hamiltonian density Hi(x) to obtain an ex-
plicitly covariant expression:

S =
∞

∑
n=0

(−i)n

n!

∫
. . .
∫

d4x1d4x2 . . . d4xnT {Hi(x1)Hi(x2) . . .Hi(xn)} . (1.81)

Now the integration is taken over all space- time. This is so called Dyson expansion of
the S- matrix.
We can express that series in the exponential form to see it as a unitary transformation:

S = T exp
{
−i
∫

d4xHi(x)
}

. (1.82)

The first term of S-matrix (n = 0) is S(0) = 1 means no interaction at all. So we define the
T-matrix such that:

S = 1 + iT, (1.83)

and their corresponding elements:

S f i = δ f i + iTf i, (1.84)

then we just need to consider the T- matrix only for what really happens in our interaction.
The T-matrix element is preferred to be expressed through the Feynman amplitudeM:

Tf i = (2π)4δ4(Pi − Pf )M f i, (1.85)

where Pi, Pf are the total four- momenta of the intial and final states. The seperation of
T-matrix element into a constant factor and the amplitude M makes an approriate dis-
tinction. Where the preceding factor is no more than the energy-momentum conservation
for our process. The remaining factor is what specializes the transition. We can see from
Eq. (1.85) that the Feynman amplitude can be found direcly from the S- matrix expansion
together with the Wick’s theorem (discussed next). But there is a more intuitive and sim-
pler way to write the Feynman amplitude term by term from its corresponding graph,
that is the Feynman’s rules (see Appendix C in case of QED).

1.2.4 Wick’s Theorem

We now need one more step to transform the S-matrix in Eq. (1.81) to a more useful
form, then obtain the transition amplitude 〈 f | S |i〉 for a particular transition |i〉 → | f 〉 at
a given order of the perturbation theory.
Having a look at Eq. (1.69), we can guess what kind of S-matrix’s terms wouldn’t make
S f i vanish. Note that each of the fields contained in the interaction Hamiltonian density
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Hi(x) is linear in creation and annihilation operators. So for the transition from an initial
state |i〉 to a final state | f 〉, S must contain right annihilation operators to destroy particles
in |i〉, and right creation operators to produce paricles in | f 〉. Another case is when S
creates a particle not in |i〉, so must then re- absorb it. These particles only exist in the
intermediate states, thus are called virtual particles.
In addition, let us remind the important definition of the vacuum state:

a |0〉 = 0 or 〈0| a+ = 0. (1.86)

Therefore, except the operators acting on virtual particles, all other ones must be ordered
so that all creation operators stand to the left of all annihilation operators. Such an order is
called normal order. Normal products N of functions bring them to normal order. There’s
a way to re- express the time- ordered product T in terms of the normal productsN (and
the virtual particles’ contractions). That’s what Wick’s theorem does.
Let’s illustrate Wick’s theorem with the case of two field functions: Because the field is
linear in creation and annihilation operators, without loss of generality, a field A(x) can
be written as: A(x) = A+(x) + A−(x), where "+" denotes for the creation part and "-" for
the annihilation part. For two boson fields A, B, we have:

AB = (A+ + A−)(B+ + B−) = A+B+ + A+B− + A−B+ + A−B−. (1.87)

Then:

N (AB) = N (A+B+ + A+B− + A−B+ + A−B−) (1.88)

= N (A+B+) +N (A+B−) +N (A−B+) +N (A−B−) (1.89)

= A+B+ + A+B− + B+A− + A−B−. (1.90)

Thus we can we rewrite Eq. (1.87) as:

AB = N (AB) + A−B+ − B+A− = N (AB) +
[
A−, B+

]
. (1.91)

For two fermion fields, we obtain the result with the anti- commutator instead:

AB = N (AB) +
{

A−, B+
}

. (1.92)

We easily find that the effect of any normal product on the vacuum state vanish. And
plus, the (anti-) commutators are just numbers (they do not involve operators). , thus they
can be re- expressed as the vacuum expectation value of Eq. (1.91) or Eq. (1.92). Then, we
obtain the result neatly as:

AB = N (AB) + 〈0| AB |0〉 , (1.93)

since
N (AB) = ±N (BA), (1.94)

where the minus sign is for the case of two fermion fields, the plus sign for all other
cases. Applying the T - product of two fields at different times x0

1 6= x0
2 to Eq. (1.93) by
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alternatively changing the order of fields, we get:

T {A(x1)B(x2)} = N {A(x1)B(x2)}+ A(x1)B(x2). (1.95)

Here we have introduced a special notation for the contraction of A(x1) and B(x2):

A(x1)B(x2) = 〈0| T {A(x1)B(x2)} |0〉
= θ(t1 − t2)

[
A−(x1), B+(x2)

]
+ θ(t2 − t1)

[
B−(x2), A+(x1)

]
, (1.96)

where the commutator are replaced by the anti-commutator for fermion fields.
Being a vacuum expectation value, the contraction will vanish unless one of the operators
A and B creates particles which the other absorbs. So the contraction has the meaning of
a propagator for particles from some x1 to x2 in space-time. And it is indeed the Feynman
propagator, which we have considered before for the cases of photon and fermion fields.
In much the same way, we can prove that:

T {A(x1)B(x2)C(x3)} =N {A(x1)B(x2)C(x3)}+ A(x1)B(x2)C(x3) (1.97)

+ B(x2)A(x1)C(x3) + C(x3)A(x1)B(x2). (1.98)

A similar procedure can be done in the cases of three, four, . . . , n fields with a definition
of the generalized normal product as:

N
(

ABCDEF . . . JKLM . . .

)
= (−1)P AKBCEL N (DF . . . JM . . .), (1.99)

where P is the number of interchanges between neighbouring fermion fields required to
change the order (ABCDEF . . .) to (AKBCEL . . .).
A general result of Eq. (1.93) for n fields is proved by Wick (Ref. [15]) by induction, which
we shall not redo here. For the case of unequal times (xi 6= xj, for i 6= j), the Wick’s
theorem states:

T(ABCD . . . WXYZ) = N(ABCD...WXYZ)

+ N(ABC . . . YZ) + . . . + N(ABC . . . YZ)

+ N(ABCD . . . YZ) + . . . + N(AB . . . WXYZ)
+ {all possible contractions} . (1.100)

The right hand side of Eq. (1.100) contains all possible contractions between field op-
erators. There the first, the second and the third lines correspond to no, one and two
contractions. There, it is impossible for the case of equal-time contraction because the
contraction between two fields at the same time means an instant propagation, which is
prohibited in a relativistic theory.

Applying Wick’s theorem to the S-matrix (Eq. (1.81)), at each order of the perturba-
tion, we obtain a sum of generalized normal products. Each term of this sum is one- to-
one with a definite process. Each of these processes is characterized by the initial and
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final particles contained in the N - product, and the virtual particles which mediate the
process by the non-vanishing field contractions. That’s how Wick’s theorem illuminates
all possibilities for a process in comparison with the implicit performance of T - product
form.

1.3 Regularization

After obtaining the transition amplitude, we still have a big problem of solving di-
vergences, which belongs to our LbyL scattering’s amplitude before going to calculate
physical quantities like cross section, . . .

1.3.1 UV divergence

We will often encounter loop- integrals at higher order of perturbative expansion of
the fields theory. That’s where there will be one unrestricted momentum for each loop,
i.e. this momentum can’t be identified from the external momentums only by energy-
momentum conservation, thus is free to vary. The problem here is that this mometum is
integrated over the whole 4-momentum space (from −∞ to ∞). That sometimes leads to
divergent integrals. They can occur either at large loop- momentum p as an ultra-violet
(UV) divergence, or at small p ' 0 as an infrared (IR) divergence. We primarily focus on UV
divergences as our case of LbyL scattering.
These integrals are often expressed in this form:

∼
∫

d4k1d4k2 . . . d4kN

(/k1 −m + iε)︸ ︷︷ ︸
fermion propagator

. . . (k2
j + iε)︸ ︷︷ ︸

photon propagator

. . .
.

(1.101)

To classify the UV divergence, we define the superficial degree of divergence D , it equals
to the sum of power of loop momenta in the numerator minus those in the denominator
of integrals like Eq. (1.101). We naively expect the integral to be power devergent when
D > 0, logarithm divergent when D = 0 and UV finite when D < 0. From Eq. (1.101), we
have:

D = 4L− I f − 2Ip, (1.102)

where L is the number of loops; I f , Ip are the number of fermion and photon propagators.
That results from each fermion propagator contribute one power of momentum in the
denominator while the photon propagator’s contribution is two.
Considering V as the number of vertices, we also have:

I = (V − 1) + L. (1.103)
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We denote the number of total internal lines, internal fermion and photon lines as I, I f , Ip
and the corresponding external ones E, E f , Ep. Thus I = I f + Ip, E = E f + Ep. In case of
QED, the total number of lines N = I + E = N f + Np with N f and Np denote the number
of fermion and photon lines. Because the QED vertices are all attached with 2 fermion
lines and 1 photon line, so we always have:

N f + I f

2
= V = Np + Ip. (1.104)

Substitute these relations into Eq. (1.102), we obtain:

D = −3
2

E f − Ep + 4 . (1.105)

Hence, what is specific about QED is that the degree of divergence D in this theory is not
dependent on whatever complicated internal process, but only on the number of external
lines. Then it comes to us that there are just several (finite) cases where D ≥ 0, thus we
say QED is a renormalisable theory.

1.3.2 Dimensional regularization

Renormalization is a systematic way to formally remove the divergences. Though at
the first sight, the integrals like Eq. (1.101) appear to be divergent but anyway, it must
remain finite to enter to physical quantities. In the light of renormalization, by suitable
modification of the integrals, we can split the infinite and finite terms hidden in those
integrals seperately. After a while, we may find that the sum of all infinite parts equals to
zero, i.e. the divergence is removed.
To accomplish that, regularization is used as the first step. There’re different methods of
regularization, e.g. cut-off method, Pauli- Villars method, or dimensional regularization
method, . . . . Because all those above methods must lead to the same physical results, we
choose to regularize the divergences by the latest one, dimensional regularization (DR).
That is because not only it is easier to apply but much more important, DR preserve gauge
invariance and the validity of Ward identities automatically. In this method, the number
of space dimensions is set to d. Then the divergent terms are expressed as poles in the
form ∼ 1/(4− d). In the next step, the Lagrangian is modified so that such poles vanish.
It is achieved by adding terms, called counter terms to the original Lagrangian. It will go
along with the re- definition of fields and some parameters (masses, coupling constants)
of the theory, so they’re no longer fixed but depend on a scale. At last, when all calcu-
lations are done, after renormalization, we will return to d = 4, these integrals are now
completely removed from divergences, i.e. become finite 4 .

4For a full discussion of the technique of dimensional regularization, see Ref. [1]
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In this thesis, we will limit ourselves to just concentrate on DR without further step.
We will see later how just DR is enough to put an end to the divergences of LbyL ampli-
tude. How could it be, or just by accident? Applying Eq. (1.105), our process λ + λ →
λ + λ has the degree of divergence D = 0, or it is logarithm divergent. But the true de-
gree of divergence of our four- photon amplitude is indeed smaller than 0. That happens
when we consider more on the physical constraints on the integrals as Lorentz invariance,
gauge invariance, Bose symmetry,. . . (see Ref. [8] for the case of 3-photon amplitude. We
can follow the same procedure to obtain the covariant expression for the finite 4-photon
amplitude, but it contains a large number of covariant tensors, thus will take much time).
Consequently, the amplitude of LbyL scattering is indeed finite.

Dimensional regularization

The UV-divergent integrals live in four- dimensional space. As the factor d4p con-
tribute to the degree of freedom, we should avoid the divergences by lowering the space-
time dimension to d < 4 (see Ref. [4]) as a (continous) positive variable, thus:

∫ d4p
(2π)4 −→

∫ dd p
(2π)d . (1.106)

This change comes together with the following "axioms":

• In d dimensions, the action is still given by:

S =
∫

dxdL (1.107)

as to be dimensionless. In natural units, [x] = −1 , thus [L] = d. Due to the QED
Lagrangian Eq. (1.61), we get the dimension of the fields [Ψ] = d−1

2 , [Aµ] =
d−2

2
and the electric charge [e] = 4−d

2 . For the dimension of the electric charge to be
dimensionless at any d, we introduce the mass parameter µ ([µ] = 1). Thus the
coupling strength for QED theory is replaced by:

eDR = µ
d−4

2 e. (1.108)

That is a characteristic feature of DR.



Chapter 1. Theoretical Background 22

• The metric tensor in this space is defined:{
g00 = −gii = 1 i = 1, 2, 3, . . . , d− 1,
gµν = 0 µ 6= ν.

(1.109)

So
gµνgµν = d. (1.110)

Accordingly, the d-vector kµ is represented as:

kµ = (k0, k1, . . . , kd−1), (1.111)

and

k2 = kµkµ = k2
0 −

d−1

∑
i=1

k2
i . (1.112)

Note that the definiton of metric tensor in a non-integer d- dimensional space is
somehow unacceptable. But the poles don’t originate from the metric tensor, so in
the last step, when we return to d = 4, the metric will be well- defined.

