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ABSTRACT

Recently, the MuonE experiment has been proposed as a new method to measure precisely
the running of fine-structure electromagnetic coupling in the space-like region via the
electron muon elastic scattering. This will help to resolve the 4.2σ discrepancy between
the Standard Model prediction and the currently combined experimental measurement
for the muon anomalous magnetic moment. For the MuonE experiment, experimentalists
require calculating very precisely the cross-section of the electron muon elastic scattering
at next-to-next-to-leading order. Therefore, evaluating the cross-section at next-to-leading
order is a prerequisite to achieve this requirement. In this thesis, we calculate the hard-
photon corrections to the cross-section of the electron muon elastic scattering via the
bremsstrahlung process eµ → eµγ and combine with the known virtual and soft-photon
corrections to obtain the full next-to-leading order results, utilizing the high-precision
Monte-Carlo programs VEGAS+ and BASES for numerical calculation.
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INTRODUCTION

The MUonE experiment has been proposed as a new method to estimate the running
effective electromagnetic coupling constant at space-like region via the process of muon-
electron elastic scattering by using a muon beam at 150 GeV scatter on atomic electron
at a low-Z target [1]. The differential cross-section of this process provides the direct
measurement of the leading-order hadronic contribution to the muon anomalous momenta,
aHLO
µ , which is a test of the Standard Model (SM) prediction of particle physics [2]. The

experiment plans have been currently prepared at Fermilab [3] (USA) and J-PARC [4]
(Japan), aiming to measure the muon anomaly at a precision of 0.14 ppm [3, 5]. To achieve
such high precision, the experimentalists require the theoretical calculation the differential
cross-section of eµ scattering at next-to-next-to-leading order (NNLO) at 10 ppm [1]. The
first step toward the calculation at high-order is evaluated very precisely at the next-to-
leading order (NLO) in the framework of SM due to Quantum Electrodynamics (QED) and
electroweak contributions. The previous study at full set of leading-order (LO) and NLO
QED soft-photon corrections was presented in Le Duc Truyen’s thesis “Electron muon
elastic scattering in one-loop QED with soft-photon corrections” [6]. A full calculation at
NLO had been published by Alacevich et al [7].

In this thesis, we calculate the NLO QED hard-photon corrections via bremsstrahlung
process µe → µeγ. At a high level of accuracy, the mass of the electron must be
kept without any approximations and for obtaining the cross-section, the high-precision
computer programs are necessary. Monte-Carlo integration programs BASES [8], VEGAS+
[9, 10] are used in our work. The hard-photon corrections calculated here will be combined
with the virtual and soft-photon corrections from Ref. [6] to obtain the full NLO QED
results. The thesis is organized as follows:

• Chapter 1: An overview of QED
We briefly describe the QED theory (focusing on the Lagrangian of QED) and
Feynman rules, aiming to prepare the theoretical framework for posterior chapters.

• Chapter 2: Phase space of N particles
We present and discuss the integration of phase space element of an N-particle
scattering process. Then, we illustrate how to generate the momentum configuration
in terms of geometric and kinematical variables.

• Chapter 3: Bremsstrahlung process eµ→ eµγ in QED
We derive the Feynman amplitude of the reaction eµ→ eµγ and calculate the cross-
section with a cut-off kinematic condition in the hard-photon region. Besides, the
experiment requires that the energy of the outgoing electron must be greater than
0.2 [GeV] in the laboratory frame. Finally, we present the full NLO results.

• Chapter 4: Conclusion and Outlook
We summarize our work.
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CHAPTER

ONE

AN OVERVIEW OF QED

1.1 The Lagrangian of QED

Long time ago, the question from the physical standpoint is “How light and matter
interact with each other and how to describe them in the framework of quantum mechanics
at very high velocities considerable ?”. With the born of Quantum Electrodynamics
(QED) theory this question is answered which agrees well between quantum mechanics
and special relativity (theory for the particles moving with velocity approximate the
velocity of light). It gives very accuracy predictions for quantities like the energy level in
hydrogen atom or behavior of charged particles at microscopic region. In the search for
new physics, the new theory must agree with QED predictions at the low energy scale.

Quantum Electrodynamics associates with the electromagnetic interaction, the fermion
field ψ(x) with the mass m and the massless photon field Aµ(x). The Lagrangian density
(or the Lagrangian, for short) of this model [11] is:

LQED(x) = ψ̄(x)(iγµ∂µ −m)ψ(x)− 1

4
FµνF

µν − eψ̄(x)γµψ(x)Aµ(x). (1.1)

We consider only the case of charged leptons l (l = e, µ). In the Lagrangian (1.1), the
first term describes the kinematic of the fermion field, the second term is the kinematic
of the photon field, with an electromagnetic field tensor: Fµν = ∂µAν − ∂νAµ.

The existence of the interaction term (the last term) in Eq. (1.1) is prerequisite for
deriving scattering amplitude which gives information about the transition probability of
the scattering process. The Wick theorem has been used as an intermediate procedure
after expanding the S-matrix element (technical details can be found in Appendix A).
Differently from the Wick theorem, another common technique for evaluating the amplitude
is an intuitive mathematics approach via a pictorial representation named Feynman
diagram, which was invented by the American physicist Richard Feynman.

In the next section, we present the Feynman rules of QED.

1



CHAPTER 1. AN OVERVIEW OF QED 2

1.2 Feynman rules in QED

1.2.1 External line

Each external line includes the coefficient:

p

= us(p)

p

= v̄s(p)

p

= ūs(p)

p

= vs(p)

k

= ǫλ(k)µ

k

= ǫλ∗(k)µ

where s represents spin index, p is the three-momentum of the fermion, λ and k correspond
to polarization index and the three-momentum of the photon, respectively.

1.2.2 Interaction Vertex

From the interaction term Lint in the Lagrangian (1.1), we can use the peeling-method
to remove all field operators for obtaining the interaction vertex.

Lint = −eψ̄(x)γµψ(x)Aµ(x). (1.2)

The interaction vertex reads:

∂

∂(Aµ(x)ψ̄(x)ψ(x))
(iLint) = −ieγµ. (1.3)

e+

e−

= −ieγµ
µ

At each vertex, the energy-momentum and electric-charge conservations must be satisfied.
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1.2.3 Propagator

1. For each internal photon line, it associates with the photon propagator:

DF
µν(q) =

−igµν
q2 + iε

. (1.4)

µ ν

q

Figure 1.1: Photon propagator.

2. For each internal fermion line, it associates with the fermion propagator:

SFαβ(p) =

[
i(6 p+m)

p2 −m2 + iε

]
αβ

, (1.5)

where α, β are called Dirac indices.

p

βα

Figure 1.2: Fermion propagator.



CHAPTER

TWO

PHASE SPACE OF N PARTICLE SCATTERING

In the present chapter, we focus on the definition of phase space and the most
important quantity in the reaction processes which is the total cross-section. At the end of
this chapter, we perform the technical steps to generate a set of momentum configurations
in terms of kinematical and geometric variables.

As an usual formalism in the dynamics study of a particle reaction, the conservation
laws must be hold.
For the 2→ n scattering with n = N − 2, p1 + p2 → p3 + . . .+ pN , we have:

E1 + E2 =
N∑
i=3

Ei, (2.1)

p1 + p2 =
N∑
i=3

pi, (2.2)

where mi is the rest mass of the particle,

E2
i = |pi|2 +m2

i . (2.3)

The momentum space is first defined from the 3n-components of the outgoing momenta.
The presence of four-momentum conservation law in this space causes the energy and
momenta of the outgoing particles can not vary arbitrarily. Hence, we define the phase
space with the 3n − 4 dimensions as a combination of the momentum space and the
four-momentum conservation law. If we consider the initial state of two incoming
particles, it is often fixed by an experiment setting and it is called a fixed channel.

For obtaining the measurable quantity in the reaction process 2 → n, the square of
the transition probability matrix, which we will denote as |M|2, is integrated with all
allowed variables pi. If the integrals are computed in 3n − 4 dimensional phase space,
the result will be the total reaction cross-section (the total cross-section, for short). The
formula of the total cross-section in a fixed channel [12]:

σ(s) =
1

Z
R2→n(s), (2.4)

4



CHAPTER 2. PHASE SPACE OF N PARTICLE SCATTERING 5

where
√
s is the total collision energy, Z = 4

√
(p1.p2)2 −m2

1m
2
2 is the incoming flux factor

and

R2→n(s) =

∫
(2π)4δ4(Pi − Pf )|M|2 dΦ (2.5)

contains the integration over phase space. In Eq. (2.5), Pi, Pf correspond to the total
momentum of initial particles and final particles, respectively,

Pi = p1 + p2, (2.6)

Pf = p3 + p4 + . . .+ pN . (2.7)

Additional, the four-momentum conservation is presented by the four-dimensional delta
function δ4(Pi − Pf ) and the 2→ n phase space element dΦ:

dΦ =
d3p3

(2π)32E3

d3p4

(2π)32E4

. . .
d3pN

(2π)32EN
. (2.8)

The factor
∏N

i=3(2Ei) in the denominator of Eq. (2.8) is just for convenience which refers to
the fact that the quantity d3p /2E is invariant under Lorentz transformation. Considering
the Lorentz transformation (Appendix B):

dpx = dp′x , (2.9)

dpy = dp′y , (2.10)

dpz = γ(dp′z − v dE ′)

= γ dp′z (1− vp′z/E ′)
= dp′z E/E

′, (2.11)

⇒ dpz
E

=
dp′z
E ′

(2.12)

⇒ d3p

2E
=

d3p′

2E ′
, (2.13)

where dE ′ / dp′z = p′z/E
′ and E = γ(E ′ − vp′z). Therefore, d3p /2E is invariant under the

Lorentz transformation. Next, we have:

d4p = det(Λ) d4p′ (2.14)

= det



dE′

dE
dE′

dpx

dE′

dpy

dE′

dpz

dp′x
dE

dp′x
dpx

dp′x
dpy

dp′x
dpz

dp′y
dE

dp′y
dpx

dp′y
dpy

dp′y
dpz

dp′z
dE

dp′z
dpx

dp′z
dpy

dp′z
dpz


d4p′ (2.15)

= det


γ 0 0 −vγ
0 1 0 0
0 0 1 0
−vγ 0 0 γ

 d4p′ . (2.16)
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Furthermore, the determinant of the Λ matrix equals to 1, so the d4p is a Lorentz invariant
quantity, and the identities: ∫

δ4(p− q) d4p = 1, (2.17)∫
δ4(p′ − q′) d4p′ = 1. (2.18)

Besides, the right hand side of Eq. (2.17) and Eq. (2.18) is a number. Hence, the δ4

function is also the invariant quantity. Consequently, the cross-section in Eq. (2.5) is
invariant under the Lorentz transformation and we can choose any specifically frames of
reference to compute and obtain the same result.