• We must also know how to handle the expressions involved gamma matrices in
d dimensions. We introduce a set of d matrices γ0, γ1, , . . . , γd−1, which obey the
anti-commutation relations:

γµγν + γνγµ = 2gµν. (1.113)

These matrices are considered as f (d) x f (d) dimension(s), and I is the f (d) x f (d)
unit matrix. With those new definitions, it is sufficent to obtain the contraction
identities:

γµγµ = dI, (1.114)
γµγνγµ = (2− d)γν, (1.115)

γµγαγβγµ = 4gαβ − (4− d)γαγβ. (1.116)

We can choose f (d) = 4, then Tr(I) = 4, i.e. as in 4 dimensions. So the trace relations
in this d- dimensional space read:

Tr(γµγν) = 4gµν, (1.117)
Tr(γµγνγργδ) = 4(gµνgρδ − gµρgνδ + gµδgνρ), (1.118)

Tr( γαγβ . . . γµγν︸ ︷︷ ︸
odd number of γ−matrices

) = 0. (1.119)

Again, the existence of γ- matrices in a non-integer number of dimensions is far
from clear. And despite that, since the gamma- matrices relations are not poles in
the limit d → 4, thus only their familiar expressions enter to the final results by
replacing d = 4 in the above relations.
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Tensor integrals

One-loop integrals can always be expandeded in terms of the following N-point ten-
sor integrals (we follow the conventions all from Ref. [7], also for purpose of using COL-
LIER’s later)

TN,µ1...µM(p1, . . . , pN−1, m0, . . . , mN−1) =
(2πµ)4−d

iπ2

∫
ddq

qµ1 . . . qµM

N0N1 . . . NN−1
, (1.120)

where

Ni = (q + pi)
2 −m2

i + iε, pi = k1 + k2 + . . . + ki, i = 1, 2, . . . , N − 1.
(1.121)

with k1, k2, . . . , kN−1 are the external momenta that appear in turn along the direction of
internal momentum (the Nth external momentum is obtained from (N − 1) others’ by the
energy-momentum conservation); µ is the mass parameter Eq. (1.108); iε is the infinitesi-
mally small imaginary part from the propagators. The rank of tensor is M, thus the scalar
integral corresponds to M = 0, i.e. the numerator inside the integral is 1.
Following the notations from Ref. [7], we have these following conventions:

• The N-point integrals is re-symbolized as:

T1 = A, T2 = B, T3 = C, T4 = D, T5 = E, . . . (1.122)

Their corresponding scalars are A0, B0, C0, . . .

• Due to Lorentz invariance, the tensor integral Eq. (1.120) must equal to tensors
formed from the external momenta {k1, k2, . . . , kN−1} and the metric tensor with
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corresponding indices. So we have the most general decomposition of a tensor in-
tegral into Lorentz-covariant structures:

TN,µ1...µM =
[ M

2 ]

∑
n=0

N−1

∑
i2n+1,...,iM=1

{g . . . g︸ ︷︷ ︸
n

p . . . p}µ1...µM
i2n+1...iM

TN
0 . . . 0︸ ︷︷ ︸

2n

i2n+1...iM
(1.123)

=
N−1

∑
i1,...,iM=1

pµ1
i1

. . . pµM
iM

TN
i1...ip

+
N−1

∑
i3,...,iM=1

{gpi3 . . . piM}
µ1...µM
i3...iM

TN
00i3...iM

+
N−1

∑
i5,...,iM=1

{ggpi5 . . . piM}
µ1...µM
i5...iM

TN
0000i5...iM

+ . . .

+



N−1

∑
iM=1
{g . . . gp}µ1...µM

iM
TN

0 . . . 0︸ ︷︷ ︸
M−1

iM
, for M odd,

{g . . . g}µ1...µM TN
0 . . . 0︸ ︷︷ ︸

M

, for M even.
(1.124)

where TN
0...0i2n+1...iM

are the tensor coefficients. One thing to remark is the tensor inte-
gral Eq. (1.120) is symmetric under any exchange of the tensor indices {µ1, . . . , µM}.
So the tensor coefficients are unique up to any exchange of the indices ij. Thus we
conveniently choose one representative of them by sorting ij to the ascending order.
So are the coefficients of the curly brackets introduced here, they are totally sym-
metric with all the lower indices of ij. Taking some examples of the curly brackets:

{pp}µν
i1i2

= pµ
i1

pν
i2 = {pp}νµ

i2i1
, (1.125)

{gp}µνρ
i = gµν pρ

i + gµρ pν
i + gνρ pµ

i , (1.126)

{gg}µνρδ = gµνgρδ + gµρgνδ + gµδgνρ, (1.127)

{gpp}µνρδ
i1i2

= gµν pρ
i1

pδ
i2 + gµρ pν

i1 pδ
i2 + gµδ pν

i1 pρ
i2
+

gνρ pµ
i1

pδ
i2 + gνδ pµ

i1
pρ

i2
+ gρδ pµ

i1
pν

i2 = {gpp}µνρδ
i2i1

, (1.128)

Follow those conventions, here are some examples of the tensor integral and their
possible coefficents:

– 1-point function: {A0, A00, A0000, . . .}

Aµν(m) = A00gµν, ∀ n = 1, 2, . . . (1.129)
Aµ1...µ2n+1 = 0, (1.130)

for the 1-point function doesn’t relate to any external momentum.
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– 2-point function: {B0, B1, B00, B11, B001, B111, . . .}

Bµ(p, m0, m1) = B1pµ, (1.131)
Bµν = B00gµν + B11pµ pν, (1.132)

Bµνρ = B111pµ pν pρ + B001{gp}µνρ
1 . (1.133)

– 3-point function: {C0, C1, C2, C00, C11, C12, C22, C001, C002, C111, C112, C122, C222 . . .}

Cµν(p1, p2, m0, m1, m2) = C00gµν + C11pµ
1 pν

1 + C12(pµ
1 pν

2 + pν
1 pµ

2 ) + C22pµ
2 pν

2,
(1.134)

Cµνρ = C001{gp}µνρ
1 + C002{gp}µνρ

2 + C111pµ
1 pν

1 pρ
1+

C112(pµ
1 pν

1 pρ
2 + pµ

1 pν
2 pρ

1 + pµ
2 pν

2 pρ
1) + C122(pµ

1 pν
2 pρ

2+

pµ
2 pν

1 pρ
2 + pµ

2 pν
2 pρ

1) + C222pµ
2 pν

2 pρ
2. (1.135)

– 4- point function: {D0, Di, D00, Dij, D00i, Dijk, D0000, D00ij, Dijkl, . . .}where i, j, k, l =
1, 2, 3

Dµνρδ(p1, p2, p3, m0, m1, m2, m3) =D0000{gg}µνρδ + D00ij{gpp}µνρδ
ij

+ Dijkl{pppp}µνρδ
ijkl . (1.136)

For the method to calculate the tensor integral and deriving simple tensor coeffi-
cents, see Appendix D. For a complicated process as LbyL scattering, its highest
tensor integrals are the rank-4, which correspond to thousands of terms. Thus, for
later purpose of numerical analysis, we use COLLIER’s library to calculate scalar
and tensor coefficients.

1.4 Cross section. Two-particle scattering problem

The next step is to relate the (finite) transition amplitude that we have obtained from
the previous sections to our most concerned physical quantity, cross section.

1.4.1 Fermi’s golden rule

The assumptions about the asymptotically free states and the weak perturbation hap-
pening in a very short time are well suitable to apply Fermi’s golden rules (Ref. [11]). Due
to this well- known rule, the transition rate (the probability per unit of time) for such a
process to take place is:

W = W f i = 2π
∣∣M f i

∣∣2ρ(E f ), (1.137)

whereM f i is the Feynman amplitude (Eq. (1.85)) for the transition from the given initial
state |i〉 to some final state | f 〉. The multiplication factor ρ(E f ) is what we call the phase
space or density of state factor. ρ is a function of the total energy E f and masses of the



Chapter 1. Theoretical Background 26

individual particles in the final state. From this rule, we will derive the cross section for-
mula based on its Lorentz invariance.

Firstly, the density of state ρ(E)dE is the number of states with the energy lies in (E,
E + dE):

ρ(E) =
dN(E)

dE
|E=E f =

∫
dEδ(E− Ei)

dN(E)
dE

=
∫

δ(E− Ei)dN(E), (1.138)

because of the conservation of energy E f = Ei and the property of δ- function
∫

dE δ(E−
E f ) = 1, where Ei is the initial total energy. Next we consider the number of states
dN(E), i.e. the number of possible states in the phase space. Each state in the phase space
is identified by a point with six coordinates (x1, x2, x3, p1, p2, p3). But the Heisenberg’s
principle ∆xi∆pi ≥ 2π restricts the definiteness of those variables so that each state is
confined into an element cell with the volume (2π)3. So the number of states is:

dN(E) =
N

∏
i=1

dx3
i d~p3

i
(2π)3 = VN

N

∏
i=1

d~p3
i

(2π)3 , (1.139)

where N is the number of particles in the final state, and we suppose each particle is
confined within a same volume V in the space configuration. We conveniently just con-
sider in each unit of volume, so we dismiss V then. The spin of paticles also need to be
considered and was all brought to the transition amplitudeM.

However, there’s also one important thing to state is the conservation of the momen-
tums, so that ~Pf = ~Pi = ~p1 + ~p2 + . . . + ~pN. Then we just need to integrate over (N − 1)
particles. But again, we can make use of the δ- function to express the integral over all
final particles:

dN(E) =
N−1

∏
i=1

dp3
i

(2π)3 = (2π)3
N

∏
i=1

d~p3
i

(2π)3 δ3
[
~pN − (~pi − ~P1 − ~p2 − . . .− ~pN−1)

]
. (1.140)

Now the transition rate (Eq. (1.137)) becomes an integral over all possibilities for the final
state | f 〉:

W = (2π)4
∫ ∣∣M f i

∣∣2δ4(p− pi)
N

∏
i=1

d~p3
i

(2π)3 . (1.141)

One thing to note, the state defined in Fermi’s rule (Eq. (1.137)) is normalized to one
per unit of volume. Meanwhile, we conventionally normalize the states to their energies
(Eq. (1.26), Eq. (1.53), Eq. (1.54)). then we can replace:

W → W
〈i|i〉 〈 f | f 〉 =

W
2Ei12Ei2 . . . 2EiNi2E f 12E f 2 . . . 2E f N f

. (1.142)

Thus, we rewrite the transition rate as:

W =
(2π)4

2Ei1 . . . 2EiNi

∫ ∣∣M f i
∣∣2δ4(p− pi)

N

∏
i=1

d~p3
i

(2π)32E f i
. (1.143)
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1.4.2 Cross section definition

The cross section σ is defined as the probability for a particle from an incoming beam
to interact with a target particle in one unit of time (Ref. [13]):

σ =
number of interactions /unit time/ target particle

incident flux
, (1.144)

where:
flux = number of incident particles/ unit area/ unit time, (1.145)

where the area here is the effective cross sectional area of the incident beam. From the
definition above, we have the relation between the transition rate W (number of interac-
tions/unit time) and the cross section σ (all in one unit of volume) as:

W = σ x incident flux x density of target particles. (1.146)

1.4.3 Cross section of two- particle scattering

Now we particularly consider the problem of two- particle scattering into two other
particles , which is the case of LbyL scattering:

(1) + (2) −→ (3) + (4).
(E1,~p1) (E2,~p2) (E3,~p3) (E4,~p4)

Assume that in an arbitrary inerital reference of system, a particle from beam (1)
moves with the velocity ~v1 and hits the target (2) moving with velocity ~v2 towards (1),
results in the production of particles (3), (4). Their energy-momentums are denoted as
above. Eq. (1.146) in this case becomes:

W = σ x n1(v1 + v2) x n2 = σ (v1 + v2). (1.147)

where v2 = |~v1|, v2 = |~v2|, ; and n1, n2 are the densities of the incident beam and the
target. But the states are normalized to one particle per unit of volume, then n1 = n2 = 1.
And so, in combination with Eq. (1.143), we obtain the expression for the cross section of
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the 2-to-2 scattering as:

σ =
(2π)−2

4E1E2(v1 + v2)

∫ ∣∣M f i
∣∣2∗δ4(p3 + p4 − p1 − p2)

d~p3
3

2E3

d~p3
4

2E4
, (1.148)

where the squared amplitude
∣∣M f i

∣∣2∗ is defined from
∣∣M f i

∣∣2 in different ways depend-
ing on what particles participating in the interaction and what polarization case is con-
sidered. For the case of LbyL scattering, both the initial and final particles are photons,
which are bosons and have two polarizations, its squared amplitude taking part in the
cross section is defined in Subsection 3.3.2 and Subsection 3.4.1. Since now, we denote∣∣M f i

∣∣2 for
∣∣M f i

∣∣2∗ with that definition being implied .

After a while, it’s worthwhile to make some comments on the Lorentz invariance of
the cross section (Eq. (1.148)):

• The Feynman amplitudeM f i is Lorentz invariant.

• The final particles obey the on-shell condition then∫
d4pδ(p2 −m2)

∣∣∣
p0>0

=
∫

d3~p
∫

dp0δ
[

p2
0 − (~p2 + m2)

]
θ(p0) =

∫ d3~p
2p0

(1.149)

is invariant.

• The factor at the denominator is also Lorentz invariant because:

E1E2(v1 + v2) =

√(
p1µ pµ

2
)2 −m2

1m2
2. (1.150)

The right hand side of Eq. (1.150) is variant so is the left hand side.

Note that, the cross section (Eq. (1.148)) includes all possibilities for the momentums of
outgoing particles, so we can define the differential cross section to measure the probability
for the scatterd particle to satisfy some conditions on a physical quantity A as dσ

dA . The
differential cross section according to the scattering angles is most often concerned. By
which, we measure the probability for the scatterd particle to go to the differential solid
angle dΩ:

dσ

dΩ
−→ σ =

∫ dσ

dΩ
dΩ, (1.151)

where dΩ = d cos θdφ; and θ, φ correspond to the polar and azimuth angles when the
direction of Oz axis coincides with the direction of the inital particle moving toward the
target.