In Eq. (2.5), if the square of the transition matrix element |M|2 is one, the integral
R2→n(s) is called the phase space integral. The next two sections present some general
properties of the phase space integral in different cases: two and three final particles.

2.1 Two-particle final states

2.1.1 Decay process

To begin with, we first consider a decay process: one particle decays into two particles
(1→ 2) in the rest frame of p1 which is defined as a frame where the spatial components
of initial particle are zero p1 = (E1,p1) = (E1, 0).

p1 → p2 + p3 (2.19)

We have the invariant mass squared s1 defined from the total four-momentum p01 = E1 of
the initial particle:

s1 ≡ p21 = (p2 + p3)
2 (2.20)

= E2
1 = (E2 + E3)

2. (2.21)

Phase space integral is defined as:

R1→2(s1,m
2
2,m

2
3) =

∫
(2π)4δ4(p1 − p2 − p3)

d3p2

(2π)32E2

d3p3

(2π)32E3

. (2.22)

Replacing the three-dimensional momentum to the four-dimensional one by using the
relation [11]:

d3p3

(2π)32E3

=
d4p3
(2π)4

(2π)δ(p23 −m2
3)Θ(E3). (2.23)

The theta function Θ(E3) has value 1 if E3 ≥ 0 and equals to 0 if E3 < 0. This kind of
function appears in all expressions of R1→2. We substitute Eq. (2.23) into Eq. (2.22) and
consider E3 ≥ 0. Hence, the phase space integral of the decay process is:

R1→2(s1,m
2
2,m

2
3) =

∫
(2π)4δ4(p1 − p2 − p3)

d3p2

(2π)32E2

d4p3
(2π)3

δ(p23 −m2
3). (2.24)
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Integrating Eq. (2.24) over p3 by using the four-dimensional delta function and implement
p3 = p1 − p2 in Eq. (2.25).

R1→2(s1,m
2
2,m

2
3) =

1

(2π)2

∫
d3p2

2E2

δ[(p1 − p2)2 −m2
3]. (2.25)

In the spherical coordinates, we have d3p2 = |p2|2 d|p2| dΩ12 with Ω12 = (cos θ12, φ12) is
a solid angle of p2 orientations in the rest frame of p1 and get:

R1→2(s1,m
2
2,m

2
3) =

1

(2π)2

∫ |p2|2 d|p2| dΩ12

2E2

δ(p21 + p22 − 2E1E2 −m2
3). (2.26)

Using the on-shell condition (2.27) and taking the derivative of both sides, we obtained
the differential relation of energy and momentum:

E2
2 = |p2|2 +m2

2 (2.27)

⇒ |p2| d|p2| = E2 dE2 . (2.28)

Substituting p22 = m2
2, Eq. (2.21) and Eq. (2.28) into Eq. (2.26), one can show:

R1→2(s1,m
2
2,m

2
3) =

1

(2π)2

∫ |p2|E2 dE2 d cos θ12 dφ12

2E2

δ(s1 − 2
√
s1E2 +m2

2 −m2
3) (2.29)

=
1

(2π)2

∫ |p2| d cos θ12 dφ12

4
√
s1

. (2.30)

Eq. (2.30) gives a constraint of the energy E2:

E2 =
s1 +m2

2 −m2
3

2
√
s1

. (2.31)

From the condition (2.27) and Eq. (2.31), the absolute value of p2 can be derived:

|p2| = (E2
2 −m2

2)
1/2 (2.32)

=

√
(s1 −m2

2 −m2
3)

2 − 4m2
2m

2
3

2
√
s1

. (2.33)

Therefore, we can write the integration of 2-body phase space of the decay process as:

R1→2(s1,m
2
2,m

2
3) =

1

(2π)2

∫ 1

−1
d cos θ12

∫ 2π

0

dφ12

[
λ1/2(s1,m

2
2,m

2
3)

8s1

]
, (2.34)

where λ(a, b, c) is Källén function (or triangle function):

λ(a, b, c) = (a− b− c)2 − 4bc. (2.35)

2.1.2 Two-particle scattering

Considering the reaction 2→ 2:

p1 + p2 → p3 + p4 (2.36)
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p4

p1

p2

p3

Figure 2.1: The 2 by 2 process

In the center of mass system (CMS), the total three-momentum of the incoming
particles is zero and hence, the total three-momentum of the outgoing particles is
p3 + p4 = p1 + p2 = 0. We have:

s12 ≡ (p1 + p2)
2 = (p3 + p4)

2 (2.37)

= (E1 + E2)
2 = (E3 + E4)

2. (2.38)

Using Eq. (2.5), the two-particle phase space integral can be obtained:

R2→2(s12,m
2
3,m

2
4) =

∫
(2π)4δ4(p1 + p2 − p3 − p4)

d3p3

(2π)32E3

d3p4

(2π)32E4

. (2.39)

The 2→ 2 integral phase space can be constructed in the similar procedure as shown in
the Subsection 2.1.1:

R2→2(s12,m
2
3,m

2
4) =

1

(2π)2

∫ 1

−1
d cos θ13

∫ 2π

0

dφ13

[
λ1/2(s12,m

2
3,m

2
4)

8s12

]
. (2.40)

where θ13 is the polar angle between p3 and p1, φ13 is azimuthal orientation of p3 around
p1.

Another possible way to compute R2→2 is using the invariant momentum transfer t:

t ≡ (p1 − p3)2
= m2

1 +m2
3 − 2p1.p3

= m2
1 +m2

3 − 2(E1E3 − |p1||p3| cos θ13) (2.41)

⇒ dt = 2|p1||p3| d cos θ13 (2.42)

⇒ d cos θ13 =
dt

2|p1||p3|
. (2.43)

By using the fact that 2→ 2 scattering has a cylindrical symmetry, φ13 is a trivial variable.
We can take the integration over φ13 and substitute Eq. (2.43) into Eq. (2.40).
R2→2 can be written as:

R2→2(s12,m
2
3,m

2
4) =

1

16π|p1|
√
s12

∫ t+

t−
dt . (2.44)

From cos θ13 = ±1 and |p1| = λ1/2(s12,m
2
1,m

2
2)/(2

√
s12), we can derive the constraint of

t:

t± = m2
1 +m2

3 − 2(E1E3 ∓ |p1||p3|). (2.45)
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2.2 Three-particle final states

Collision of 2→ 3 process:

p1 + p2 → p3 + p4 + p5 (2.46)

p1

p2

p3

p4

p5

Figure 2.2: The 2→ 3 scattering decomposed into a 2→ 2 process and a 1→ 2 decay.

The integral of phase space is:

R2→3(s12,m
2
3,m

2
4,m

2
5) =

∫
(2π)4δ4(p1 + p2 − p3 − p4 − p5)

× d3p3

(2π)32E3

d3p4

(2π)32E4

d3p5

(2π)32E5

. (2.47)

To decompose the 2→ 3 into a 2→ 2 process and a 1→ 2 decay, we use this identity:

1 =

∫
ds45

∫
d3p45

2E45

δ4(p45 − p4 − p5)

=

∫
ds45

∫
d4p45 δ(p

2
45 − s45)δ4(p45 − p4 − p5)

=

∫
ds45 δ((p4 + p5)

2 − s45), (2.48)

where E2
45 = |p45|2 + s45. We insert the identity (2.48) into Eq. (2.47) and get the result:

R2→3(s12,m
2
3,m

2
4,m

2
5) =

1

2π

∫
ds45

{∫
(2π)4

d3p3

(2π)32E3

d3p45

(2π)32E45

δ4(p1 + p2 − p3 − p45)
}

×
{∫

(2π)4
d3p4

(2π)32E4

d3p5

(2π)32E5

δ4(p45 − p4 − p5)
}
. (2.49)

The first bracket can be seen as a reaction of two particles in the CMS of p1 + p2 and the
second is a decay process in the rest system (RS) of p45. In concise form it is:

R2→3(s12,m
2
3,m

2
4,m

2
5) =

1

2π

∫
ds45R2→2(s12,m

2
3, s45)R1→2(s45,m

2
4,m

2
5). (2.50)

We choose the first term R2→2 by Eq. (2.40) and Eq. (2.34) for the second R1→2. We
denote different frame by upper indices, R12 stand for CMS of p1 + p2 and R45 is the RS
of p45.
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R2→3(s12,m
2
3,m

2
4,m

2
5) =

1

(2π)5

∫
ds45

∫ 1

−1
d cos θR12

∫ 2π

0

dφR12 λ
1/2(s12,m

2
3, s45)

8s12

×
∫ 1

−1
d cos θR45

∫ 2π

0

dφR45 λ
1/2(s45,m

2
4,m

2
5)

8s45
, (2.51)

in which:

s12 = (p1 + p2)
2, (2.52)

s45 = (p4 + p5)
2. (2.53)

The solid angle ΩR12 = (θR12, φR12) defines the orientations of p3 with respect to p1 in the
R12 frame, and ΩR45 = (θR45, φR45) describes the orientations of p4 in the rest frame of p45.

We shall next analyze the boundary region of the integral in the variable s45 in the
R12 frame. Because of the on-shell condition E2

3 = |p3|2 +m2
3 ≥ m2

3, we have:

s45 = (p4 + p5)
2 = (p1 + p2 − p3)2 = s12 − 2

√
s12E3 + p23

= s12 − 2
√
s12E3 +m2

3 ≤ s12 − 2
√
s12m3 +m2

3,
(2.54)

i.e.

s45 ≤ (
√
s12 −m3)

2
, (2.55)

and in the R45 frame:

s45 = (E4 + E5)
2 ≥ (m4 +m5)

2, (2.56)

give the constraint of s45:

(m4 +m5)
2 ≤ s45 ≤ (

√
s12 −m3)

2. (2.57)

2.3 Total cross-section

We now establish the analytical formula of the total cross-section in a 2→ 3 scattering:

σ2→3 =
1

Z

∫
(2π)4|M|2δ4(p1 + p2 − p3 − p4 − p5)

× d3p3

(2π)32E3

d3p4

(2π)32E4

d3p5

(2π)32E5

, (2.58)

where

Z = 4
√

(p1.p2)2 −m2
1m

2
2

= 4

√
(s12 −m2

1 −m2
2)

2

4
−m2

1m
2
2

= 4

√
(s12 −m2

1 −m2
2)

2 − 4m2
1m

2
2

4
× s12
s12

= 4
λ1/2(s12,m

2
1,m

2
2)

2
√
s12

√
s12

= 4|p1|
√
s12. (2.59)
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From Eq. (2.51), Eq. (2.57) and Eq. (2.59), we obtain:

σ2→3 =
1

4(2π)5|p1|
√
s12

∫ (
√
s12−m3)2

(m4+m5)2
ds45

×
[∫ 1

−1
d cos θR12

∫ 2π

0

dφR12 λ
1/2(s12,m

2
3, s45)

8s12

]
×
[∫ 1

−1
d cos θR45

∫ 2π

0

dφR45 λ
1/2(s45,m

2
4,m

2
5)

8s45

]
|M(pi)|2, (2.60)

where pi is the momenta in one frame.
From this we define the phase space volume:

VPS =

∫ (
√
s12−m3)2

(m4+m5)2
ds45

λ1/2(s12,m
2
3, s45)λ

1/2(s45,m
2
4,m

2
5)

512π3|p1|s45(s12)3/2
. (2.61)

In Eq. (2.60), the total cross-section is written in terms of invariant variables s12, s45. The
geometric variables (φR12, θR12, φR45, θR45) are computed in different reference frames.
However, to calculate |M|2 we need to have all momenta in one reference frame. This is
a remaining problem that we will solve in the next section.

2.4 Generating set of momentum

The main technique to calculate the total cross-section numerically is generating
the set of momentum configurations in one reference frame. However, in Eq. (2.60)
remains two different frames R12 and R45. So, this section is organized to transform
all kinematical variables into the CMS of p1 + p2 via Lorentz transformation tools which
well-known formulas can be found in Appendix B. We step by step construct the individual
set of momenta in the specific frames (R12 and R45) and combine them at the end of the
section, respectively:
R12 and R45 correspond to:

• CMS of process p1 + p2 → p3 + p45,

• Rest frame of process p′45 → p′4 + p′5.

The four-momentum pi(i = 1, 2, 3, 45) and p′j(j = 45, 4, 5) will be parameterized with the
space components being written in the three-dimensional spherical coordinates. We also
relabel (θR12, φR12) in R12 frame to (θ13, φ13) and similarly (θR45, φR45) to (θ45, φ45). All
kinematical variables of particles in R12 and R45 frame can be written in terms of the
four-vectors which is convenient for numerical calculation. Especially in the R12 frame:

p1 = (E1,p1) = (E1, 0, 0, |p1|), (2.62)

p2 = (E2,p2) = (E2, 0, 0,−|p1|), (2.63)

p3 = (E3,p3) = (E3, |p3| sin(θ13) sin(φ13), |p3| sin(θ13) cos(φ13), |p3| cos(θ13)), (2.64)

p45 = (E45,p45)

= (E45,−|p3| sin(θ13) sin(φ13),−|p3| sin(θ13) cos(φ13),−|p3| cos(θ13)). (2.65)
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From Eq. (2.62) to Eq. (2.65), we get:

E1 =
s12 +m2

1 −m2
2

2
√
s12

, (2.66)

E2 =
√
s12 − E1, (2.67)

|p1| =
λ1/2(s12,m

2
1,m

2
2)

2
√
s12

, (2.68)

E3 =
s12 +m2

3 − s45
2
√
s12

, (2.69)

E45 =
√
s12 − E3, (2.70)

|p3| =
λ1/2(s12,m

2
3, s45)

2
√
s12

. (2.71)

Similarly, in the rest frame of p′45, the set of momenta is:

p′45 = (E ′45,p
′
45) = (E ′45, 0, 0, 0) = (

√
s45, 0, 0, 0), (2.72)

p′4 = (E ′4,p
′
4) = (E ′4, |p′4| sin(θ45) sin(φ45), |p′4| sin(θ45) cos(φ45), |p′4| cos(θ45)), (2.73)

p′5 = (E ′5,p
′
5)

= (E ′5,−|p′4| sin(θ45) sin(φ45),−|p′4| sin(θ45) cos(φ45),−|p′4| cos(θ45)). (2.74)

where:

|p′4| =
λ1/2(s45,m

2
4,m

2
5)

2
√
s45

, (2.75)

E ′4 =
s45 +m2

4 −m2
5

2
√
s45

, (2.76)

E ′5 =
√
s45 − E ′4. (2.77)

For the previous requirement that the total cross-section must be computed in the CMS
of p1 + p2. We then transform the p′4 and p′5 from R45 frame to R12 frame. p45 and p′45
can be used to obtain the relative velocity of the two frames. Because the velocity of p′45
in R45 is zero, then the relative velocity is the velocity of p45 in the CMS of p1 + p2:

v45 =
p45

E45

. (2.78)

Inserting v45 in Eq. (2.78) into a Lorentz boost matrix in Eq. (B.17) (Appendix B). We
obtain p4 = (E4,p4) and p5 = (E5,p5) in the CMS of p1 + p2. We can now use the
(p1, p2, p3, p4, p5) to compute the |M|2.



CHAPTER

THREE

BREMSSTRAHLUNG PROCESS eµ→ eµγ IN QED

In experiment, we measure the cross-section of the process eµ → eµ + Nγ where
N = 0, 1, 2, . . . ,∞.
In the LO approximation, we take N = 0 and σ = σLO = σ0(eµ→ eµ) ∼ O(α2).
In the NLO approximation, we have N = 0, 1 and
σ = σLO + σ0(eµ→ eµ+ γ) + σvirt(eµ→ eµ), where:

σ0(eµ→ eµ+ γ) = σsoft(Eγ < ∆E) + σhard(Eγ > ∆E). (3.1)

Our work is computing the cross-section σhard of the bremsstrahlung process
eµ → eµ + γ which is the hard-photon corrections. Combining this result with the soft-
photon corrections and the virtual-corrections in Le Duc Truyen’s thesis Ref. [6] gives the
NLO QED corrections to the eµ → eµ scattering. At the end of this chapter, we prove
the cross-section at the NLO is independent of a parameter ∆E.

σQED
NLO = σLO + σvirt + σreal(α

3), (3.2)

where

σreal(α
3) = σsoft(α

3,∆E) + σhard(α3,∆E). (3.3)

3.1 Feynman Amplitude

Consider the Bremsstrahlung scattering process:

e(p1) + µ(p2)→ e(p3) + µ(p4) + γ(k) (3.4)

There is four possible photon emission process that can exist corresponding to four
Feynman diagrams. Based on the Feynman rules in Section 1.2, we can write down
the Feynman amplitudes of process (3.4) using the Feynman diagrams Fig. 3.1 - Fig. 3.4.
The arrow on each external line which is the fermion flow coincides with the momentum
direction. For an external photon, photon propagator, and internal fermion the momentum
direction was denoted by the arrow line next to it.

13
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q′
1

e− e−

µ− µ−

q1

γ

k

p1 p3

p2 p4

α
β

β

Figure 3.1: The photon emission off the incoming electron

In Fig. 3.1, we have the Feynman Amplitude:

M1 = ie3
1

[(p1 − k)2 −m2
e](p2 − p4)2

× ūs3(p3)γβ(6p1− 6k +me)γ
αus1(p1)ū

s4(p4)γβu
s2(p2)ε

∗
α(k).

µ−

e−e−

µ−

q2

q′
1

k

p4p2

p1 p3

γ

β

β

α

Figure 3.2: The photon emission off the outgoing electron

In Fig. 3.2, we have the Feynman Amplitude:

M2 = ie3
1

[(p3 + k)2 −m2
e](p2 − p4)2

× ūs3(p3)γα(6p3+ 6k +me)γ
βus1(p1)ū

s4(p4)γβu
s2(p2)ε

∗
α(k).
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k

e− e−

µ− µ−
q3

q′
2

γ

p1 p3

p2 p4

β

β

α

Figure 3.3: The photon emission off the incoming muon

In Fig. 3.3, we have the Feynman Amplitude:

M3 = ie3
1[

(p2 − k)2 −m2
µ

]
(p1 − p3)2

× ūs4(p4)γβ(6p2− 6k +mµ)γαus2(p2)ū
s3(p3)γβu

s1(p1)ε
∗
α(k).

k

µ−µ−

e−e−

q′
2

q4

p1 p3

p2 p4

γ

β

β

α

Figure 3.4: The photon emission off the outgoing muon

In Fig. 3.4, we have the Feynman Amplitude:

M4 = ie3
1[

(p4 + k)2 −m2
µ

]
(p1 − p3)2

× ūs4(p4)γα(6p4+ 6k +mµ)γβus2(p2)ū
s3(p3)γβu

s1(p1)ε
∗
α(k).