The cross section in the Centre of Mass (C.o.M.) system
Now we apply the Lorentz invariant formula Eq. (1.148) for the interaction cos section in
the C.o.M. system, and thus the result is unchanged in any other (inertial) system. In the
C.o.M. system, together with the conservation law for energy- momentums , our isolated
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system has some "good- looking" characteristics as follow:{
E1 + E2 = E3 + E4 =

√
s,

~p1 + ~p2 = ~p3 + ~p4 = 0.
(1.152)

Set ~p1 = −~p2 = ~pi and ~p3 = −~p4 = ~p f , the factor in the denominator is simplified as:

E1E2(v1 + v2) = E1E2

(
|~pi|
E1

+
|~pi|
E2

)
= E1|~pi|+ E2|~pi| = |~pi|

√
s. (1.153)

Thus, using Eq. (1.152) and transfrom the three- dimentional integral of ~p4 to its corre-
sponding 4- dimensional integral as Eq. (1.149), Eq. (1.148) now becomes:

σ =
(2π)−2

4|~pi|
√

s

∫
dΓ, (1.154)

where∫
dΓ =

∫ d~p3
3

2E3

d~p3
4

2E4

∣∣M f i
∣∣2δ4(p3 + p4 − p1 − p2) (1.155)

=
∫ d~p3

3
2E3

∫
d4p4δ4 [p4 − (p1 + p2 − p3)]

∣∣M f i
∣∣2δ(p2

4 −m2
4)θ(p40) (1.156)

=
∫ d~p3

3
2E3

∣∣M f i
∣∣2δ
[
(p1 + p2 − p3)

2 −m2
4

]
θ(
√

s− E3) (1.157)

=
∫ d~p3

3
2E3

∣∣M f i
∣∣2δ
[
(
√

s− E3)
2 − |~p3|2 −m2

4

]
(hence, E3 <

√
s) (1.158)

=
∫

d|~p3||~p3|2
1

2E3
δ
[
(
√

s− E3)
2 − |~p3|2 −m2

4

] ∫
dΩ
∣∣M f i

∣∣2 (1.159)

=
∫

d|~p3|
|~p3|2

2E3
δ

[(√
s−

√
|~p3|2 + m2

3

)2

− |~p3|2 −m2
4

] ∫
dΩ
∣∣M f i

∣∣2 (1.160)

=
|~p3|2

2E3

[
2|~p3|+ 2(

√
s− E3)

|~p3|
E3

]−1 ∫
dΩ
∣∣M f i

∣∣2 (1.161)

=

∣∣~p f
∣∣

4
√

s

∫
dΩ
∣∣M f i

∣∣2. (1.162)

(1.163)

Finally, we obtain the cross section for 2-to-2 body scattering as:

σ =
1

64π2s

∣∣~p f
∣∣

|~pi|

∫
dΩ
∣∣M f i

∣∣2, (1.164)

or in the differential form:
dσ

dΩ
=

1
64π2s

∣∣~p f
∣∣

|~pi|
∣∣M f i

∣∣2. (1.165)
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Chapter 2

Light-by-light scattering in QED

We are now equipped with essential theories to do the most important work of cal-
culating the transition amplitude for the LbyL scattering. We will see that our process
λ + λ → λ + λ exhibits some interesting features due to its symmetry between the in-
coming and outgoing particles (photons). We choose to derive the amplitude by Wick’s
theorem instead of a much more easy- to - obtain way of applying Feynman’s rule. But
that option makes it more natural to get all possibilities for our process at LO.

2.1 Amplitudes at Leading-order

2.1.1 The S-matrix

We rewrite the Lagrangian of QED:

LQED(x) = ∑
f

[
Ψ̄ f (x)(iγα∂α −m f )Ψ f (x)−Q f Ψ̄ f (x)γα AαΨ f (x)

]
− 1

4
Fµν(x)Fµν(x),

(2.1)
where the field functions Aα(x), Ψ(x) are already explained in Section 1.1. The theory
is applied with all charged elementary particles (i.e.leptons and quarks), which the in-
dex f indicates. Then m f , Q f are the mass and the electric charge corresponding to each
fermion1. We will see that one of these LO processes attached with only one type of par-
ticle. So for simplicity, we just first consider e.g. the (anti-) electron as the only particle
participating in the interaction.
Because the interaction Lagrangian does not contain the derivatives of fields, then the in-
teraction Hamiltonian is simply as (only electron considered, so the index f is dismissed):

Hint(x) = −Lint(x) = eΨ̄(x)γα AαΨ(x). (2.2)

The S-matrix Eq. (1.82) is now:

S = T exp
{
−ie

∫
d4xΨ̄(x)γα AαΨ(x)

}
. (2.3)

1In case of quarks, we must also include in the Lagrangian the running indices on three colors for each.
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2.1.2 The S-matrix element at leading order

Our LbyL scattering is presented as follow:

λ1 + λ2 −→ λ3 + λ4, (2.4)

(E1,~k1), η1 (E2,~k2), η2 (E3,~k3), η3 (E4,~k4), η4 (2.5)

where (Ei,~ki), ηi is the four energy-momentum and spin (polarization) of each corre-
sponding particle. With the S-matrix as above, to find its element S f i, we need to identify
the intial and final states. They are no more than these asymtotically free states as:

Initial state: |i〉 = |λ1, λ2〉 =
√

2E1
√

2E2a+η1
(~k1)a+η2

(~k2) |0〉 , (2.6)

Fianl state: | f 〉 = |λ3, λ4〉 =
√

2E3
√

2E4a+η3
(~k3)a+η4

(~k4) |0〉 (2.7)

⇒ 〈λ3, λ4| =
√

2E3
√

2E4 〈0| aη3(
~k3)aη4(

~k4). (2.8)

Whereas the S-matrix Eq. (2.3) appears in groups including { Ψ̄, Ψ, A }, there are mainly
three processes belong to the propagation of electrons, positrons and photons. There-
fore, a non-trivial S-matrix element for our transition must in some way contain the right
number of A(x) fields to combine with the external particle states |λ1, λ2〉 and |λ3, λ4〉.

1. It’s easy to verify that the S-matrix element at odd orders vanishes:

S(odd order)
f i = 〈λ3, λ4| . . . A(x1) . . . A(x2) . . . A(x2n+1) . . . |λ1, λ2〉 = 0, (2.9)

because there’s always one photon field is not contracted in such these orders. So
we exclude all odd orders of perturbation.

2. So let’s continue with the second order:

S(2)
f i = −e2

∫
dx4

1dx4
2 〈λ3, λ4| T {[Ψ̄(x1) /A(x1)Ψ(x1)] [Ψ̄(x2) /A(x2)Ψ(x2)]} |λ1, λ2〉

= −e2
∫

dx4
1dx4

2 〈λ3, λ4| N
{

. . . A(x1) . . . A(x2) . . . A(x3) . . . A(x4) . . .
}
+

N
{

. . . A(x1) . . . A(x2) . . . A(x3) . . . A(x4) . . .
}
+ . . . |λ1, λ2〉 .

(2.10)

Once again, the element at this order doesn’t contribute to the transition. That is
due to there are four external photon fields needed to be contracted, while we just
have two internal photon fields. Thus, this term just lead to disconnected diagrams.
The figure below corresponds to the second and the third lines of Eq. (2.10), all other
term at n = 2 give the same diconnected diagrams:
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3. There, at the order n = 4:

S(4)
f i =

e4

24

∫
dx4

1dx4
2dx4

3dx4
4 〈λ3, λ4| T {[Ψ̄ /AΨ]1 [Ψ̄ /AΨ]2 [Ψ̄ /AΨ]3 [Ψ̄ /AΨ]4} |λ1, λ2〉 ,

(2.11)
where the notation [Ψ̄ /AΨ]i is for the fields at xi: Ψ̄(xi) /A(xi)Ψ(xi). .
Putting the disconnected parts aside, there is just one way for the legal terms. That
is when all the four internal photon fields are sufficiently contracted with the four
external ones (where all the internal fermion fields are certainly full contracted with
each other). Thus, this is the leading order for our transtion.
Because the integral variables x1, x2, x3, x4 are completely equivalent to each other
and the external particles are all photons, we can combine any internal A(x) field to
any one of the external particles. That leads to 4! = 24 ways to combine the photon
fields.
As one of those 24 cases, we can conveniently fix so as λ1, λ2 to be annihilated at x1,
x2 and λ3, λ4 to be emitted at x3, x4 (the rest of them give the same results). Thus,
we can eliminate the symmetric factor 24 at the denominator. Note that, there’re
also 6 ways (cyclic permutations) to contract the fermion fields in one specific con-
figuration of the photon fields:

(a) Cyclic {1− 2− 3− 4} : [Ψ̄ /AΨ]1[Ψ̄ /AΨ]2[Ψ̄ /AΨ]3[Ψ̄ /AΨ]4,

(b) Cyclic {1− 2− 4− 3} : [Ψ̄ /AΨ]1[Ψ̄ /AΨ]2[Ψ̄ /AΨ]3[Ψ̄ /AΨ]4,

(c) Cyclic {1− 3− 2− 4} : [Ψ̄ /AΨ]1[Ψ̄ /AΨ]2[Ψ̄ /AΨ]3[Ψ̄ /AΨ]4,

(d) Cyclic {1− 3− 4− 2} : [Ψ̄ /AΨ]1[Ψ̄ /AΨ]2[Ψ̄ /AΨ]3[Ψ̄ /AΨ]4,

(e) Cyclic {1− 4− 2− 3} : [Ψ̄ /AΨ]1[Ψ̄ /AΨ]2[Ψ̄ /AΨ]3[Ψ̄ /AΨ]4,

(f) Cyclic {1− 4− 3− 2} : [Ψ̄ /AΨ]1[Ψ̄ /AΨ]2[Ψ̄ /AΨ]3[Ψ̄ /AΨ]4 .
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• Firstly, we couple the fermion fields along the cyclic {1− 2− 3− 4}:

S(4)
f i,1 =

e4

24

∫
dx4

1 . . . dx4
4〈λ3, λ4|N

{
[Ψ̄ /AΨ]1[Ψ̄ /AΨ]2[Ψ̄ /AΨ]3[Ψ̄ /AΨ]4

}
|λ1, λ2〉

(2.12)

= e4
∫

dx4
1 . . . dx4

4〈λ3, λ4|
{
[Ψ̄ /A+Ψ]3[Ψ̄ /A+Ψ]4[Ψ̄ /A−Ψ]1[Ψ̄ /A−Ψ]2

}
|λ1, λ2〉

(2.13)

= −e4
∫

dx4
1 . . . dx4

4 〈λ3, λ4| iSF(x2 − x3) /A+(x3)iSF(x3 − x4)

/A+(x4)iSF(x4 − x1) /A−(x1)iSF(x1 − x2) /A−(x2) |λ1, λ2〉 (2.14)

= −e4
∫

dx4
1 . . . dx4

4

√
2E3
√

2E4 〈0| aη3(
~k3)aη4(

~k4)

iSF(x2 − x3)
[
∑
θ3

∫ d3~q3

(2π)3
√

2ω3
a+θ3

(~q3)/ε ∗(~q3, θ3)eiq3x3

iSF(x3 − x4)∑
θ4

∫ d3~q4

(2π)3
√

2ω4
a+θ4

(~q4)/ε ∗(~q4, θ4)eiq4x4

iSF(x4 − x1)∑
θ1

∫ d3~q1

(2π)3
√

2ω1
aθ1(~q1)/ε (~q1, θ1)e−iq1x1

iSF(x1 − x2)∑
θ4

∫ d3~q2

(2π)3
√

2ω2
aθ2(~q2)/ε (~q2, θ2)e−iq2x2

]
√

2E1
√

2E2a+η1
(~k1)a+η2

(~k2) |0〉 (2.15)

= −e4 ∑
θ1,θ2,θ3,θ4

∫ d3~q1

(2π)3

∫ d3~q2

(2π)3

∫ d3~q3

(2π)3

∫ d3~q4

(2π)3

√
E1E2E3E4

ω1ω2ω3ω4

〈0| aη3(
~k3)aη4(

~k4)a+θ3
(~q3)a+θ4

(~q4)aθ1(~q1)aθ2(~q2)a+η1
(~k1)a+η2

(~k2) |0〉∫
dx4

1 . . . dx4
4iSF(x2 − x3)/ε ∗(~q3, θ3)eiq3x3 iSF(x3 − x4)/ε ∗(~q4, θ4)eiq4x4

iSF(x4 − x1)/ε (~q1, θ1)e−iq1x1 iSF(x1 − x2)/ε (~q2, θ2)e−iq2x2 . (2.16)

Before going on, note that for the Eq. (2.13) to happen, we have eliminated
all other terms because they don’t suit with the external states, i.e. give zero
contributions and we have fixed our space configuration. For the same reason,
the "bra-ket" factor in Eq. (2.16) indeed corresponds to several terms because of
the symmetry of λ1 and λ2, λ3 and λ4, i.e. by exchange the operators followed
the commutation relation Eq. (1.24), but then we just consider one term that
relates to our fixed configuration, thus:

〈0| aη3(
~k3)aη4(

~k4)a+θ3
(~q3)a+θ4

(~q4)aθ1(~q1)aθ2(~q2)a+η1
(~k1)a+η2

(~k2) |0〉

⊃ (2π)3δ3(~q3 −~k3)δ
η3,θ3(2π)3δ3(~q4 −~k4)δ

η4,θ4

(2π)3δ3(~q1 −~k1)δ
η1,θ1(2π)3δ3(~q2 −~k2)δ

η2,θ2 . (2.17)
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Then Eq. (2.16) becomes neatly as:

S(4)
f i,1 = −e4

∫
dx4

1 . . . dx4
4iSF(x2 − x3)/ε ∗(~k3, η3)eik3x3 iSF(x3 − x4)/ε ∗(~k4, η4)eik4x4

iSF(x4 − x1)/ε (~k1, η1)e−ik1x1 iSF(x1 − x2)/ε (~k2, η2)e−ik2x2 .
(2.18)

Now we transform the propagators into the momentum space, then:

S(4)
f i,1 = −e4

∫
dx4

1 . . . dx4
4

(∫ dp4
3

(2π)4 iSF(p3)e−ip3(x2−x3)

)
/ε ∗(~k3, η3)eik3x3

(∫ dp4
4

(2π)4 iSF(p4)e−ip4(x3−x4)

)
/ε ∗(~k4, η4)eik4x4

(∫ dp4
1

(2π)4 iSF(p1)e−ip1(x4−x1)

)
/ε (~k1, η1)e−ik1x1

(∫ dp4
2

(2π)4 iSF(p2)e−ip2(x1−x2)

)
/ε (~k2, η2)e−ik2x2 (2.19)

= −e4
∫ dp4

1
(2π)4

∫ dp4
2

(2π)4

∫ dp4
3

(2π)4

∫ dp4
4

(2π)4 iSF(p3)/ε ∗(~k3, η3)

iSF(p4)/ε ∗(~k4, η4)iSF(p1)/ε (~k1, η1)iSF(p2)/ε (~k2, η2)
∫

dx4
1eix1(p1−p2−k1)∫

dx4
2eix2(−p3+p2−k2)

∫
dx4

3eix3(p3+k3−p4)
∫

dx4
4eix4(p4+k4−p1)

(2.20)

= −e4
∫ dp4

1
(2π)4

∫ dp4
2

(2π)4

∫ dp4
3

(2π)4

∫ dp4
4

(2π)4 iSF(p3)/ε ∗(~k3, η3)iSF(p4)

/ε ∗(~k4, η4)iSF(p1)/ε (~k1, η1)iSF(p2)/ε (~k2, η2)(2π)4δ4(p1 − p2 − k1)

(2π)4δ4(−p3 + p2 − k2)(2π)4δ4(p3 + k3 − p4)(2π)4δ4(p4 + k4 − p1)
(2.21)

= −e4
∫ dp4

1
(2π)4

∫ dp4
2

(2π)4

∫ dp4
3

(2π)4

∫ dp4
4

(2π)4 iSF(p3)/ε ∗(~k3, η3)

iSF(p4)/ε ∗(~k4, η4)iSF(p1)/ε (~k1, η1)iSF(p2)/ε (~k2, η2)

(2π)4δ4 [p2 − (p1 − k1)] (2π)4δ4 [p3 − (p1 − k1 − k2)]

(2π)4δ4 [p4 − (p1 − k4)] (2π)4δ4(k1 + k2 − k3 − k4) (2.22)
p1=p
= −e4δ4(k1 + k2 − k3 − k4)

∫
dp4iSF(p3 = p− k1 − k2)/ε ∗(~k3, η3)

iSF(p4 = p− k4)/ε ∗(~k4, η4)iSF(p)/ε (~k1, η1)iSF(p2 = p− k1)/ε (~k2, η2).
(2.23)
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From the relation between the S-matrix element and the Feynman amplitude
Eq. (1.85), we have the first amplitude:

M(4)
f i,1 = − e4

(2π)4

∫
dp4iSF(p− k1 − k2)/ε ∗(~k3, η3)iSF(p− k1 − k2 + k3)

/ε ∗(~k1 +~k2 −~k3, η4)iSF(p)/ε (~k1, η1)iSF(p− k1)/ε (~k2, η2). (2.24)

It corresponds to the Fig. 2.2. We can also check the amplitude Eq. (2.12) with
the one derived from Feynman’s rules (see Appendix C).

Figure 2.2: The first diagram

• It’s obvious that we can proceed in the same (long) way to obtain the ampitude
for other cylic permutations. However, we can make use the correspondence
between the amplitude and its diagram to symplify things. Note that the order
in the cylic is in an opposite direction to the one of internal momentum, and
the momentum is preserved at each vertex. Then similarly, the amplitudes for
the second and the third cylics {1− 2− 4− 3}, {1− 3− 2− 4} can be easily
obtained from the first cylic’s. We can make a little deform on each of them
to have a clear vision (the order of x1, x2, x3, x4 doesn’t matter): Thus, their

Figure 2.3: The second diagram
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Figure 2.4: The third diagram

amplitudes are easily written down from the Fig. 2.3 and the Fig. 2.4 as:

M(4)
f i,2 = − e4

(2π)4

∫
dp4iSF(p− k1 − k2)/ε ∗(~k1 +~k2 −~k3, η4)iSF(p− k3)

/ε ∗(~k3, η3)iSF(p)/ε (~k1, η1)iSF(p− k1)/ε (~k2, η2), (2.25)

and

M(4)
f i,3 = − e4

(2π)4

∫
dp4iSF(p− k1 + k3)/ε (~k2, η2)iSF(p− k1 − k2 + k3)

/ε ∗(~k1 +~k2 −~k3, η4)iSF(p)/ε (~k1, η1)iSF(p− k1)/ε ∗(~k3, η3).
(2.26)

• The fourth, fifth and sixth cylics {1 − 4 − 3 − 2}, {1 − 3 − 4 − 2}, {1 − 4 −
2 − 3} are correspondingly similar to the first, second and third ones while
the direction of interal momentum is reversed. For example in the fourth case
(Fig. 2.5):

Figure 2.5: The fourth diagram is indeed the same with the first
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Then we just need to replace pµ → −pµ in Eq. (2.24), Eq. (2.25), Eq. (2.26). And
that leads to the same amplitudes in pairs :

M(4)
f i,4 =M(4)

f i,1,

M(4)
f i,5 =M(4)

f i,2,

M(4)
f i,6 =M(4)

f i,3.

Therefore, we can say that there’re totally 3 processes in our LbyL scattering
(so the first three amplitudes are multiplied by an additional factor 2). Because
of the diagrams corresponding to the amplitudes, we call them 1-loop integrals.

Trace integrals
We should write the amplitudes in the "trace" form for later purpose. To do so, we rewrite
each component of the amplitude in terms of its element with indices. By this way, we
can move those elements freely. For instance, with the first amplitude obtained from
Eq. (2.24), we have :

M(4)
f i,1 = − 2e4

(2π)4

∫
dp4
[ /p − /k1 − /k2

(p− k1 − k2)2 −m2

]
ab
[γα]bc(ε

∗
3)

α
[ /p − /k1 − /k2 + /k3

(p− k1 − k2 + k3)2 −m2

]
cd

[γβ]de(ε
∗
4)

β
[ /p

p2 −m2

]
e f
[γδ] f g(ε1)

δ
[ /p − /k1

(p− k1)2 −m2

]
gh
[γν]ha(ε2)

ν

(2.27)

= − 2e4

(2π)4

∫
dp4Tr

[ /p − /k1 − /k2

(p− k1 − k2)2 −m2 γα
/p − /k1 − /k2 + /k3

(p− k1 − k2 + k3)2 −m2 γβ

/p
p2 −m2 γδ

/p − /k1

(p− k1)2 −m2 γν

]
(ε1)

δ(ε2)
ν(ε∗3)

α(ε∗4)
β, (2.28)

where we conveniently denote εi instead of εi(~ki, ηi). The reason why the last index of γν

coincidents with the first index of /p−/k1−/k2
(p−k1−k2)2−m2 in Eq. (2.27) originates from the essence

of QED Lagrangian, where each photon field is sandwiched between two fermion fields
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and from the fact that the LO term associates with a 1-loop propagation of fermions (see
Eq. (2.13)). That’s why the trace appears in the next equation Eq. (2.28).

Similarly, the trace integrals for the other two:

M(4)
f i,2 = − 2e4

(2π)4

∫
dp4Tr

[ /p − /k1 − /k2

(p− k1 − k2)2 −m2 γβ
/p − /k3

(p− k3)2 −m2 γα

/p
p2 −m2 γδ

/p − /k1

(p− k1)2 −m2 γν

]
(ε1)

δ(ε2)
ν(ε∗3)

α(ε∗4)
β, (2.29)

and

M(4)
f i,3 = − 2e4

(2π)4

∫
dp4Tr

[ /p − /k1 + /k3

(p− k1 + k3)2 −m2 γν
/p − /k1 − /k2 + /k3

(p− k1 − k2 + k3)2 −m2 γβ

/p
p2 −m2 γδ

/p − /k1

(p− k1)2 −m2 γα

]
(ε1)

δ(ε2)
ν(ε∗3)

α(ε∗4)
β. (2.30)

Thus, the total amplitude at LO is the sum of all partial amplitudes from Eq. (2.28),
Eq. (2.29),Eq. (2.30):

MLO =M(4)
f i,1 +M

(4)
f i,2 +M

(4)
f i,3 = (ε1)

δ(ε2)
ν(ε∗3)

α(ε∗4)
βΠαβδν(~k1, ~k2, ~k3), (2.31)

where Π is the (total) tensor amplitude. It is completely seperated from the polarization
vectors and will be the main consideration in the next section. The product of polarization
vectors will be brought in at the very last step.
Now, let us have some evaluations about how the amplitudes derived by Wick’s theorem
consistent with the attributes of a one- fermion loop. As reflected from the one-loop
amplitudes above, they are always:

• The integrals with the internal momentum p of a fermion inside the fermion loop
as the integral variable. It is integrated over all possible values of p in momentum
space (−∞,+∞). That sometimes leads to bad behaviors of an infinite integral, that
will be mentioned later in our case.

• Attached with a negative sign "-". It is a consequence of QED Langrangian where
the fermion fields appear in pairs and are orders as (Ψ̄ . . . Ψ) . . . (Ψ̄ . . . Ψ).

• Expressed as a trace (mentioned above).

• Never standing alone. Because the fermion in the loop can choose an arbitrary path
to connect the vertices, so there will be different processes possible for the same
transition at loop order.

In other words, they’re all the attributes of QED in perturbation approximation.

2.2 UV divergence cancellation of the LbyL scattering

2.2.1 Ultraviolet- divergent parts

Before the next stage to give numerical result for our total amplitude (Eq. (2.31)),
there are some serious points to make clear about the 1- loop integrals in Eq. (2.28),
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Eq. (2.29),Eq. (2.30). First, because we just need to consider the difference between those
three amplitudes, for simplicity, we define three corresponding tensor quantities Ii (i =
1, 2, 3) such that:

M4
f i,i = −

2e4

(2π)4 Ii,αβδν(ε1)
δ(ε2)

ν(ε∗3)
α(ε∗4)

β, (2.32)

i.e. they are indeed the integrals only. Let’s have a look at one of them:

I1 = I1,αβδν =
∫

dp4Tr
[ /p − /k1 − /k2

(p− k1 − k2)2 −m2 γα
/p − /k1 − /k2 + /k3

(p− k1 − k2 + k3)2 −m2 γβ

/p
p2 −m2 γδ

/p − /k1

(p− k1)2 −m2 γν

]
, (2.33)

and consider only the term with highest order of p:

I1 ⊃
∫

d4p
Tr (/pγα/pγβ/pγδ/pγν)

[p2 −m2][(p− k1)2 −m2][(p− k1 − k2)2 −m2][(p− k1 − k2 + k3)2 −m2]
.

(2.34)
Taking the dimensionality of I1:

[I1] =
[p]4[p]4

[p]8
= constant. (2.35)

Thus, the integral tends to infinity when pµ → ±∞, also for I2, I3. So they are called to be
ultraviolet- divergent ("UV" is denoted for this divergent part). That is our problem now
to handle these divergences.
One way to cure this problem is using the dimensional regularization method (see Sec-
tion 1.3). Since then, we will work in d- dimensional space (in this case, we choose
d < 4→ [I]1 < 1, so the integral becomes finite):

d4p→ dd p, (2.36)

together with the new gamma matrices and trace identities in d- dimensional space (Eq. (1.113)-
Eq. (1.119)). Then, we obtain the UV parts as functions of 1

4−d . After that, we will find
that the sum of all UV terms are zero, i.e. the UV cancellation. What is left is the finite
parts which are well- behaved when d = 4. Thus, we would restore to our original 4-
dimensional space without worry about the divergences.
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2.2.2 Decomposition of the UV part in d- dimensions

Using the gamma matrices and trace identities in Eq. (1.113), Eq. (1.119), we can
rewrite the numerator inside the integral of Eq. (2.44) as 2:

Tr (/pγα/pγβ/pγδ/pγν) = 4p4gανgβδ − 4p4gαδgβν + 4p4gαβgδν

− 8p2pα pβgδν − 8p2pβ pδgαν − 8p2pδ pνgαβ − 8p2pα pνgβδ

+ 32pα pβ pδ pν. (2.37)

Based on the terms which have the same structure in the RHS of Eq. (2.37), we can divide
them into three groups as:

• The first three terms are all proportional to p4, so we first evaluate the integral:

Ia =
∫

dd p
p4

[p2 −m2][(p + r1)2 −m2][(p + r2)2 −m2][(p + r3)2 −m2]
, (2.38)

where r1, r2, r3 are combinations of external momenta for general consideration.
We now may want to express this integral in terms of one- loop tensor N-point
integrals (Eq. (1.120)). To do that, we define an operator UV such that:

UV(UV terms + finite terms) = UV terms, (2.39)

i.e. UV only keeps the UV part of the function it acts on.
We have:

UV(Ia) = UV
{ ∫

dd p
(p4 −m4) + m4

[p2 −m2][(p + r1)2 −m2][(p + r2)2 −m2][(p + r3)2 −m2]

}
= UV

{ ∫
dd p

(p2 −m2)(p2 + m2)

[p2 −m2][(p + r1)2 −m2][(p + r2)2 −m2][(p + r3)2 −m2]

}
= UV

{ ∫
dd p

p2

[(p + r1)2 −m2][(p + r2)2 −m2][(p + r3)2 −m2]

}
= UV

{ ∫
dd p

[(p + r1)
2 −m2]− 2pr1 − r2

1 + m2

[(p + r1)2 −m2][(p + r2)2 −m2][(p + r3)2 −m2]

}
= UV

{ ∫
dd p

1
[(p + r2)2 −m2][(p + r3)2 −m2]

}
p+r2=p
=

∫
dd p

1
[p2 −m2][(p + r3 − r2)2 −m2]

}
= BUV

0 (m, r3 − r2)

=
2

4− D
, (2.40)

note that the Eq. (2.40) should multiply by an overall factor (see Appendix D), but
we can now ignore it. In the same way, we can always express a general integral in
which the numerator is a polynomial of p in terms of the tensor integrals.