In case of unpolarized beams, we do not know the spin of the initial particles. Thus,
we have to average overall all spin states by including the overall factor 1

4
in the squared

amplitude:

|M|2 =
1

4

∑
s1,s2,s3,s4

|M1 +M2 +M3 +M4|2. (3.5)

The expression of the amplitude squared is too long to display here. It is automatically
calculated with the help of the symbolic manipulation program Form [13]. The reader
can find this code in the Appendix C.0.3
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3.2 Phase space mappings in the numerical integration

Mapping is the specific combination of the final particles into a subset, aiming to
use the Lorentz transformation to breakdown the multi-particles final state in 2 → n
scattering to sub-processes 2→ 2 and 1→ 2. For instance, in Section 2.4, the muon and
photon in the final state are combined. Then, we will call them as the mapping (45)3.
Because our scattering has three final particles state then there are three possible ways
to combine them into three mappings.

• Mapping (45)3 is a combination of the final state of electron and photon,

• Mapping (35)4 is a combination of the final state of electron and photon,

• Mapping (34)5 is a combination of the final state of electron and muon.

Mapping illustrates the different sets of momenta. It is not only cross-checked against the
numerical results of an observable quantity in the certain scattering process but also the
improving efficient convergence rate if we find out the best mapping.

3.2.1 Mapping (45)3

Mapping (45)3 has already been constructed in Section 2.3 where the formula of the
cross-section Eq. (2.60) and the set of kinematical variables have been provided. Besides,
the set of momenta in the R12 frame has been established in Section 2.4.

3.2.2 Mapping (35)4

The total cross-section of eµ→ eµγ scattering based on Eq. (2.58) is:

σ =
1

Z

∫
(2π)4|M|2δ4(p1 + p2 − p3 − p4 − k)

d3p3

(2π)32E3

d3p4

(2π)32E4

d3k

(2π)32k0
. (3.6)

Using the familiar identity to decompose the 2→ 3 process into two parts by:

1 =

∫
ds35

∫
d3p35

2E35

δ4(p35 − p3 − k), (3.7)

where

s35 = (p3 + k)2. (3.8)

We take the similar procedure to obtain the total cross-section in Section 2.3 and Eq. (2.59).
Then, we can derive the total cross-section σ in the mapping (35)4 as:

σ =
1

4(2π)5|p1|
√
s12

∫ (
√
s12−mµ)2

m2
e

ds35

[∫ 1

−1
d cos θ14

∫ 2π

0

dφ14

λ1/2(s12,m
2
µ, s35)

8s12

]

×
[∫ 1

−1
d cos θ35

∫ 2π

0

dφ35
λ1/2(s35,m

2
e,m

2
k)

8s35

]
|M|2, (3.9)
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where Ω14 = (cos θ14, φ14) is the solid angle describing the orientation of p4 with
respect to p1 in the CMS of process p1 + p2 → p4 + p35 and Ω35 = (cos θ35, φ35) describes
the orientation of p3 in the rest frame of process p′35 → p′3 + k′.

According to the procedure of generating the set of momenta in Section 2.4, we now
construct the formulas to compute energies and momenta in mapping (34)5.
The value of the total energy and momentum of the incoming muon and the electron are
obtained from Eq. (2.66) to Eq. (2.68) by replacing (m1, m2) into (me, mµ), respectively.
In the CMS of process p1 + p2 → p4 + p35:

|p4| =
λ1/2(s12,m

2
µ, s35)

2
√
s12

, (3.10)

E4 =
s12 +m2

µ − s35
2
√
s12

, (3.11)

E35 =
√
s12 − E4. (3.12)

So, the set of momenta is:

p1 = (E1,p1) = (E1, 0, 0, |p1|), (3.13)

p2 = (E2,p2) = (E2, 0, 0,−|p1|), (3.14)

p4 = (E4,p4) = (E4, |p4| sin(θ14) sin(φ14), |p4| sin(θ14) cos(φ14), |p4| cos(θ14)), (3.15)

p35 = (E35,p35)

= (E35,−|p4| sin(θ14) sin(φ14),−|p4| sin(θ14) cos(φ14),−|p4| cos(θ14)). (3.16)

In the rest frame of p′35, the energy and momentum is:

|p′3| =
λ1/2(s35,m

2
e,m

2
k)

2
√
s35

, (3.17)

E ′3 =
s35 +m2

e −m2
k

2
√
s35

, (3.18)

k′0 =
√
s35 − E ′3. (3.19)

The set of momenta is:

p′35 = (E ′35,p
′
35) = (E ′35, 0, 0, 0) = (

√
s35, 0, 0, 0), (3.20)

p′3 = (E ′3,p
′
3) = (E ′3, |p′3| sin(θ35) sin(φ35), |p′3| sin(θ35) cos(φ35), |p′3| cos(θ35)), (3.21)

k′ = (k′0,k
′)

= (k′0,−|p′3| sin(θ35) sin(φ35),−|p′3| sin(θ35) cos(φ35),−|p′3| cos(θ35)). (3.22)

Then we transform the p′3 and k′ into the CMS of p1 + p2 by the Lorentz transformation
in the similar fashion in Section 2.4.

3.2.3 Mapping (34)5

In the mapping (34)5 we define the invariant mass squared as:

s34 = (p3 + p4)
2. (3.23)
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And the solid angle Ω15 = (cos θ15, φ15) present the orientation of k around a beam axis
p1 in the CMS frame of p1 + p2 → k + p34 and Ω34 = (cos θ34, φ34) is the solid angle of
orientation of p′3 in the rest frame of process p′34 → p′3 + p′4.
The total cross-section in the mapping (34)5 is:

σ =
1

4(2π)5|p1|
√
s12

∫ s12

(me+mµ)2
ds34

[∫ 1

−1
d cos θ15

∫ 2π

0

dφ15

λ1/2(s12,m
2
k, s34)

8s12

]
×
[∫ 1

−1
d cos θ34

∫ 2π

0

dφ34

λ1/2(s34,m
2
e,m

2
µ)

8s34

]
|M|2. (3.24)

From the similar procedure in Subsection 3.2.2, we have the following formulas of energy
and momentum of particles in two reference frames (R12 and R34) and the set of momenta.
In the CMS of p1 + p2 → k + p34:

|k| = λ1/2(s12,m
2
k, s34)

2
√
s12

, (3.25)

k0 =
s12 +m2

k − s34
2
√
s12

, (3.26)

E34 =
√
s12 − k0. (3.27)

The set of momenta is given by:

p1 = (E1,p1) = (E1, 0, 0, |p1|), (3.28)

p2 = (E2,p2) = (E2, 0, 0,−|p1|), (3.29)

k = (k0,k) = (k0, |k| sin(θ15) sin(φ15), |k| sin(θ15) cos(φ15), |k| cos(θ15)), (3.30)

p34 = (E34,p34)

= (E34,−|k| sin(θ15) sin(φ15),−|k| sin(θ15) cos(φ15),−|k| cos(θ15)).
(3.31)

In the rest frame of p′34 of process p′34 → p′3 + p′4:

|p′3| =
λ1/2(s34,m

2
e,m

2
µ)

2
√
s34

, (3.32)

E ′3 =
s34 +m2

e −m2
µ

2
√
s34

, (3.33)

E ′4 =
√
s34 − E ′3. (3.34)

The set of momenta is:

p′34 = (E ′34,p
′
34) = (E ′34, 0, 0, 0) = (

√
s34, 0, 0, 0), (3.35)

p′3 = (E ′3,p
′
3) = (E ′3, |p′3| sin(θ34) sin(φ34), |p′3| sin(θ34) cos(φ34), |p′3| cos(θ34)), (3.36)

p′4 = (E ′4,p
′
4)

= (E ′4,−|p′3| sin(θ34) sin(φ34),−|p′3| sin(θ34) cos(φ34),−|p′3| cos(θ34)).
(3.37)

Finally, the analogous work in transformation p′3 and p′4 into the CMS of p1 + p2 follows
as in Section 2.4.
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3.3 Numerical Results

From the formula of the total cross-section that we have constructed in the previous
section. We see that there are two important parts: the matrix element squared and the
phase space integral. Before calculating the cross-section via BASES and VEGAS+, we
check the amplitude squared between different programs. Next, we compute the cross-
section with two cut-off conditions ∆E > 10−4

√
s/2 [GeV] and E3 > 0.2 [GeV] in the lab

frame in order to find the best phase space mapping. Finally, we present final results for
the cross-section with applied cut E3 > 0.2 [GeV] in the lab frame and ∆E > 10n

√
s/2

[GeV] (n = -2,-3,...,-6).

3.3.1 Data set

We use the same following parameters in BASES and VEGAS+:

• Mass of electron me = 0.1056583715 [GeV],

• Mass of muon mµ = 0.510998928 × 10−3 [GeV],

• Mass of photon mk = 0 [GeV],

• Constant k = 389.3793721 [GeV−2 µb] for converting from GEV−2 to µb,

• Fine structure constant α = 1/137.03599907430637,

• The energy of the incoming Muon in lab frame E = 150 [GeV],

• Using s = m2
µ +m2

e + 2meE [GeV−2] we get the colliding energy in the CMS:

ECMS =
√
s = 0.4055411581922807 [GeV].