2Because it is the trace of eight gamma matrices, we may use FORM or other numerical tools to manip-
ulate the expression instead



Chapter 2. Light-by-light scattering in QED 41

• Analogously, we consider the integral for the next four terms ∼ p2pµ pν:

Ib =
∫

dd p
p2pµ pν

[p2 −m2][(p + r1)2 −m2][(p + r2)2 −m2][(p + r3)2 −m2]
. (2.41)

Then:

UV(Ib) = UV
{ ∫

dd p
(p2 −m2)pµ pν + m2pµ pν

[p2 −m2][(p + r1)2 −m2][(p + r2)2 −m2][(p + r3)2 −m2]

}
= UV

{ ∫
dd p

pµ pν

[(p + r1)2 −m2][(p + r2)2 −m2][(p + r3)2 −m2]

}
p+r1=p
= UV

{ ∫
dd p

(pµ − r1µ)(pν − r1ν)

[p2 −m2][(p + r2 − r1)2 −m2][(p + r3 − r1)2 −m2]

}
= UV

{ ∫
dd p

pµ pν

[p2 −m2][(p + r2 − r1)2 −m2][(p + r3 − r1)2 −m2]

}
= CUV

µν (m, r2 − r1, r3 − r1)

=
gµν

2(4− D)
. (2.42)

To obtain those results for the tensor integrals, we would follow the canonical meth-
ods in Appendix D (here we give the results for 1 and 2-point functions, for the
higher- point functions, we use the results from Ref. [5]).

• The integral for the last term ∼ pα pβ pδ pν is already a primary tensor integral:

UV(Ic) = UV
{ ∫

dd p
pα pβ pδ pν

[p2 −m2][(p + r1)2 −m2][(p + r2)2 −m2][(p + r3)2 −m2]

}
= UV

{
Dαβδν(r1, r2, r3)

}
= {gg}αβδνDUV

0000(m, r1, r2, r3)

=
1

12(4− D)
(gαβgδν + gαδgβν + gανgβδ). (2.43)

2.2.3 Cancellation of the total UV tensor integral

After all, now we are able to rewrite the UV part of the first integral (Eq. (2.33)):

UV(I1) = 4
2

4− d
gανgβδ − 4

2
4− d

gαδgβν + 4
2

4− d
gαβgδν

− 8
gαβ

2(4− d)
gδν − 8

gβδ

2(4− d)
gαν − 8

gδν

2(4− d)
gαβ − 8

gαν

2(4− d)
gβδ

+ 32
1

12(4− d)
(gαβgδν + gαδgβν + gανgβδ)

=
8

3(4− d)
(gαβgδν + gανgβδ − 2gαδgβν). (2.44)
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One thing to remark is that the UV part is independent of external momenta. Thus, from
Eq. (2.28), Eq. (2.29), Eq. (2.30), the UV parts of the second and the third can be obtained
from the first by exchanging the tensor indices, in particular:

• UV(I1)
α↔β−−→ UV(I2), thus:

UV(I2) =
8

3(4− d)
(gβαgδν + gβνgαδ − 2gβδgαν). (2.45)

• UV(I1)
α↔ν−−→ UV(I3), thus:

UV(I3) =
8

3(4− d)
(gνβgδα + gναgβδ − 2gνδgβα). (2.46)

Taking the sum of all three UV- divergent parts (Eq. (2.44), Eq. (2.45), Eq. (2.46)), we
obtain it to be vanishing:

UV(Mtotal) = UV(I) = UV(I1) + UV(I2) + UV(I3) = 0. (2.47)

In conclusion, though each of the transition amplitudes in our process is divergent
but by using dimensional regularization, we found that these divergences have vanished as
considering totally. Therefore, when we come back to d = 4, the divergence is no more a
problem.

Now then, what should be considered is the remaining UV-finite terms. Based on the
expressions of 3 amplitudes (Eq. (2.28), Eq. (2.29),Eq. (2.30)) , they potentially contain up
to thousands of terms (i.e. N-point tensor integrals). So that seems impossible to write
down all those terms by hand, except with the help of a specific tool as FORM, which will
be introduced in the next chapter.
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Chapter 3

Numerical methods

3.1 Introduction to FORM

FORM is a symbolic manipulation system (Ref. [14]). From an original (mathematical)
expression, if we want to transform it into the desired form, we need to have sufficent
knowledge about the rules of transformation based on some basic algebraic principles
(+,-,*,/,. . . ). FORM is not only equipped with some of those basic rules but also with
the user- defined rules (i.e. it is implemented with a limited range of built-in rules and
functions. But it is able to work on more complicated problems by the user, who defines
the rules and "teaches" FORM how to execute the expressions) . That is what FORM
would do things for us, by symbolic manipulation more than numeric computings (like
MATLAB, Mathematica, . . . ).
FORM is widely used in various fields but mostly in theoretical physics. As one of its
strengths, FORM supports useful ways to handle with gamma matrices and tensors, even
in a general d-dimensional space. Due to its charaterictics to just do what we ask for,
it is simple and fast. Thus, it suits well with our purpose to give numerical results of
LbyL scattering’s amplitude with large symbolic manipulations. More particular, FORM
rewrites the amplitudes (Eq. (2.28), Eq. (2.29),Eq. (2.30)), which are removed from the UV-
divergent part already, in terms of the tensor integrals as the standard form of COLLIER1.
The figure below shows the whole process to obtain the numerical amplitude of LbyL
scattering:

1Our full FORM code to decompose a general 4-point loop integral into tensor integrals with their co-
variant coefficients following the convention is presented here

https://github.com/hoangquevn/FORM--One-loop-integral-decompositon-.git
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3.2 Introduction to COLLIER

COLLIER library provides numerical results for arbitrary one- loop tensor integrals
for a scattering process in a general quantum fields theory (Ref. [6]). The results are eval-
uated in dimensional regularization and include both the UV (IR) -divergent and -finite
parts. As the next step, COLLIER is used to provide numerical values for our one- loop
tensor integrals in each tensor component. The basis of code of COLLIER is the reduction
methods (see the illustration of this methods in Section D.3). The conventions used in
COLLIER on the notations of covariant tensor components is introduced throughout the
thesis. For more information about COLLIER and its usage, see Ref. [7].
The input of COLLIER obviously contain all the variables of a tensor integral (Eq. (1.120)),
i.e. masses and external momenta sorted in a definite order 2. One feature of COLLIER
is that beside those necessary inputs, it allows the user to freely set the values of several
parameters. Two of these parameters are the UV pole ∆UV ∼ 1/(d− 4) ; and the mass
scale µ (Eq. (1.108)) (otherwise, they are set to default values by COLLIER). Thus it will
be more convenient to check the UV- divergences cancellation of a scattering amplitude,
i.e the independence of µ and the poles.

3.3 Polarization

Now, the numerical result of 4-point integrals in our process has been obtained by
FORM + COLLIER embedded in a Fortran program. For the result of the transition am-
plitudes in Eq. (2.28), Eq. (2.29) and Eq. (2.30) , we still need more clarifications on the
polarization vectors.

3.3.1 Polarization basis

We rewrite here the wave solution of the photon field:

Aµ(x) = ∑
η

∫ d3~k
(2π)3

√
2Ek

[
a(~k)εµ

η(~k)e−ikx + a+(~k)εµ∗
η (~k)eikx

]
, (3.1)

where η covers all possible polarization states of the photon. We apply Lorentz gauge
condition on the photon field:

∂µ Aµ(x) = 0. (3.2)

One convenient way to obtain Eq. (3.2) is to set the polarization vectors such that :

εµkµ = ε.k = 0. (3.3)

In a reference frame, where the 4-momentum vector of photon is:

kµ = (E, 0, 0, E), (3.4)

2The masses inputted to COLLIER are the invariant masses instead of k1, k2, . . . only (see Ref. [7]), thus
the expressions are independent of our chosen system of reference.
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i.e. E is the energy of photon and its 3-momentum vector directs along the Oz axis. In
this frame, we choose the polarization vectors, and also the basis vectors εη as:

ε0 =


1
0
0
0

 ; ε1 =


0
1
0
0

 ; ε2 =


0
0
1
0

 ; ε3 =


0
0
0
1

 . (3.5)

We can check that ε1, ε2 satisfy the Eq. (3.3). They are identified as the two physical
polarization states, while ε0 and ε3 are the unphysical states. It has been proved (Ref. [12])
that the contributions of ε0 and ε3 cancel for physical observables. We will therefore
ignore ε0 and ε3 in our calculation.
One thing to note is that the choice of basis vectors is in one-to-one coresspondence to the
k-vector of photon. Thus, if we want to find different polarization vector sets for several
photons in the same system of reference, we must boost the chosen basis vectors of one of
the photons as the same way we boost its k-vectors to the others . Applying those results
to our problem of LbyL process Eq. (2.4) in a preferential C.o.M. system, we obtain 3 :


k1 = (E, 0, 0, E);
k2 = (E, 0, 0,−E) = L̃(π, 0)k1;

k3 = (E, E sin(θ) cos(φ), E sin(θ) sin(φ), E cos θ) = L̃(θ, φ)k1;

k4 = k1 + k2 − k3 = (E,−E sin(θ) cos(φ),−E sin(θ) sin(φ),−E cos θ) = L̃(π − θ, π + φ)k1,
(3.6)

where L̃ is the Lorentz transformation:

L̃(α, β) =


1 0 0 0
0 cos(α) cos(β) − sin(β) sin(α) cos(β)
0 cos(α) sin(β) cos(β) sin(α) sin(β)
0 − sin(α) 0 cos(α)

 , (3.7)

i.e. they are just the space rotations. If we choose two basis vectors corresponding to k1
as ε1 and ε2 in Eq. (3.5), they will be denoted again as ε1,1 and ε1,2 (the first index refers to
the photon considered, and the latter index is for the polarization of that photon). Then,
by applying the same transformations on ε1,1 and ε1,2, we obtain the basis vectors in the
C.o.M:

• For k1:

ε1,1 =


0
1
0
0

 ; ε1,2 =


0
0
1
0

 ⇒ ε+1 = − 1√
2


0
1
i
0

 ; ε−1 =
1√
2


0
1
−i
0

 . (3.8)

3Throughout this section, to describe LbyL scattering, we will work in the C.o.M. system. These nota-
tions will be always be used with the same physical meaning: E is the energy of one incoming photon; θ, φ
correspond to the polar and azimuth angles of the scattering
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• For k2:

ε2,1 =


0
−1
0
0

 ; ε2,2 =


0
0
1
0

 ⇒ ε+2 = − 1√
2


0
−1

i
0

 ; ε−2 =
1√
2


0
−1
−i
0

 .

(3.9)

• For k3:

ε3,1 =


0

cos θ cos(φ)
cos θ sin(φ)
− sin(θ)

 ; ε3,2 =


0

− sin(φ)
cos(φ)

0



⇒ε+3 = − 1√
2


0

cos θ cos(φ)− i sin(φ)
cos θ sin(φ) + i cos(φ)

− sin(θ)

 ; ε−3 =
1√
2


0

cos θ cos(φ) + i sin(φ)
cos θ sin(φ)− i cos(φ)

− sin(θ)

 .

(3.10)

• And for k4:

ε4,1 =


0

cos θ cos(φ)
cos θ sin(φ)
− sin(θ)

 ; ε4,2 =


0

sin(φ)
− cos(φ)

0



⇒ε+4 = − 1√
2


0

cos θ cos(φ) + i sin(φ)
cos θ sin(φ)− i cos(φ)

− sin(θ)

 ; ε−4 =
1√
2


0

cos θ cos(φ)− i sin(φ)
cos θ sin(φ) + i cos(φ)

− sin(θ)

 .

(3.11)

where we have instead used the new set of basis vectors from the old one by the linear
combination:

ε±i = ∓ 1√
2
(εi,1 ± iεi,2), (3.12)

with i = 1, 2, 3, 4. Since then, we will denote two physical states (or spin states, or polar-
ization states) of a photon as the state "+" and the state "-".
The above results of k-vectors Eq. (3.6) and their basis vectors Eq. (3.8)-Eq. (3.11) will all
be used as the inputs of the main Fortran-based program.

3.3.2 Average squared amplitude over polarization states

It is realized that each case of the process corresponds to one set of the polarization
vectors. For each photon is possible with two polarization states, so our 4-photon process
includes up to 24 = 16 cases of polarizations, which are:
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M1 =M++++;
M2 =M−+++;
M3 =M+−++;
M4 =M++−+;
M5 =M+++−;
M6 =M−−++;
M7 =M−+−+;
M8 =M−++−;

(3.13)

M9 =M−−−−;
M10 =M+−−−;
M11 =M−+−−;
M12 =M−−+−;
M13 =M−−−+;
M14 =M++−−;
M15 =M+−+−;
M16 =M+−−+;

(3.14)

where the lower notations on the RHSs tell us the polarizaion states of λ1, λ2, λ3 and
λ4 correspondingly. Since those states are orthogonal to each other and equally contribute
to the process, then the average squared amplitude can be built from their combination as
an unpolarized quantity:

∣∣M∣∣2 = average of

(
16

∑
i=1
|Mi|2

)
, (3.15)

which will be brought to the calculation of unpolarized (differential) cross section later
(Subsection 3.4.2). There are some important features of photons define the way how we
take the average of Eq. (3.15):

• Firstly, it is often that we don’t know the polarizations of the initial particles. Be-
cause each photon corresponds to two polarizations , thus we multiply the sum in Eq. (3.15)
by (1/2)2 = 1/4 as considering its average:

∣∣M∣∣2 =
1
4

(
16

∑
i=1
|Mi|2

)
. (3.16)

• Besides that, in case there’s no way to distinguish between two final photons or
we really don’t care about their polarizations, we then multiply Eq. (3.16) by an
additional factor 1/2, thus:

∣∣M∣∣2 =
1
2

1
4

(
16

∑
i=1
|Mi|2

)
=

1
8

(
16

∑
i=1
|Mi|2

)
. (3.17)

Indeed, that is due to the fact that photons without considering their polarizations are
"pure" bosons, which are interchangeable while making no difference. Moreover, the (dif-
ferential) cross section is calculated from |M|2 over the phase space for all possibil-
ities of final states. That means the result will be counted twice, one for (λ3, λ4) and
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one for (λ4, λ3) at some θ, φ. So the factor 1/2 is necessary as the consequence of
boson symmetry.

The average squared amplitude delivered by this way refers to the helicity method for
photons. This method not only makes it easier for numerical calculation later but also
differentiates the results in the polarized and the unpolarized cases.

3.4 Numerical results

Except the case if we consider the change of some quantities versus the initial energy
of photon and with no more mention, we would set the invariant diphoton mass mλλ =
2E = 2(GeV) 4 . The main inputs delivered to our main Fortran program to calculate the
numerical results of LbyL scattering are presented in Appendix E.

3.4.1 Differential cross section of polarized states

When considering the square of amplitude for individual polarization case, we should
make clear about the physical meaning of it.

The above figure is an illustration of how the detector is installed so that they can
recognize all possibilities of the outgoing photons. Before going on, we should remark
on the symmetry between different states in Eq. (3.13), Eq. (3.14). We can obtain the last
eight cases from the first eight ones by simply changing "+" to "-" and vice versa. These
differences make no affect on the measured results, e.g. (+ + - - ) and (- - + +) give the same
results. So it makes sense to just consider the first eight cases of Eq. (3.13). One more thing
to note, if two outgoing photons have the same polarizations, there’s no way for the detector to
distinguish between the event that λ3 scattering at some θ and the one that λ4 scattering
at the same position. Therefore, the integrated cross section in those polarization cases
make it double. In the meantime, no same thing happens to the other cases. Then, to
suit our numerical results with the experimental results, we have to multiply the squared
amplitude by a factor 1/2 in the 1st, 2nd, 3rd and 6th polarizations to obtain the polarized
cross sections.
Below (Fig. 3.2) are the results of the differential cross section in cosθ of eight polarization
cases in that manner:

4m2
λλ = (k1 + k2)

2 = (2E)2 is Lorentz invariant.
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(a)

(b)

(c)

Figure 3.1: The differential cross section in cosθ for each of 8 polarization states at
mλλ = 2E = 2(GeV), in case electron (positron) is the loop’s fermion. The first Fig. 3.1a
and Fig. 3.1b show the symmetry of |M|2 in cos θ = 0 axis. That is due to either the 2
initial photons or the 2 final ones have the same spin. That also explains why the third
figure Fig. 3.1c doesn’t exhibit that feature. We see that the cross sections for some of these
eight cases even give the same results because the symmetry when we exchange the two
final (or initial) states. For example, the polarization cases ++−+ and +++− give us

identical plots (Fig. 3.1a) .
.
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3.4.2 Differential cross section in cos θ

Obtaining the differential cross section with respect to the scattering solid angle from
Eq. (1.165) for LbyL scattering, we can also derive that with repect to cos θ as:

dσ

d cos θ
=

1
64π2s

∣∣M f i
∣∣2 ∫ 2π

0
dφ =

1
128πE2

∣∣M f i
∣∣2, (3.18)

where we obtain
∣∣M f i

∣∣2 from Eq. (3.17) as considering the unpolarized cross section.
Note that we have acquired Eq. (3.18) because our process is cylindrical symmetry.

(a)

(b)

Figure 3.2: The differential cross section for leptons at mλλ = 2E = 2(GeV). The tau’s
mass is thousand times more than the electron’s while its differential cross section is much
more smaller. Muon, which is lighter than tau but at leat is hundred times heavier than
electron, exhibit its differential cross section slightly above the electron’s for the region of

small cosθ but for the large cosθ, electron obtain a much bigger cross section.
.
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Figure 3.3: The differential cross section of top and bottom quarks. As expected, the
top quark and the bottom quarks- the two heaviest fermions, make negligible contribution

(∼ 10−11 pb) to the LbyL scattering at LO

We present above the results of the differential cross section dσ
d cos θ for different fermions5.

Consequently, we conclude that the backscattering (θ = ±π) has the largest cross section;
and there’s a symmetry of the differential cross section about cos θ = 0. We also observe
that there’s a remarkable dicrepancy on this quantity between the fermions. Actually,
the impact of the fermion on the amplitude is only from its mass and the corresponding
coupling strength (see Appendix E). At the first sight, the cross section decreases as the
fermion mass increases. So it would make sense when we consider electron (positron),
which is much lighter than the others, to be the main contribution to LbyL scattering at
LO.

3.4.3 The total cross section

To obtain the total cross section from the differential cross section f (cos θ) = dσ
d cos θ ,

we have used a simple numerical integration method, Simpson’s 1/3 rule (Ref. [3]) . By
which, we divide the range of cos θ into 10000 subintervals, that is equivalent to 10000
steps of equal length h = 2x10−4 in cos θ. The bounded value for the error committed by
Simpson’s rule is

ε =
h4

180
(b− a) f

′′′′
(cos θ),

for the approximation of the integral
∫ b

a f (cos θ)d(cos θ). Because the explicit deriva-
tive of f (cos θ) is not available, so we have not evaluated the error of the integration
here. Besides that, we observe the rapidly large values of the differential cross sections
when cos θ → ±1 (Fig. 3.2a). Thus, to avoid this not well behaved region, we choose the

5In calculations of the cross section for quarks, note that each quark has three colors with the same
electric charge.
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range of the integral to calculate the total cross section is on [a, b] = [−0.999, 0.999]. Fol-
lowing those simplification just for comparisions, we obtain the contribution of different
fermions to LbyL scattering in total cross section at mλλ = 2(GeV) as:

Fermion Total cross section (pb)
electron 5.0283834739989475
muon 4.7518384393064705

tau 3.8925224355615970 ∗ 10−4

u quark 0.58954951200570982
c quark 9.1128361689925329 ∗ 10−4

t quark 6.1704902160624335 ∗ 10−21

d quark 2.3116621375507394 ∗ 10−3

s quark 2.2247877622484486 ∗ 10−3

b quark 1.6790300633556275 ∗ 10−10

Table 3.1: Total cross section for different fermion’s loop, with mλλ = 2(GeV) . Though
the muon’s differential cross section is slightly above the electron’s on a wide range
(Fig. 3.2a), but when considering on a sufficiently larger range, the total cross section of

electron indeed contributes most.

3.4.4 Tests

For simplicity, we do the tests considering the cross section of electron (positron) only.

Comparisons

Below is the comparision table about the squared amplitude at E= 0.5 GeV between
our program (FORM + COLLIER) and FormCalc + LoopInts programs 6 7. The results
is obtained at supposedly different mass of electron m̃e at a specific phase space point
where:

k1 = (0.5, 0, 0,−0.5),
k2 = (0.5, 0, 0, 0.5),
k3 = (0.5,−0.136535251025801, 0, 0.480997011661530),
k4 = (0.5, 0.136535251025801, 0,−0.480997011661530),

(3.19)

with all momenta in GeV.
6These results are kindly provided by Dr. LE Duc Ninh.
7FC + LI-2, FC + LI-4 are denoted for FormCalc + LoopInts-double-precision and FormCalc + LoopInts-

quadruple-precision programs.
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m̃e(GeV) 0.510998928 ∗ 10−3 0.510998928
FC+ LI-2 9.684598879667990 ∗ 10−6 7.287224477651457 ∗ 10−8

FC + LI-4 9.684598879667734 ∗ 10−6 7.287224477651214 ∗ 10−8

FORM + COLLIER 9.6845988798078927 ∗ 10−6 7.2872244776753966 ∗ 10−8

Table 3.2: Comparison between the squared Feynman amplitude obtained from our pro-
gram and the ones from FormCalc + LoopInts programs, where we have included the

factor 1/8 as an unpolarized case.

UV- divergence cancellation test

To test the UV- divergence independence, we compare the differential cross section at
cos θ = 0.5 for different values of the pole ∆UV ∼ 1

4−d (while other parameters are fixed).

dσ
d cos θ (pbarn) at cos θ = 0.5

∆UV = 0 1.3121686627033162
∆UV = 10 1.3121686627033402

∆UV = 1000 1.3121686627032534
Table 3.3: Differential cross sections at different ∆UV values shows LbyL process is inde-

pendent of UV- divergences, with mλλ = 2(GeV) .

Gauge invariance test

For any process involving external photons, its amplitude can be always written in
the form:

M = εα
η1
(~k1)ε

β
η2(
~k2) . . . Παβ...(~k1,~k2, . . .), (3.20)

where ε(~k) is the polarization vector for each external photon (we just consider the real
vectors to make it simple); Π is the tensor amplitude which doesn’t depend on the polar-
ization vectors. For the photon field is expressed as:

Aµ(x) ∼
∫

d3~k
(

a(~k)εµ(~k)e−ikx + h.c
)

. (3.21)

Under the gauge transformation, the field changes as:

Aµ(x) −→ Aµ(x) + ∂µ f (x), (3.22)

or
εµ(~k)e±ikx −→

[
εµ(~k)± ikµ f̃ (k)

]
e±ikx, (3.23)

if we choose f (x) such that:

f (x) =
∫

d3~k
[

f̃ (~k)e−ikx + h.c
]

. (3.24)

Thus, for the amplitude Eq. (3.20) to be gauge invariant, we should obtain:

kα
1Παβ...(~k1,~k2, . . .) = kβ

2 Παβ...(~k1,~k2, . . .) = . . . = 0. (3.25)
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All the above conclusions must be applied to our LbyL scattering- a 4-photon process.
Accordingly, from the total amplitude of LbyL scattering in Eq. (2.31), we obtain:

kδ
1Παβδν = kν

2Παβδν = kα
3Παβδν = kβ

4 Παβδν = 0, (3.26)

where k4 = k1 + k2 − k3.
Because gauge invariance is the essence of QED theory, the test on this for our numerical
result of LbyL’s amplitude would strongly support its correctness. The test can be pro-
ceeded by replace εµ(~ki) by kµ

i in the program. We should expect the amplitude after the
replacement tends to zero. Indeed,

dσ
d cos θ (pbarn) at cos θ = 0.5

ε1 = k1 4.9352286252834168 ∗ 10−26

ε2 = k2 3.5196658122656454 ∗ 10−25

ε3 = k3 2.6153938811898192 ∗ 10−25

ε4 = k4 6.0975909315549352 ∗ 10−25

εi = εi 1.3121686627033162
Table 3.4: The cross sections, for mλλ = 2(GeV), are almost zero by setting ε i = ki

(i=1,2,3,4) as the consequence of gauge invariance.

3.5 Conclusion and Outlook

So far, we have obtained the transition amplitude of LbyL scattering at LO in QED.
Considering the interaction as a perturbation, Wick’s theorem makes clear about this scat-
tering process as the one mediated by pairs of fermions and anti-fermions in four-leg
loops. The UV divergences appeared at first in the individual loop diagrams but are then
cancelled by using dimensional regularization. To achieve it, we have decomposed the
one-loop integrals into tensor integrals, which can be calculated by the reduction method.
After that, FORM program is used to transform the amplitudes into a new form written
in terms of scalar and tensor integral coefficients. These coefficients are then calculated by
using COLLIER library. Accordingly, the results of differential cross section are derived
and show us that LbyL scattering brings a symmetry about cosθ = 0. Comparisions are
also made on different fermions, so we can see electron (positron), the lightest charged
fermion, contributes most to the process at LO.

Till now, the total cross sections has not really been obtained yet. One problem here is
the drastic large values of cross section at cos θ close to the bound values ±1. As the next
step, we expect to derive the total cross section by a more efficiently treatable method. Ad-
ditionally, due to the characteristic of this scattering, which begins in photons and ends
in photons, there may be many possible electrically charged particles and anti-particles
to mediate the process. For example, we would extend the problem to W± bosons in
Standard Model or furthermore, the axion- like particles in processes beyond the Stan-
dard Model. Up to this point, what we can say about LbyL scattering is that it is not only
interesting as a manifestation of a very rare QED phenomenon but also potentially opens
the door to further studies on particles in new physics.
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Appendix A

Natural units

In relativistic quantum field theory, it’s very often that the expressions contain the
universal constants as Planck’s constant h̄ and the velocity of light c. So we can choose to
work in natural units (n.u.), which comes along with the imposition:

h̄ = c = 1. (A.1)

The dimensions of most physical quantities can always represented through the dimen-
sions of mass [M], length [L], time [T] and electric charge [Q]. We will see that imposing
Eq. (A.1) allows us to describe those above primary dimensions by the dimension of mass
[M], so do all other units. Let us clarify that fact:

1.
c = 1⇒ [L][T]−1 = 1. (A.2)

2. From the principle of uncertainty : 4x.4 p ∼ h̄ and [p] = [M][L][T]−1, thus:

[L]2.[T]−1 = [M]. (A.3)

3. The coupling constant in c.g.s units:

α =
e2

4πh̄c
. (A.4)

For this constant to be dimensionless, i.e. indepedent of the unit system, the dimen-
sion of charge in n.u. must be also dimensionless, [Q] = 0.