3.3.2 Pre-Calculating

First, we check BASES and VEGAS+ at one phase space point in order to investigate
the accuracy of the square of amplitude with the set of momenta (the unit is GeV) given
by:

p1 = (0.1890069571768645, 0.0, 0.0, 0.1890062664076317);

p2 = (0.2165342010154162, 0.0, 0.0,−0.1890062664076317);

p3 = (7.1653021113101970× 10−2,−3.1654810669732455× 10−2,

− 6.3710439572897432× 10−2,−8.5350551036181589× 10−3);

p4 = (0.19453505093343165, 1.5691325908940491× 10−2,

0.10599426903523390,−0.12328500231798974);

k = (0.13935308614574704, 1.5963484760791957× 10−2,

− 4.2283829462336477× 10−2, 0.13182005742160791).
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Table 3.1: Comparison of |M|2 (the average factor 1/4 is included) between BASES,
VEGAS+ and FormCalc at one phase space point.

Feynman Amplitude Squared
BASES 554.99751645972185

VEGAS+ 554.99751645972481
FormCalc 554.997516459736

BASES and VEGAS+ use the squared amplitude produced by the FORM code in
Appendix C.0.3. FormCalc [14] generates the squared amplitude automatically using the
FeynArts [15]. The FormCalc result is provided by Dr. Le Duc Ninh.

We now introduce the definition of variation (VA) and relative error (RE) which help
to further comprehend not only the precision of numerical results but also comparison of
different calculations.
If two observables have the numerical representation K1 = K1 + ε1 and K2 = K2 + ε2. In
which Ki(i = 1, 2) are the mean values and εi are the absolute errors. The VA between
K1 and K2 is obtained by the relation:

VA =

∣∣K1 −K2

∣∣√
ε21 + ε22

[sigma]. (3.38)

If VA ≤ 2 then we say that the two results agree well.
An individual measurement has the result K = K + ε. The RE is defined as:

RE =
ε× 100

K
[%]. (3.39)

The RE is a measure of precision. It presents how accurate a measurement is compared
to the true value. The RE often write in the part per million (ppm) unit:

RE =
ε× 106

K
[ppm]. (3.40)

Second, we compute the cross-section to check generating the set of momenta. We use
the following conditions:

• The energy of the emission photon ∆E > 10−4
√
s/2 [GeV],

• The energy of the outgoing electron E3 > 0.2 [GeV] in lab frame.

Table 3.2: Comparison the cross-section in the hard-photon region between BASES and
VEGAS+ at the same 107 points. The VA is computed with respect to the mapping
(34)5.

Mapping (34)5 Mapping (35)4 Mapping (45)3
BASES 388.73(24) 387.74(80) 388.46(89)
RE [%] 0.0678 0.2067 0.2303

VA [sigma] 0 1.1882 0.2874
VEGAS+ 388.653(35) 388.27(14) 388.61(15)

RE [%] 0.0090 0.0361 0.0386
VA [sigma] 0 2.6540 0.2792
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Based on computing the cross-section in the hard-photon region, we find that the mapping
(34)5 has the lowest RE not only in the VEGAS+ but also in the BASES.

3.3.3 Main result

Finally, we use the cut-off condition in the hard-photon region and the energy of the
outgoing electron in lab frame:

• The energy of the emission photon ∆E > 10n
√
s/2 [GeV] (n = −2,−3, . . . ,−6),

• The energy of the outgoing electron E3 > 0.2 [GeV] in lab frame.

The cross-section at NLO is obtained by Eq. (3.2):

σQED
NLO = σLO + σvirt + σsoft(α

3,∆E) + σhard(α3,∆E), (3.41)

where the cross-section at LO (using Mathematica):

σLO = 1265.0603541 [µb]. (3.42)

Table 3.3: Summary of the cross-section of the hard-photon corrections σhard [µb] by
VEGAS+ using the mapping (34)5; the cross-section of the virtual and soft-photon
corrections σvirt + soft [µb] and the cross-section at NLO QED corrections σQED

NLO [µb] at
different n.

n σhard [µb] σvirt + soft [µb] σQED
NLO [µb] RE σQED

NLO [ppm]
-2 209.1694(24) -138.5914(16) 1335.6384(29) 2.17
-3 298.7590(36) -228.5453(26) 1335.2741(44) 3.30
-4 388.6780(49) -318.4989(37) 1335.2395(61) 4.57
-5 478.6436(66) -408.4527(47) 1335.2513(81) 6.07
-6 568.6031(77) -498.4066(57) 1335.2569(96) 7.19

Then, we calculate the relative corrections of the cross-section at the NLO
(considering n = -4 in Table 3.3) to the cross-section of eµ→ eµ scattering:

δNLO =
σQED
NLO − σLO
σLO

× 100 [%] (3.43)

=
1335.2394− 1265.0603

1265.0603
× 100 ≈ 5.5475 [%]. (3.44)
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Figure 3.5: Dependence of the cross-section with respect to the parameter n which relates
to the energy of the photon ∆E = 10n

√
s/2 [GeV].

In Fig. 3.5, the sum of the cross-section σhard and σvirt + soft is independent of ∆E.
This result is consistent with our expectation.
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Figure 3.6: The LO and NLO QED differential cross-sections of the eµ → eµ process
as functions of the electron scattering angle cos θ13 (left plot) and the muon scattering
angle cos θ24 (right plot). The ratio of the NLO and LO (left) and relative NLO QED
corrections (right) are shown in the lower panels.

In Fig. 3.6, we show that the effect of NLO corrections to the differential cross-section
(left plot) in the region of the −1.0 ≤ cos θ13 ≤ 0.0 is large. Especially, in the very small
region (near -1.0) NLO result approximates ten times the LO one. In case cos θ24 (right
plot), the correction is much smaller than the cos θ13 (lower than 20 [%]).
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Figure 3.7: The LO and NLO QED differential cross-sections of the eµ → eµ process as
functions of the squared momentum transfer t13 = (p1−p3)2 (left plot) and t24 = (p2−p4)2
(right plot). The relative NLO QED corrections are shown in the lower panels.

In Fig. 3.7, we see that the NLO corrections to the differential cross-section as a
function of the squared momentum transfer t13 (left plot) and t24 (right plot) are small
(less than 10 [%]).



CHAPTER

FOUR

CONCLUSION AND OUTLOOK

Conclusion

In this work, we have computed the cross-section of the bremsstrahlung process
e(p1) +µ(p2)→ e(p3) +µ(p4) +γ(k) in QED theory. This result together with the virtual
+ soft-photon corrections from Le Duc Truyen’s thesis [6] gives the following NLO result:

σQED
NLO = 1335.2395± 0.0061 [µb],

with the cut on the energy of the final state electron E3 > 0.2 [GeV] in the laboratory
frame. The precision is 4.57 ppm obtained after 7 hours running the VEGAS+ code
(using one core of the computer: Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz).

To achieve this result, we use the newest version of VEGAS+ 4.0.3 and computed the
cross-section without any approximations. Besides, we have constructed the three phase
space mappings that are useful for cross checking numerical results. We have found that
the mapping (34)5 gives the best precision.

We have also checked that the final NLO cross-section is independent of the soft-photon
cut-off parameter ∆E.

Outlook

The next step is taking into account the pure weak contributions to obtain the full
NLO results in the Standard Model.

24



APPENDIX

A

WICK THEOREM

A.0.1 Wick theorem

Considering S-matrix contain information about scattering transition probability [11]
is:

S(n) =
∞∑
i=0

(−i)n
n!

∫ ∞
−∞

. . .

∫ ∞
−∞
T {HI(t1)HI(t2) . . . HI(tn)} d4x1 d4x2 . . . d

4xn . (A.1)

In QED, the interaction Hamiltonian HI(t) = eψ̄γµψAµ. In the expansion of S-matrix
contain the time ordered operator T , in terms of which contain the normal ordered. The
normal product operator is the procedure that putting all destruction operator in the
right hand side of the creation operator. The time ordered operator is another differently
which move all operator at the early time in right of operator in the later time, this cause
the contrary between two operators. For this, we need the relation connection them which
is Wick’s theorem [16].

Consider the Wick’s theorem in case two scalar fields. Based on the definition of time
ordered operator:

T [φ(x)φ(x′)] ≡ Θ(t− t′)φ(x)φ(x′) + Θ(t′ − t)φ(x′)φ(x). (A.2)

We have to write the right hand side (RHS) of Eq.(A.2) in term of normal product. It
can be done by rewriting:

φ(x) = φ+(x) + φ−(x). (A.3)

where φ+(x) contains the annihilation operator and φ−(x) contains the creation operator
in written explicitly.

φ+(x) =

∫
d3p

(2π)3
1√
2E

e−ipxap, φ−(x) =

∫
d3p

(2π)3
1√
2E

eipxa+p . (A.4)

Based on the properties of the quantum state, the annihilation operator acting on vacuum
state and give the zero. We have:

φ+(x) |0〉 = 0, 〈0|φ−(x) = 0. (A.5)
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Then:

φ(x)φ(x′) = φ+(x)φ+(x′) + φ−(x)φ+(x′) + φ+(x)φ−(x′) + φ−(x)φ−(x′). (A.6)

The normal ordered operator : φ(x)φ(x′) : is the same form of Eq.(A.6) except the third
term:

: φ(x)φ(x′) : = φ(x)φ(x′)− φ+(x)φ−(x′) + φ−(x)φ+(x′) (A.7)

= φ(x)φ(x′)− [φ+(x), φ−(x)]−. (A.8)

If we take both side of Eq. (A.6) inside the vacuum expectation. In other word:

〈0|φ(x)φ(x′)|0〉 = 〈0|φ+(x)φ−(x′)|0〉 , (A.9)

since the remaining term is vanish according to Eq. (A.5), we can rewrite the Eq. (A.9)
by additional the extra term that annihilation the vacuum state:

〈0|φ(x)φ(x′)|0〉 = 〈0|φ+(x)φ−(x′)− φ−(x′)φ+(x)|0〉 (A.10)

〈0|φ(x)φ(x′)|0〉 = 〈0|[φ+(x), φ−(x′)]−|0〉 . (A.11)

The vacuum expectation in Eq. (A.11) is a number because of the commutation relation
in the RHS is also a number. It make sense when putting all together into Eq. (A.8):