Those result in:
[L] = [T] = [M]−1, and [Q] = 0. (A.5)

Hence, any quantity in n.u. has the dimension [M]n. Here is the table for the value of n
of commonly used quantities in n.u. :
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Quantity (dimension = [M]n) n
Velocity 0
Length -1
Time -1
Mass 1

Energy- momentum 1
Action 0

Lagrangian or Hamiltonian densities 4
Fine structure constant 0

Electric charge 0
Electromagnetic field Aµ(x) 1
Dirac fields Ψ(x) and Ψ(x) 3

2

All those features make natural unit to be the best unit system to work on theoretical
calculations. To transform these to another system, we need the conversion factors be-
tween them. For instance, if we want to express the dimensions in units of MeV, centime-
ter (cm) and second (s) (to make a comparision with experimental results, for instance),
here are the useful conversion factors:

h̄ = 6.582 x 10−22MeV.s,

h̄c = 1.973 x 10−11MeV.cm .

For examples:

• If the decay rate of φ- meson is Γ = 4.0MeV then its value in second unit is

4.0 x
h̄

6.582 x 10−22s
= 6.08 x 1021(s−1),

• For the length scale r = 0.001MeV−1, it equals to

0.001 x
1.973 x 10−11cm

h̄c
= 0.01973 x 10−12(cm) = 0.01973(pm),

where h̄ = c = h̄c = 1 in natural units.
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Appendix B

Conventions and Notations

We re-introduce here the notations and conventions that are implicitly used through-
out the thesis, where we follow Peskin’s textbook in most cases (Ref. [12]).

1. Tensors in relativity:

• The metric tensor of Minkowski space-time is chosen to be:

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (B.1)

where we use the Greek indices µ, ν, α, β, . . . = 0, 1, 2, 3 to denote four compo-
nents in space- time, while the Latin indices i, j, . . . = 1, 2, 3 denote for three
spatial components.

• An event in the space-time with that metric is described by a 4-vector as:

xµ = (x0,~x) = (t, x1, x2, x3), (B.2)

and the corresponding contravariant 4-vector:

xµ = gµνxν = (t,−x1,−x2,−x3). (B.3)

• For other 4-vectors or 4-tensors, we use the same presentation, e.g the energy-
momentum vector:

pµ = (E,~p) = (E, p1, p2, p3), (B.4)

and its corresponding invariance for a particle of mass m:

p2 = pµ pνgµν = pµ pµ = E2 − |~p|2 = m2. (B.5)

• The derivative operator is treated as 4-vector in the following way:

∂µ =
∂

∂xµ
=

(
∂

∂t
,∇
)

. (B.6)

That means we have chosen the displacement vector xµ to be in lower indices
naturally, while the derivative vectors are naturally in upper indices.
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• The totally antisymmetric Levi-Civita tensor is defined so that: ε0123 = +1

2. Special functions:

• Heaviside step function:

θ(x) =

{
0 x < 0,
1 x > 0,

(B.7)

• Dirac delta function:
δ(x) =

d
dx

θ(x) (B.8)

The delta function in n dimensions, denoted as δ(n)(x) is zero everywhere ex-
cept at x = 0, and the area under its curve always equals to 1:∫

dnxδ(n)(x) = 1 (B.9)

3. Fourier transformation: The Fourier transformation in momentum integral always
attaches with the factors of 2π. The transformations in four dimensional space:

f (x) =
∫ d4k

(2π)4 e−ikx f̃ (k), (B.10)

f̃ (k) =
∫

d4xeikx f (x), (B.11)

An important Fourier tranformation is of the delta Dirac function:∫
d4xeikx = (2π)4δ(4)(k). (B.12)

4. Gamma matrices γ0, γ1, γ2, γ3 are often used when working with Dirac spinors.
They can be chosen to be expressed in different representation, as long as satisfy
Eq. (1.39). Two of the common representations are

• Dirac representation:

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (B.13)

• Chiral representation:

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, (B.14)

where σi are Pauli matrices such that:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (B.15)
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Appendix C

Feynman Rules in QED

We present here the procedure to obtain the Feynman amplitude for a QED process
by Feynman rules. They are indeed a system of rules to derive the amplitude from its
corresponding Feynman graph. It is shown that these rules always give us the right am-
plitude, but in a much more time- saving way in comparision with the one using Wick’s
theorem (see Subsection 1.2.4 ). So it is especially advantegeous for a complicated process
at high order of perturbation.
To apply Feynman rules for a process at a given order n, follow these steps:

1. The interaction part of QED Lagrangian (∼ Ψ /AΨ) forces each vertex (point of inter-
action) to be the meeting- place of two fermion fields with one photon field. So the
vertex in QED should be:

where the straight line denotes the fermion propagation and the wavy line is for the
photon propagation.

2. Depending on the particular transition and the order of perturbation considered,
we try to draw possible connected graphs for it. They should include all differently
topological diagrams. That can be done by exchanging the momenta between the
fields of the same kind and the propagation direction of fermion fields towards the
vertices (the amplitude doesn’t change when we reverse the propagation direction
of photon lines)

Take the example of LbyL scattering at order n = 4, there can be just one configu-
ration for it (because n = 4, all four photon fields should combine with 4 external
photons; each two of the 8 remaining fermion fields shouls couple to each other for
a fermion propagation). From this configuration, we would obtain totally 6 differ-
ently topological diagrams, as expected results from Wick’s theorem (see Subsec-
tion 2.1.2). Here we just illustrate one diagram of them
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3. We label the momentum vector for each line as long as the momentum conservation
is obtained at each vertex.

4. As the next step, we admit these rules to "translate" the diagram into its amplitude,
i.e. each line corresponds with a factor in the amplitude.

• At each vertex, write a factor iQ f γα, where Q f is the electric charge correspond-
ing to the fermion at the vertex: :

• For each internal photon line labelled with the momentum k, write a factor:

• For each internal fermion line labelled with the momentum p, write a factor:

• For an external line, write one of the following factors:

– For an initial photon line:
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– For a final photon line:

– For an initial fermion line:

– For a final fermion line:

– For an initial anti–fermion line:

– For a final anti-fermion line:

Note that the indices η or s denote for the spin of photon and (anti-) fermion corre-
sponding to the lines.
After that, we write down these factors one by one while we read the diagram along
the opposite direction to the propagation direction of fermions.

5. We divide the amplitude that we have obtained by n!. That is due to there are n!
ways to permute n vertices and the fact that each vertex should be treated equally.

6. If there is one mometum of an internal line not fixed by the mometum conservation
at some vertex, there will be a loop for each one. That is because when a momentum
is free to vary, it must cover all values of momenta in the 4-momentum space. Thus,
each loop corresponds to the unconstrained momentum p carries out an integral
(2π)−4d4p. If the loop is a closed fermion loop, take the trace of the amplitude and
multiply by a factor (−1) (see the conclusion at the end of Section 2.1)
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7. At the final step, multiply the amplitude by a factor (−1)r, where r is the number of
required permutations between fermion fields so that they are in normal order.
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Appendix D

Dimensionally Regularized Integrals

D.1 Math preliminaries

D.1.1 Feynman’s trick

Pay attention on the denominator of the tensor integral Eq. (1.120):

TN ∼
∫

d4q
(. . .)

(q2 −m2
0 + iε)[(q + p1)2 −m2

1 + iε] . . . [(q + pN−1)2 −m2
1 + iε]

. (D.1)

The N factors in the denominator have different q- denpendences. Now we want the
denominator appear as factors which have the same q- dependences. That’s where Feyn-
man’s trick helps.
Firstly, we need to prove the identity:

1
q2 −m2 + iε

= (−i)
∫ ∞

0
dαeiα(q2−m2+iε). (D.2)

Indeed,

(−i)
∫ ∞

0
dαeiα(q2−m2+iε) = (−i)

eiα(q2−m2+iε)

i(q2 −m2 + iε)

∣∣∣∞
0

=
1

q2 −m2 + iε
− lim

α→∞

=0,with ε>0︷︸︸︷
e−αε eiα(q2−m2)

i(q2 −m2 + iε)

=
1

q2 −m2 + iε
. (D.3)

Note the requirement that the infinitesimal ε > 0.
For the functions A1, A2, . . . , An which have the same form as the LHS of Eq. (D.2), we

obtain the general result:

1
A1A2 . . . An

= (−i)n
∫ ∞

0
dα1 . . . dαnei(α1 A1+...+αn An). (D.4)

Using the identity: ∫ ∞

0

dq
q

δ
(

1− ∑i αi

q

)
= 1. (D.5)
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Applying Eq. (D.5) to Eq. (D.4), we have:

1
A1A2 . . . An

= (−i)n
∫ ∞

0

dq
q

∫ ∞

0
dα1 . . . dαnδ

(
1− ∑i αi

q

)
ei(α1 A1+...+αn An)

= (−i)n
∫ ∞

0

dq
q

∫ ∞

0
qnd

(
α1

q

)
. . . d

(
αn

q

)
δ
(

1− ∑i αi

q

)
ei(α1 A1+...+αn An)

αi=
αi
q

= (−i)n
∫ ∞

0
dqqn−1

∫ ∞

0
dα1 . . . dαnδ(1−∑

i
αi)eiq(α1 A1+...+αn An)

= (−i)n
∫ 1

0
dα1 . . . dαnδ(1−∑

i
αi)
∫ ∞

0
dqqn−1eiq(α1 A1+...+αn An)︸ ︷︷ ︸
= Γ(n)

(−i)n(α1 A1+...+αn An)n

,

(D.6)

where we denote:∫ 1

0
dα1 . . . dαnδ(1−∑

i
αi) =

∫ 1

0
dα1

∫ 1−α1

0
dα2 . . .

∫ 1−α1−α2−...−αn−1

0
dαnδ(1−∑

i
αi).

Thus, we get the Feynman’s lemma:

1
A1A2 . . . An

= Γ(n)
∫ 1

0
dα1 . . . dαn

δ(1−∑i αi)

(α1A1 + . . . + αn An)n , (D.7)

with the Gamma function Γ(n) = (n− 1)!, n = 1, 2, 3, . . ..
Applying Eq. (D.7) to the case of n = 2 and for simplicity, we set m0 = m1 = . . . = mn =
m:

1
(q2 −m2 + iε)[(q + p)2 −m2 + iε]

=
∫ 1

0
dα1

∫ 1

0
dα2

δ(1− α1 − α2){
α1(q2 −m2 + iε) + α2[(q + p)2 −m2 + iε]

}2

=
∫ 1

0
dα

1{
(1− α)(q2 −m2 + iε) + α[(q + p)2 −m2 + iε]

}2

=
∫ 1

0
dα

1[
q2 −m2 + 2αqp + αp2 + iε

]2

=
∫ 1

0
dα

1[
(q + αp)2 + αp2 − α2p2 −m2 + iε

]2

q+αp=q
=

∫ 1

0
dα

1[
q2 + αp2(1− α)−m2 + iε

]2 ,

(D.8)
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and similarly for n = 3:

1
(q2 −m2 + iε)[(q + p1)2 −m2 + iε][(q + p2)2 −m2 + iε]

=
∫ 1

0
dα1dα2

2[
q2 + α1p2

1(1− α1) + α2p2
2(1− α2)− 2α1α2p1p2 −m2 + iε

]3 . (D.9)

We can also obtain similar results for n = 4, 5, . . .. We can see the common pattern of
Eq. (D.8), Eq. (D.9) so there’s a need to calculate the integral:

In(A) =
∫

ddq
1

(q2 − A + iε)n (D.10)

before further steps to calculate the N-point tensor integrals.

D.1.2 Wick rotation. d-dimensional Euclidean space

Wick roration

The purpose of this section is to calcualte the integral Eq. (D.10). First note that, the
poles of Eq. (D.10) in q0 are:

(qP
0 )

2 − |~q|2 − A + iε = 0⇒ qP
0 = ±

√
|~q|2 + A− iε = ±

(√
|~q|2 + A− iε∗

)
, (D.11)

with positive infinitesimal ε, ε∗. Thus the poles are always stay in the second and the
fourth quarter of the complex plane. It allows us to change the integral along the real axis
to that along the imaginary axis, i.e. Wick rotation:

∮
C
(q2 − A + iε)−n = 0

⇒
∫ ∞

−∞
dq0(. . .) =

∫ i∞

−i∞
dq0(. . .). (D.12)
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d-dimensional Euclidean space integral

Taking the integral Eq. (D.10) in d-dimesional space with the Lorentz signature (1,−1,−1, . . . ,−1)
is somehow hard to work with. By the substitution:

q0 → iqE
0 . (D.13)

Thus leads to the changes:

1. By the above substitution, our d-momentum vetor qE = (qE
0 ,~q) has the signature

(1, 1, 1, . . . , 1) of an Euclidean space:

q2 = q2
0 − |~q|

2 = −(qE
0 )

2 − |~q|2 = −q2
E. (D.14)

2. We also have:

∫ ∞

−∞
dq0 =

∫ i∞

−i∞
dq0 = i

∫ ∞

−∞
dqE

0 . (D.15)

Thus the d-dimensional integral in new space:∫
ddq =

∫
dq0

∫
dd−1~q = i

∫
dqE

0

∫
dd−1~q = i

∫
ddqE. (D.16)

Here we introduce the familiar symmetrically spherical coordinates:

ddqE = qd−1
E dqE(sin θd−1)

d−2dθd−1 . . . sin θ2dθ2dθ1, (D.17)

where 0 ≤ θ1 ≤ 2π, 0 ≤ θ2, . . . , θd−1 ≤ π.
Using: ∫ 2π

0
dθ1 = 2π;

∫ π

0
dθ sinm θ =

√
π

Γ(m+1
2 )

Γ(m+2
2 )

. (D.18)

Thus, the d- dimensional solid angle:

∫
dd−1Ω =

∫ π

0
(sin θd−1)

d−2dθd−1 . . .
∫ π

0
sin θ2dθ2

∫ 2π

0
dθ1 =

2πd/2

Γ(d/2)
. (D.19)

At last, we obtain the transition of d- dimensional integral in Minkowski space to
the one in Euclidean space:

∫
ddq→ i

2πd/2

Γ(d/2)

∫ ∞

0
dqEqd−1

E =
iπd/2

Γ(d/2)

∫ ∞

0
dq2

E(q
2
E)

d
2−1 . (D.20)



Appendix D. Dimensionally Regularized Integrals 67

D.2 Scalar integrals

Now, the integral Eq. (D.10) is rewritten as:

In(A) =
iπd/2

Γ(d/2)

∫ ∞

0
dq2

E(q
2
E)

d
2−1 (−1)n

(q2
E + A− iε)n

q2
E=x
= (−1)n iπd/2

Γ(d/2)

∫ ∞

0
x

d
2−1(x + A− iε)−ndx

x
A−iε=y
= (−1)n iπd/2

Γ(d/2)

∫ ∞

0
(A− iε)

d
2−n y

d
2−1(1 + y)−ndy︸ ︷︷ ︸

=B( d
2 ,n− d

2 )

= i(−1)nπd/2 Γ(n− d
2 )

Γ(n)
(A− iε)

d
2−n

= i(−1)nπ2−η Γ(n− 2 + η)

Γ(n)
(A− iε)2−n−η, (D.21)

where we have set d = 4− 2η. The last equal sign of Eq. (D.21) is due to the Beta- function:
B(x, y) = Γ(x)Γ(y)

Γ(x+y) . We still need a little discussion about the Gamma function before going
on:

1. Γ(z) =
∫ ∞

0 xz−1e−xdx for complex number z which has positive real part. Gamma-
function has poles at z = 0,−1,−2,−3, . . ..

2. Γ(z + 1) = zΓ(z).

3. Γ(n) = (n− 1)! for n = 0, 1, 2, 3, . . ..

4. Γ(1
2) =

√
π.

5. It is also well- known that: limz→0 Γ(z) ∼ 1
z − γE

where γE = limn→∞

[
1 + 1

2 + . . . + 1
n − ln(n)

]
≈ 0.577 is the Euler constant.

D.2.1 1-point function

Following the definition of N-point tensor integrals from Eq. (1.120). We first derive
the scalar 1-point function:

A0(m) =
(2πµ)4−d

iπ2

∫
ddq

1
q2 −m2 + iε

=
(2πµ)2η

iπ2 I1(m2)

= −m2
(

m2 − iε
4πµ2

)−η

Γ (η − 1) +Oη. (D.22)

As expected, this function has a pole at d = 4 and anylitic for d < 2. For we need to
evaluate all those integrals at the limit d → 4 (lim η → 0+) in the final stage, using these
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approximations:(
m2 − iε
4πµ2

)−η

= 1− η ln
(

m2 − iε
4πµ2

)
︸ ︷︷ ︸

ln(z)=ln(|z|)+i arg z, choose arg z=0

+O
(
(d− 4)2

)
≈ 1− η ln

(
m2

4πµ2

)
,

by the Taylor expansion: ax ≈ 1 + xlnx when x → 0, and

Γ (η − 1) =
1

η − 1
Γ (η) =

1
η − 1

(
1
η
− γE +O(η)

)
η→0
= −

(
1 + η + η2 +O(η)

)( 1
η
− γE +O(η)

)
≈ −

(
1
η
− γE + 1

)
.

Thus, we have:

A0(m) = m2

 2
4− d

− γE + ln(4π)︸ ︷︷ ︸
4UV

− ln
(

m2

µ2

)
+ 1

+O(4− d). (D.23)

Here we denote4UV as the UV part of the integral.
Hence:

(4− d)A0(m) = 2m2 +O(4− d). (D.24)

D.2.2 2-point function

In a much similar way, the 2-point scalar integral reads (see Eq. (D.8)):

B0(m, p) =
(2πµ)4−d

iπ2

∫
ddq

1
(q2 −m2 + iε)[(q + p)2 −m2 + iε]

=
(2πµ)4−d

iπ2

∫ 1

0
dx
∫

ddq
1[

q2 + xp2(1− x)−m2 + iε
]2

=
(2πµ)2η

iπ2

∫ 1

0
dxI2

(
m2 − xp2(1− x)

)
= (4πµ2)ηΓ(η)

∫ 1

0
dx
(

m2 − xp2(1− x)− iε
)−η

=
1
η
− γE + ln(4π)−

∫ 1

0
dx ln

(
m2 − xp2(1− x)− iε

µ2

)
+O(4− d). (D.25)

(the calculation of the integral in x is not mentioned here, for details about the mathemat-
ical methods to calculate more higher N-point integral , see Ref. [9]). Thus,

(4− d)B0(m, p) = 2 +O(4− d) (D.26)
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D.2.3 3-point and 4-point functions

Though the bigger N of a N-point function, the more complicated is its expression, we
can also obtain it as the two previous ones by the same procedure, e.g. the 3- and 4- point
scalar integrals:

C0(m, p1, p2) = −
∫ 1

0
dx
∫ 1−x

0
dy
[

x(x− 1)p2
1 + y(y− 1)p2

2 + 2xyp1p2 + m2 − iε
]−1

,

(D.27)
and

D0(m, p1, p2, p3) =
∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz
[

x(x− 1)p2
1 + y(y− 1)p2

2 + z(z− 1)p2
3

+ 2xyp1p2 + 2xzp1p3 + 2yzp2p3 + m2 − iε
]−2

.

(D.28)

As well as it could be, the 3- and higher- point scalar integrals are all convergent, i.e. their
degree of divergence D < 0, so there’s no pole ∼ 1/(4− d) in their expressions.

D.3 Tensor integrals

In this section, we will see that we can derive the tensor integrals from the scalar ones,
which we have known the solutions. That method, called the reduction method, is simple
to apply, especially for low number of N(= 1, 2), but become tougher for the numerical
analysis of most physical processes (N > 3).

1. For the first step, note that whenever we encouter such kind of integrals:∫
ddq

piq
(q2 −m2) [(q + p1)2 −m2] . . . [(q + pi)2 −m2] . . .

, (D.29)

(where i is the position number of the external momenta pi in the loop, not Lorentz
indices) or ∫

ddq
q2

(q2 −m2) [(q + p1)2 −m2] . . .
. (D.30)

We can always bring them back to (linear combination of) other scalar integrals.
by transforming the numerator in to terms that conincident with any factor in the
numerator. Making some derivations:

piq =
1
2

{ [
(q + pi)

2 −m2
]
− (q2 −m2)− p2

i

}
, (D.31)

q2 =
[
(q2 −m2) + m2

]
. (D.32)

Other similar terms as (pi pj . . . qq . . .) can also be derived in the same way by im-
plementing Eq. (D.31) and Eq. (D.32) consecutively.
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2. As the next step, multiplying the RHS of Eq. (1.120) by the corresponding covariant
structures from the external momenta (pµ, pµ pν, . . .) and metric tensor (gµν, . . .), we
will obtain such terms similar to Eq. (D.29) or Eq. (D.30). Meanwhile, the covariant
structures in the tensor decomposition Eq. (1.124) must be multiplied by the same
factor. Thus may lead to a homogeneous system of equations, which helps us to
find the solutions of the tensor coefficent from the scalar integrals.

3. Also note that, for the integral is taken over all d-momentum space, if the denomi-
nator of the tensor integral shown its symmetry to the integral variable q, thus the
odd rank of the integral must be zero (odd function), e.g.

∫
ddq

odd number of tensor rank︷ ︸︸ ︷
qµqν . . . qδ

(q2 −m2)
= 0. (D.33)

Now, let us illustrate the reduction method for some simple tensor integrals:

• Bµ(m, p):

Bµ(m, p) =
(2πµ)4−d

iπ2

∫
ddq

qµ

(q2 −m2)[(q + p)2 −m2]
= B1pµ, (D.34)

there we have neglect the infinitesimally imaginary part iε. Multiply both sides of
Eq. (D.34) by pµ, we obtain:

B1p2 =
(2πµ)4−d

iπ2

∫
ddq

q.p
(q2 −m2)[(q + p)2 −m2]

=
(2πµ)4−d

iπ2

∫
ddq

1
2
[(q + p)2 −m2]− (q2 −m2)− p2

(q2 −m2)[(q + p)2 −m2]

=
1
2
(2πµ)4−d

iπ2

{ ∫
ddq

1
q2 −m2 −

∫
ddq

1
(q + p)2 −m2

− p2
∫

ddq
1

(q2 −m2)[(q + p)2 −m2]

}
=

1
2
(A0(m)− A0(m)− p2B0(p, m))

= −B0(m, p)
2

p2. (D.35)

Thus,

B1 = −B0(m, p)
2

. (D.36)

And its UV part from the one of B0:

(4− d)B1 = −1 +O(4− d). (D.37)
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• Bµν(m, p1, p2):

Bµν(m, p) =
(2πµ)4−d

iπ2

∫
ddq

qµqν

(q2 −m2)[(q + p)2 −m2]
= B00gµν + B11pµ pν.

(D.38)
At first, multiplying both sides of Eq. (D.38) by gµν gives us:

B00d + B11p2 =
(2πµ)4−d

iπ2

∫
ddq

q2

(q2 −m2)[(q + p)2 −m2]

=
(2πµ)4−d

iπ2

∫
ddq

(q2 −m2) + m2

(q2 −m2)[(q + p)2 −m2]

=
(2πµ)4−d

iπ2

{ ∫
ddq

1
(q + p)2 −m2 + m2

∫
ddq

1
(q2 −m2)[(q + p)2 −m2]

}
= A0(m) + m2B0(m, p). (D.39)

To obtain the second equation, make a contraction of Eq. (D.38) with pµ:

B00pν + B11(p2)pν =
(2πµ)4−d

iπ2

∫
ddq

(q.p)qν

(q2 −m2)[(q + p)2 −m2]

=
(2πµ)4−d

iπ2

∫
ddq

1
2
[(q + p)2 −m2]− (q2 −m2)− p2

(q2 −m2)[(q + p)2 −m2]
qν

=
1
2
(2πµ)4−d

iπ2

{ ∫
ddq

qν

q2 −m2︸ ︷︷ ︸
=0

−
∫

ddq
qν

(q + p)2 −m2︸ ︷︷ ︸
qµ+pµ=q′µ

− p2
∫

ddq
qν

(q2 −m2)[(q + p)2 −m2]

}
=

1
2
(2πµ)4−d

iπ2

{
−
∫

ddq′
q′ν

q′2 −m2︸ ︷︷ ︸
=0

+pν
∫

ddq
1

(q + p)2 −m2

− p2
∫

ddq
qν

(q2 −m2)[(q + p)2 −m2]︸ ︷︷ ︸
=Bν(m,p)

}

=
1
2
(pν A0(m)− p2Bν(m, p))

=
pν

2
(A0(m) +

p2

2
B0(m, p)). (D.40)

Thus,

B00 + B11(p2) =
1
2

A0(m) +
p2

4
B0(m, p). (D.41)
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Using both Eq. (D.39) and Eq. (D.41), we obtain the tensor coefficents for rank-2
2-point loop integral as:

B00 =
1

4(d− 1)

[
2A0 + (4m2 − p2)B0

]
, (D.42)

B11 =
1

4(d− 1)p2

[
2(d− 2)A0 + (p2d− 4m2)B0

]
. (D.43)

Consider the limit d→ 4, from the UV parts of A0 and B0 (Eq. (D.24),Eq. (D.26)), we
obtain:

(4− d)B00 = m2 − p2

6
+O(4− d), (D.44)

(4− d)B11 =
2
3
+O(4− d). (D.45)
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Appendix E

Inputs to Fortran program

• Mass of electron : me = 0.510998950 ∗ 10−3(GeV) a

• Mass of muon: mµ = 105.6583715 ∗ 10−3(GeV)

• Mass of tau: mtau = 1776.86 ∗ 10−3(GeV)

• Mass of up quark mu = 2.16 ∗ 10−3(GeV)

• Mass of down quark md = 4.67 ∗ 10−3(GeV)

• Mass of strange quark ms = 93 ∗ 10−3(GeV)

• Mass of charm quark mc = 1.27(GeV)

• Mass of bottom quark mb = 4.18(GeV)

• Mass of top quark mt = 172.76(GeV)

• Pi constant π = 3.141592653589793238

• QED coupling constant for leptons: α = 1/137.035999139

• QED coupling constant for up, charm and top quarks: = 4
9 α

• QED coupling constant for down, strange and bottom quarks:
= 1

9 α

• Cross section unit conversion formula:
1GeV−2 = 0.3893793721(mbarn)

aThose values is taken from Particle Data Group’s data in the website:
https://pdg.lbl.gov/

hhttps://pdg.lbl.gov/
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