φ(x)φ(x′) =: φ(x)φ(x′) : + 〈0|[φ+(x), φ−(x′)]−|0〉 . (A.12)

Taking both side of Eq. (A.12) by time ordered operator we get:

T [φ(x)φ(x′)] =: φ(x)φ(x′) : + 〈0|T [φ+(x), φ−(x′)]−|0〉 . (A.13)

The RHS of Eq. (A.13) contain the time ordering product of two field. It quantity can
be rewritten simple by Wick contraction:

〈0|T [φ+(x), φ−(x′)]−|0〉 = φ(x)φ(x′). (A.14)

If they correspond to the same field. Get i times respect to the Feynman propagator [16]:

φ(x1)φ(x2) = i∆F (x1 − x2), (A.15)

φ(x1)φ
†(x2) = φ†(x2)φ(x1) = i∆F (x1 − x2), (A.16)

ψα(x1)ψβ(x2) = − ψβ(x2)ψα(x1) = iSFαβ(x1 − x2), (A.17)

Aµ(x1)Aν(x2) = iDF
µν(x1 − x2). (A.18)

A.0.2 Third-order of S-matrix

The Bremsstrahlung scattering:

e(p1) + µ(p2)→ e(p3) + µ(p4) + γ(k) (A.19)

where the initial and final state is defined as:

|p1p2〉 =
√

2E1

√
2E2a

†s1
p1
a†s2p2
|0〉 , (A.20)

〈p3p4k| = 〈0|
√

2E3

√
2E4

√
2k0a

s3
p3
as4p4

aλk. (A.21)
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From the interaction term in Eq. (1.2):

Lint = −eψ̄(x)γµψ(x)Aµ(x), (A.22)

The first non-trivial contribute to amplitude obtained with the S(3). We have the formula
of amplitude scattering is:

〈p3p4k|S(3) − 1|p1p2〉 = limT→∞ 〈p3p4k|T
[
exp

(
−i
∫ T

−T
dtHi

)]
|p1p2〉 . (A.23)

where Hi = e
∫

d3x
(
ψ̄xeγ

αψxeA
x
α + ψ̄xµγ

αψxµA
x
α

)
. We have:

〈p3p4k|S(3) − 1|p1p2〉 =

〈p3p4k|
1

3!
(−ie)3

∫
d4x d4y d4z T {[

(
ψ̄xeγ

αψxeA
x
α + ψ̄xµγ

αψxµA
x
α

)
×
(
ψ̄yeγ

βψyeA
y
β + ψ̄yµγ

βψyµA
y
β

)(
ψ̄zeγ

νψzeA
z
ν + ψ̄zµγ

νψzνA
z
ν

)
]} |p1p2〉

= iM(2π)4δ4(pi − pf ).

(A.24)

Among the eight terms occurring in Eq. (A.24) and considering the symmetry of x,y,z.
So, we reduce the factor 1/3 and get two terms contribution to the scattering A.19:

ψ̄xeγ
αψxeA

x
αψ̄

y
eγ

βψyeA
y
βψ̄

z
µγ

νψzµA
z
ν , (A.25)

ψ̄xµγ
αψxµA

x
αψ̄

y
µγ

βψyµA
y
βψ̄

z
eγ

νψzeA
z
ν . (A.26)

Then third-order S-matrix expand:

〈p3p4k|S(3) − 1|p1p2〉 =

(−ie)31

2

∫
d4x d4y d4z 〈p3p4k| T {[ψ̄xeγαψxeAxαψ̄yeγβψyeAyβψ̄zµγνψzµAzν

+ ψ̄xµγ
αψxµA

x
αψ̄

y
µγ

βψyµA
y
βψ̄

z
eγ

νψzeA
z
ν ]} |p1p2〉 .

(A.27)

where the field operator of the fermion field and the photon field [11]:

ψ(x) =

∫
d3p

(2π)3
√

2E

∑
s

(
aspu

s(p)e−ipx + b†sp v
s(p)eipx

)
, (A.28)

ψ̄(x) =

∫
d3p

(2π)3
√

2E

∑
s

(
a†sp ū

s(p)eipx + bspv̄
s(p)eipx

)
, (A.29)

A(x) =

∫
d3x

(2π)3
√

2k0

∑
λ

(
aλkε

λ(k)e−ikx + a†λk ε
∗λ(k)eikx

)
. (A.30)

We now analyze separately time ordering operator in Eq. (A.25):

T [ψ̄xeγ
αψxeA

x
αψ̄

y
eγ

βψyeA
y
βψ̄

z
µγ

νψzµA
z
ν ] = 2ψxeψ

y

eA
x
αA

z
ν× : ψ̄xeγ

αγβψyeA
y
βψ̄

z
µγ

νψzµ :

+ 2ψxeψ
y

eA
y
βA

z
ν× : ψ̄xeγ

αAxαγ
βψye ψ̄

z
µγ

νψzµ :,
(A.31)
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And similarly in Eq. (A.26)

T [ψ̄xµγ
αψxµA

x
αψ̄

y
µγ

βψyµA
y
βψ̄

z
eγ

νψzeA
z
ν ] = 2ψxµψ

y

µA
x
αA

z
ν× : ψ̄xµγ

αγβψyµA
y
βψ̄

z
eγ

νψze :

+ 2ψxµψ
y

µA
y
βA

z
ν× : ψ̄xµγ

αAxαγ
βψyµψ̄

z
eγ

νψze : .
(A.32)

The factor 2 derive from the analogous perturbation of the fermion operator. Then we
take out the factor 1/2 in Eq. (A.32) Taking the first term in the right hand side (RHS)
of Eq. (A.31) into the initial and final states of the scattering (A.19), we obtain:

I = 〈p3p4k|ψxeψ
y

eA
x
αA

z
ν× : ψ̄xeγ

αγβψyeA
y
βψ̄

z
µγ

νψzµ :|p1p2〉 =

(−ie)3
∫

d3q1√
2Eq1

d3q2√
2Eq2

d3q3√
2Eq3

d3q4√
2Eq4

d3k′√
2k′0

∫
d4x d4y d4z

×
√

2Ep1

√
2Ep2

√
2Ep3

√
2Ep4

√
2Ek′

× 〈0|aλkas4p4
as3p3

ar3q3
ar1q1

aλ
′

k′a
r4
q4
ar2q2

as1p1
as2p2
|0〉

× (ūr3(q3)γ
αε∗λα

∫
d4q3
(2π)4

i

/q2 −me

γβur1(q1)

∫
d4q′

(2π)4
−igβν
q′21

ūr4(q4)γ
νur2(q2))

× eix(q3+k−q)eiy(q−q1−q′)eiz(q′+q4−q2).

(A.33)

Using the anticommutation relation of annihilation and creation operator of fermion field
and commutation relation of creation and destruction operator of photon field:{

arp, a
†s
q

}
= (2π)3δ3(p− q)δrs, (A.34)[

aλp, a
λ′

q

]
= (2π)3δ3(p− q)δλλ

′
. (A.35)

We have:

I = (−ie)3
∫

d3q1√
2Eq1

d3q2√
2Eq2

d3q3√
2Eq3

d3q4√
2Eq4

d3k′√
2k′0
×
∫

d4x d4y d4z

×
√

2Ep1

√
2Ep2

√
2Ep3

√
2Ep4

√
2Ek′

× (2π)3(p3 − q3)δs3r3(2π)3(p1 − q1)δs1r1(2π)3(p4 − q4)δs4r4(2π)3(p2 − q2)δs2r2

× (2π)3(k − k′)δλλ′

= [
d4q3
(2π)4

∫
d4q′

(2π)4
(ūr3(q3)γ

αε∗λα
1

/q2 −me

γβur1(q1)
gβν
q′21

ūr4(q4)e
iq4zγνur2(q2))]

× δ4(p3 + k′ − q)δ4(q − p1 − q′)δ4(q′ + p4 − p2).

(A.36)
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we get:

I = (−ie)3
∫

d3q1√
2Eq1

d3q2√
2Eq2

d3q3√
2Eq3

d3q4√
2Eq4

d3k′√
2k′0
×
∫

d4x d4y d4z

×
√

2Ep1

√
2Ep2

√
2Ep3

√
2Ep4

√
2Ek′

× (2π)3(p3 − q3)δs3r3(2π)3(p1 − q1)δs1r1(2π)3(p4 − q4)δs4r4(2π)3(p2 − q2)δs2r2

× (2π)3(k − k′)δλλ′

= [
d4q3
(2π)4

∫
d4q′

(2π)4
(ūr3(q3)γ

αε∗λα
1

/q2 −me

γβur1(q1)
−gβν
q′21

ūr4(q4)e
iq4zγνur2(q2))]

× δ4(p3 + k′ − q)δ4(q − p1 − q′)δ4(q′ + p4 − p2)

= (−ie)3(2π)4[ūr3(q3)γ
αε∗λα

1

/q2 −me

γβur1(q1)
gβν
q′21

ūr4(q4)γ
νur2(q2)]

× δ4(p3 − p1 + k + p4 − p2).

(A.37)

where: {
q2 = p3 + k,

q′1 = p2 − p4.

Then, one of the Feynman amplitude of eµ→ eµγ process is obtained from Eq. (A.24):

M2 = −ie3[ūr3(q3)γαε∗λα
1

/q2 −me

γβur1(q1)
gβν
q′21

ūr4(q4)γ
νur2(q2)]. (A.38)

Doing the flowing procedure above to obtain the remaining results. The second term of
Eq. (A.31) is:

M1 = ie3[ūr3(q3)γ
β 1

/q1 −me

γαε∗λα u
r1(q1)

gβν
q′21

ūr4(q4)γ
νur2(q2)], (A.39)

where:

q1 = p1 + k. (A.40)

The first term of Eq. (A.32):

M3 = ie3[ūr4(q4)γ
β 1

/q3 −me

γαε∗λα u
r2(q2)

gβν
q′22

ūr3(q3)γ
νur1(q1)], (A.41)

where: {
q3 = p2 + k,

q′2 = p1 − p3.

And the last term of Eq. (A.32):

M4 = ie3[ūr4(q4)γ
αε∗λα

1

/q4 −mµ

γβur2(q2)
gβν
q′22

ūr3(q3)γ
νur1(q1)], (A.42)

where

q4 = p4 + k. (A.43)
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B

LORENTZ TRANSFORMATION

Consider two reference frames S defined by coordinates t, x, y, z; S’ and its coordinates
t′, x′, y′, z′ move relative to S with constant velocity v along side the z axis. The relationship
between two system of references is Lorentz transformation [12]. For simplicity, x, x’ and
y, y’ axis still parallel to each other, the time is synchronize at origin t′ = t = 0 and use
the natural unit ~ = c = 1 for all.

x′ = x, (B.1)

y′ = y, (B.2)

z′ = γ(z − vt), (B.3)

t = γ(t− vz), (B.4)

where γ is Lorentz factor.

γ = (1− v2)−1/2. (B.5)

If the relative velocity between two frames in arbitrary direction, generally form of Lorentz
transformation according to Ref. [12]:

w′ = w + γx

(
γv.w

γ + 1
− t
)
, (B.6)

t = γ(t− v.w). (B.7)

where w = (x, y, z).
Based on the theory of special relativity the three components of space x, y, z and time t
construct the four-vector xµ = (x0, x1, x2, x3) = (t, x, y, z). Under Lorentz transformation
any four-vector aν = (a0, a1, a2, a3) transform like x Ref. [12]. Therefore, the Eq. (B.6)
and Eq. (B.7) is rewritten in terms of the four-momentum pµ = (E,p) is:

p′ = p + γx

(
γv.p

γ + 1
− E

)
, (B.8)

E ′ = γ(E − v.p). (B.9)

30
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According to Ref. [12], the momentum and energy are related to the velocity and Lorentz
factor is:

v =
p

E
, (B.10)

γ =
E

m
, (B.11)

vγ =
p

m
. (B.12)

Numerical simplification require change Eq. (B.8) and Eq. (B.9) into the matrix form
p′ = Lp, which L stand for Lorentz transformation matrix:

v = (vx, vy, vz) (B.13)

v2 = v2x + v2y + v2z (B.14)

p = (E, px, py, pz) (B.15)

p′ = (E ′, p′x, p
′
y, p
′
z) (B.16)

According to Ref. [17]:
E ′

p′x
p′y
p′z

 =


γ −γvx −γvy −γvz
−γvx 1 + (γ + 1)v

2
x

v2
(γ + 1)vxvy

v2
(γ + 1)vxvz

v2

−γvy (γ + 1)vxvy
v2

1 + (γ + 1)
v2y
v2

(γ + 1)vyvz
v2

−γvz (γ + 1)vxvz
v2

(γ + 1)vyvz
v2

1 + (γ + 1)v
2
z

v2



E
px
py
pz

 (B.17)
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VEGAS+, BASES AND FORM

C.0.1 VEGAS+

VEGAS+ is the computing multidimensional integral using the VEGAS+’s algorithm
Ref. [9]. The advantage of VEGAS+ is the function below the integration need not be
analytic or even continue.

From the technical point of view, we first analyze the important parameters when
working on VEGAS+ and how to improve the efficiency of convergence behavior by
controlling them.

For instance, the Python program compute the two-dimensional f(x, y) = xy, with
x = [0, 2], y = [0, 3] with VEGAS+.

Listing C.1: Python program define f(x)

import numpy as np
import vegas

#Define f ( x ) = xy wi th x [ 0 ] s tand f o r x
#and x [ 1 ] s tand f o r y
def f ( x ) :
para 1 = x [ 0 ]
para 2 = x [ 1 ]
r e s u l t = para 1 ∗ para 2

32
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Listing C.2: Main integration computing f(x)

return r e s u l t
#Main program of e s t i m a t i n g i n t e g r a l
#c a l l vegas and reg ion o f the i n t e g r a l . F i r s t b r a k e t i s
#the range o f x and second i s the range o f y
np . random . seed ( [ 1 , 2 ] )
i t e g = vegas . I n t e g r a t o r ( [ [ 0 . , 2 . ] , [ 0 . , 3 . ] ] )

#Training
#Step 1 −− adapt to f , d i s c a r d the r e s u l t
i t e g ( f , n i tn = 5 , neval = 1000 , alpha = 0 . 6 )

#C a l c u l a t i n g
#Step 2 −− i t e g has adapt to f , keep r e s u l t
r e s u l t = i t e g ( f , n i tn = 5 , neval = 1000 , alpha = 0 . 4 )
print ( ’ Ca l cu l a t ing ! ! ! ’ )
print ( r e s u l t . summary ( ) )

print ( ’ r e s u l t=%s ; Q=%.2 f ’ % ( r e s u l t , r e s u l t .Q) )

First we defined the integrand f(x, y) = xy in Listing (C.1) and then create the
integrator in Listing (C.2) , iteg, which is the integration operator that apply to the
two-dimensional function f(x, y). Finally, we apply to our integrated f(x), calling the
VEGAS+ to estimate the integral using nint = 10 iterations, each of which uses neval
= 1000 evaluations of the integrand. The line np.random.seed([1,2]) is fixed the random
number generate by VEGAS+ algorithm the value [1,2] is convenient choose for modifying
code or calculating the convergence rate of the phase space mappings not only different
points but also different nitn. The damping parameter alpha = 0.6 in training step and
alpha = 0.4 in integration step (the default value of alpha = 0.5) control the speed with
VEGAS+ adapts. We do the following steps for improving the results of VEGAS+:

1. Setting training integrator and discarding the result from the first run time is a
better efficient way because VEGAS+ can find the early peak and improve the
convergence adaption in the second time.

2. Setting the value of alpha is large (0.5 < alpha < 1.0) in the training step and
the slower alpha’s value (0 < alpha < 0.3) in the integration step, which makes
calculating integral is more efficient.

The result format by follow:

1. The call result.summary() returns a summary of results from each iteration.

2. The result.Q is p-value of the weighted average’s χ2,which is the probability that a
larger χ2 could result from random (Gaussian) fluctuations
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Listing C.3: VEGAS+ result

Ca l cu l a t ing ! ! !
i t n i n t e g r a l wgt average ch i2 / dof Q
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 8 . 982 (18 ) 8 . 982 (18 ) 0 .00 1 .00
2 8 . 994 (18 ) 8 . 988 (12 ) 0 .22 0 .64
3 8 . 971 (18 ) 8 . 982 (10 ) 0 .43 0 .65
4 9 . 018 (14 ) 8 . 9947(82 ) 1 .76 0 .15
5 9 . 006 (13 ) 8 . 9978(70 ) 1 .45 0 .21

r e s u l t =8.9978(70) ; Q=0.21

The first column represent the number of iterations, the next is the value of integrad
obtained by VEGAS+. The weight average (wgt average ) K̄ minimizes:

χ2 = chi2 =
∑
i

(Ki − K̄)

ε2i
(C.1)

Where Ki + εi are the result from individual iterations. If the Ki is Gaussian, χ2 should
be of the order of degree of freedom (The common choice is chi2/dof < 1.0). and Q choose
in the range [0.2, 0.9] (when any iteration has 0.0 ≤ Q ≤ 0.1 we have to discard the result
and reduce the value of alpha).

C.0.2 BASES

Similar to VEGAS+, BASES is also the multidimensional integral [8] but it is written
in FORTRAN language (VEGAS+ is in Python). In the early procedure, BASES do
the step ”Gird Optimize” that find the high probability distribution of the integration
function f(x), then adapt the grid to estimate integration.

Listing C.4: Fortran code in 2-dimensional integration

! Def ine the f u n c t i o n f ( x , y ) = x∗y

real ∗8 Function f ( x )
Implicit none
Integer , PARAMETER: : dim = 50 ! Maximum v a r i a b l e s us ing in BASES
real ∗8 x (dim)
real ∗8 xmax , xmin , ymax , ymin , jaco , x1 , x2
! x1 stand f o r x , x2 stand f o r y
xmax = 2d0
xmin = 0d0
ymax = 3d0
ymin = 0d0
! Change x i n t e g r a l in range [ 0 , 2 ] to [ 0 , 1 ]
! and y in range [ 0 , 3 ] to [ 0 , 1 ]
x1 = xmin + (xmax − xmin )∗x (1 )
x2 = ymin + (ymax − ymin )∗x (2 )

! Jacobian
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jaco = (xmax − xmin )∗ (ymax − ymin )
f = jaco ∗x1∗x2

End Function f
! Main program c a l c u l a t i n g i n t e g r a l

Program main
Implicit none
! Block s u b r o u t i n e and parameters us ing in BASES
Integer NDIMEN,NWILD
Integer∗8 NCALL
Integer ,PARAMETER: : MXDIM = 50
Integer IG(MXDIM) ,ITMX1,ITMX2

real ∗8 XL(MXDIM) ,XU(MXDIM)
real ∗8 ACC1,ACC2,CTIME
Integer IT1 , IT2
Integer ISEED FLAG, ISEED IN
Integer i

! common b l o c k s are used to pass in format ion to BASES
COMMON /BPARM0/ ISEED FLAG, ISEED IN
COMMON /BPARM1/ XL,XU,NDIMEN,NWILD, IG ,NCALL
COMMON /BPARM2/ ACC1,ACC2, ITMX1,ITMX2

real ∗8 f
external f

real ∗8 result , e r r o r
Print ∗ , ” He l lo World ! ! ! ”

! pass random−number seed to BASES
ISEED FLAG = 1 ! choose 1 to change the d e f a u l t
! Seed value , e l s e o t h e r w i s e
ISEED IN = 1 ! choose an i n t e g r a l number f o r seed
Print ∗ , ”ISEED IN =” , ISEED IN

!===> I n i t i a l i z a t i o n o f BASES by c a l l i n g BSINIT
CALL BSINIT

NDIMEN= 2 ! Numer o f v a r i a b l e s
NWILD = 2 ! Numer o f v a r i a b l e s are hard to i n t e g r a t e
NCALL = 1000 ! Number o f e v a l u a t i o n p o i n t s
ITMX1 = 10 ! number o f i t e r a t i o n s f o r f i n d i n g the g r i d
ACC1 = 2D−3 ! Expec ta t ion r e l a t i v e error in ”Grid Opt imizat ion ”
ITMX2 = 10 ! number o f i t e r a t i o n s f o r ” Fina l I n t e g r a t i o n s t e p ”
ACC2 = 1D−4 ! Expec ta t ion r e l a t i v e error in the I n t e g r a t i o n s t e p
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! Ranges f o r g e n e r a t i n g random numbers :
do i = 1 , NDIMEN
XL( i )= 0D0
XU( i )= 1D0
end do

! ! [ I n i t i a l i z a t i o n o f Histograms
! Nbin = 50 ! maximally 50 b i n s

! C a l l bases and c a l c u l a t i n g i n t e g r a l
ca l l BASES( f , result , e r ro r , CTIME, IT1 , IT2 )

Print ∗ , ” r e s u l t =” , result
Print ∗ , ” e r r o r =” , e r r o r

End Program main

The final result by BASES is:

Listing C.5: BASES result

Convergency Behavior f o r the I n t e g r a t i o n Step
IT Ef f R Neg Estimate Acc % Estimate(+− Error ) order Acc %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 100 0 .00 9 .006E+00 0 .378 9.005559(+−0.034033)E 00 0 .378
2 100 0 .00 9 .023E+00 0 .394 9.013977(+−0.024581)E 00 0 .273
3 100 0 .00 8 .992E+00 0 .347 9.005599(+−0.019313)E 00 0 .214
4 100 0 .00 9 .037E+00 0 .421 9.012053(+−0.017221)E 00 0 .191
5 100 0 .00 8 .989E+00 0 .327 9.006052(+−0.014857)E 00 0 .165
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
result = 9.0060516298778683
e r r o r = 1.4856700592820505E−002

The first column is the number of iteration. The Efficient (Eff) of an algorithm is the
percent of the certain points in the evaluation points for each iterations. The integral
result in a specific step in Estimate. The first Acc % represents the absolute error from
iteration to iteration or the variation of the present iteration to the next iteration. The
last Acc % is the relative error of individual steps of integrated computing.
The last Appendix C.0.3 is the Form code to calculate the amplitude squared of the
bremsstrahlung scattering.
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C.0.3 FORM

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Var iab l e s use in program ∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c func t i on Ub,Vb,m, eps , dotp ;
func t i on U,V;
funpowers a l l f unpower s ;
au todec l a r e vec to r p , h , k , q ;
au todec l a r e symbol d ;
index i , j , a l , be , ga ,mu, nu , rho , s i g ;
symbol mm, me, mm2, mm4, me2 , me4 ;
symbol Fac1 , Fac2 , Fac3 , Fac4 ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ proce s s e ( p1 ) + muon ( p2 ) > e ( p3 ) + muon ( p4 ) + gamma ( k ) ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗Fac1 = e ˆ3/(( p3 + k)ˆ2 − meˆ2)∗ ( p2 − p4 )ˆ2)
∗Fac2 = e ˆ3/(( p1 − k )ˆ2 − meˆ2)∗ ( p2 − p4 )ˆ2)
∗Fac3 = e ˆ3/(( p4 + k)ˆ2 − mmˆ2)∗ ( p1 − p3 )ˆ2)
∗Fac4 = e ˆ3/(( p2 − k )ˆ2 − mmˆ2)∗ ( p1 − p3 )ˆ2)

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ gamma( k ) ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ e ( p1 ) ∗∗∗∗∗∗∗>∗∗∗∗>∗∗∗∗∗∗∗∗∗∗>∗∗∗∗∗∗∗∗ e ( p3 ) ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ muon( p2 ) ∗∗∗∗∗∗∗>∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗>∗∗∗∗∗∗∗∗ muon( p4 ) ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
l o c a l [M1] = Fac2∗Ub(1 , p3 )∗ g (1 , be )∗ ( g (1 , p1 ) − g (1 , k ) + me)∗
g (1 , a l )∗U(1 , p1 )∗Ub(2 , p4 )∗ g (2 , be )∗U(2 , p2 ) ;
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ gamma( k ) ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ e ( p1 ) ∗∗∗∗∗∗∗∗>∗∗∗∗∗∗∗∗∗∗>∗∗∗∗>∗∗∗∗∗∗∗∗ e ( p3 ) ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ muon( p2 ) ∗∗∗∗∗∗∗>∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗>∗∗∗∗∗∗∗∗ muon( p4 ) ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
l o c a l [M2] = Fac1∗Ub(1 , p3 )∗ g (1 , a l )∗ ( g (1 , p3 ) + g (1 , k ) + me)∗
g (1 , be )∗U(1 , p1 )∗Ub(2 , p4 )∗ g (2 , be )∗U(2 , p2 ) ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ e ( p1 ) ∗∗∗∗∗∗∗>∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗>∗∗∗∗∗∗∗ e ( p3 ) ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ muon( p2 ) ∗∗∗∗∗∗∗>∗∗∗∗>∗∗∗∗∗∗∗∗∗∗>∗∗∗∗∗∗∗ muon( p4 ) ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ gamma( k ) ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
l o c a l [M3]= Fac4∗Ub(2 , p4 )∗ g (2 , be )∗ ( g (2 , p2 ) − g (2 , k ) + mm)∗
g (2 , a l )∗U(2 , p2 )∗Ub(1 , p3 )∗ g (1 , be )∗U(1 , p1 ) ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ e ( p1 ) ∗∗∗∗∗∗∗>∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗>∗∗∗∗∗∗∗ e ( p3 ) ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ muon( p2 ) ∗∗∗∗∗∗∗>∗∗∗∗∗∗∗∗∗∗>∗∗∗∗>∗∗∗∗∗∗∗ muon( p4 ) ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ gamma( k ) ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
l o c a l [M4] = Fac3∗Ub(2 , p4 )∗ g (2 , a l )∗ ( g (2 , p4 ) + g (2 , k ) + mm)∗
g (2 , be )∗U(2 , p2 )∗Ub(1 , p3 )∗ g (1 , be )∗U(1 , p1 ) ;

l o c a l [M1∗]= Fac2∗Ub(1 , p1 )∗ g (1 ,mu)∗ ( g (1 , p1 ) − g (1 , k ) + me)∗
g (1 , nu)∗U(1 , p3 )∗Ub(2 , p2 )∗ g (2 , nu)∗U(2 , p4 ) ;
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l o c a l [M2∗ ] = Fac1∗Ub(1 , p1 )∗ g (1 , nu )∗ ( g (1 , p3 ) + g (1 , k ) + me)∗
g (1 ,mu)∗U(1 , p3 )∗Ub(2 , p2 )∗ g (2 , nu)∗U(2 , p4 ) ;

l o c a l [M3∗ ] = Fac4∗Ub(2 , p2 )∗ g (2 ,mu)∗ ( g (2 , p2 ) − g (2 , k ) + mm)∗
g (2 , nu)∗U(2 , p4 )∗Ub(1 , p1 )∗ g (1 , nu)∗U(1 , p3 ) ;

l o c a l [M4∗ ] = Fac3∗Ub(2 , p2 )∗ g (2 , nu )∗ ( g (2 , p4 ) + g (2 , k ) + mm)∗
g (2 ,mu)∗U(2 , p4 )∗Ub(1 , p1 )∗ g (1 , nu)∗U(1 , p3 ) ;

∗ pr in t ;
. s o r t

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗Sum over p o l a r i z a t i o n vec to r i s −d ( al ,mu)∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
l o c a l amps = −([M1]+[M2]+[M3]+[M4] ) ∗ ( [M1∗ ]+[M2∗ ]+[M3∗ ]+[M4∗ ] )∗
d ( al ,mu) ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Dirac equat ion in momentum space ∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
id U(1 , h?)∗Ub(1 , h?) = g (1 , h) + me∗ g i ( 1 ) ;
id U(2 , h?)∗Ub(2 , h?) = g (2 , h) + mm∗ g i ( 2 ) ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗Trace Ca l cu l a t ing ∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Trace4 , 1 ;
Trace4 , 2 ;
. s o r t

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗On−s h e l l c ond i t i on ∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
id p1 . p1 = me2 ;
id p2 . p2 = mm2;
id p3 . p3 = me2 ;
id p4 . p4 = mm2;
id k . k = 0 ;
∗ pr in t amps ;
. s o r t

repeat ;
id k = p1 + p2 − p3 − p4 ;
id p1 . p1 = me2 ;
id p2 . p2 = mm2;
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id p3 . p3 = me2 ;
id p4 . p4 = mm2;
endrepeat ;
. s o r t

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗Change to convenient v a r i a b l e s ∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
id mmˆ4 = mm4;
id meˆ4 = me4 ;
id meˆ2 = me2 ;
id mmˆ2 = mm2;
id me2ˆ2 = me4 ;
id mm2ˆ2 = mm4;
id p1 . p2 = d12 ;
id p2 . p1 = d12 ;
id p1 . p3 = d13 ;
id p3 . p1 = d13 ;
id p1 . p4 = d14 ;
id p4 . p1 = d14 ;
id p2 . p3 = d23 ;
id p3 . p2 = d23 ;
id p2 . p4 = d24 ;
id p4 . p2 = d24 ;
id p3 . p4 = d34 ;
id p4 . p3 = d34 ;
format doub l e f o r t ran ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Print r e s u l t and format to f o r t r a n ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
pr in t amps ;
. end
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