Search for phenomena beyond the Standard Model in events with large *b*-jet multiplicity using the ATLAS detector at the LHC

Nguyen, Hoang Dai Nghia

February 4th, 2021

Contents

- Theoretical framework
 - Standard Model
 - Supersymmetry Model
- 2 Experimental setup
 - Large Hadron Collider
 - ATLAS detector
- 3 Search for new physics in fully hadronic final states
 - Analysis strategy
 - \bullet Multijet background estimation: $\mathrm{TRF}_{\mathrm{MJ}}$ method
 - Results
 - Conclusions

Standard Model (SM) of Particle Physics

- Quantum field theory under gauge symmetry group: • $SU(3)_C \times SU(2)_L \times U(1)_Y$
- Describes elementary particles and their interactions (strong and electroweak)
- Fundamental particles:
 - Fermions: quarks and leptons
 - Vector boson: gluons, Z and
 - bosons, photon
 - Scalar boson: Higgs boson
 - generate mass for fundamental particles
- Experimentally established with high precision
- Mass spectrum of SM particles ranging from O(eV) to ~ 173 GeV (

three generations of matter (fermions)

С

S

strange

105.67 MeV/c2

μ

muon

 ν_{μ}

muon

neutrino

<1.7 MeV/c²

1/2

charm

=1.275 GeV/c¹

1/2

mass =2.4 MeV/c¹

2/3 u

up

d

down

e

Ve

electron

neutrino

electron

=0.511 MeV/c

<2.2 eV/c³

EPTONS

=4.8 MeV/c DUARKS

Ш

t

top

b

bottom

τ

tau

ν

tau

neutrino

=1.7768 GeV/c

<15.5 MeV/c²

=125.09 GeV/c1

gluon

γ

photon

Z boson

W boson

=91.19 GeW/c

*80.39 GeV/4

H

SCALAR BOSOI

3/43

Higgs

BOSONS

BAUGE

=172.44 GeV/c

Standard Model (SM) of Particle Physics

- Quantum field theory under gauge symmetry group: $G(U(2)) \rightarrow GU(2) \rightarrow U(1)$
 - $SU(3)_C \times SU(2)_L \times U(1)_Y$
- Describes elementary particles and their interactions (strong and electroweak)
- Fundamental particles:
 - Fermions: quarks and leptons
 - Vector boson: gluons, Z and
 - [±] bosons, photon
 - Scalar boson: Higgs boson
 - generate mass for fundamental particles
- In 2012, the last piece of the particles in SM picture, the Higgs boson, has been discovered by the LHC

[arXiv:1207.7214]

The Higgs boson measurements

-60

09→2°, 09→2,

÷2*

- $m_H = 124.97 \pm 0.24 \text{ GeV}$
- Compatible with SM spin-0 and even parity prediction

*

Standard Model shortcomings

[arXiv:astro-ph/9909252]

[Matter-antimatter asymmetry]

- Regardless of the SM successes, some unsolved questions still remain:
 - Why is Higgs boson so light (so-called "naturalness" problem)?
 - What is the dark matter ($\sim 25\%$ total mass-energy of the universe)?
 - What is the origin of neutrino masses?
 - What is the origin of matter-antimatter asymmetry in our universe?
 - Is there unification of the forces?
- Many extensions of the SM have been developed to answer those questions

Top quark as a probe for new physics

• Top quark play an important role in any BSM theory

- Destabilizes the Higgs mass (so-called "naturalness" problem)
- Solved by BSM models which have top-partner: Supersymmetry, Composite Higgs models.

Supersymmetry (SUSY):

- Naturally stabilizes Higgs masss
- SUSY is a broken symmetry \rightarrow natural SUSY $m_{\tilde{t}} \leq O(1)$ TeV

Superpotential of Minimal Supersymmetric Standard Model (MSSM)

• The superpotential of MSSM can be separated into two parts:

$$\begin{split} W_{MSSM} &= \tilde{\bar{u}} \mathbf{y}_{u} \tilde{Q} H_{u} - \tilde{\bar{d}} \mathbf{y}_{d} \tilde{Q} H_{d} - \tilde{\bar{e}} \mathbf{y}_{e} \tilde{L} H_{d} + \mu H_{u} H_{d}, \\ W_{\mathcal{R}_{p}} &= \frac{1}{2} \lambda^{ijk} L_{i} L_{j} \bar{e}_{k} + \lambda^{'ijk} L_{i} Q_{j} \bar{d}_{k} + \mu^{'i} L_{i} H_{u} + \frac{1}{2} \lambda^{''ijk} \bar{u}_{i} \bar{d}_{j} \bar{d}_{k} \end{split}$$

• New symmetry R-parity:

$$R = (-1)^{3(B-L)+2S}$$

- B: Baryonic number
- L: Leptonic number
- S: Spin number

Superpotential of MSSM

• The superpotential of MSSM can be separated into two parts:

$$\begin{split} W_{MSSM} &= \tilde{\bar{u}} \mathbf{y}_u \tilde{Q} H_u - \tilde{\bar{d}} \mathbf{y}_d \tilde{Q} H_d - \tilde{\bar{e}} \mathbf{y}_e \tilde{L} H_d + \mu H_u H_d, \\ V_{\mathcal{R}_p} &= \frac{1}{2} \lambda^{ijk} L_i L_j \bar{e}_k + \lambda^{'ijk} L_i Q_j \bar{d}_k + \mu^{'i} L_i H_u + \frac{1}{2} \lambda^{''ijk} \bar{u}_i \bar{d}_j \bar{d}_k \end{split}$$

• New symmetry R-parity:

$$\mathsf{R} = (-1)^{3(\mathsf{B} - \mathsf{L}) + 2\mathsf{S}}$$

- B: Baryonic number L: Leptonic number
- S: Spin number

Superpotential of MSSM

• The superpotential of MSSM can be separated into two parts:

$$\begin{split} W_{MSSM} &= \tilde{\tilde{u}} \mathbf{y}_u \tilde{Q} H_u - \tilde{\tilde{d}} \mathbf{y}_d \tilde{Q} H_d - \tilde{\tilde{e}} \mathbf{y}_e \tilde{L} H_d + \mu H_u H_d, \\ W_{\vec{R}_p} &= \frac{1}{2} \lambda^{ijk} L_i L_j \bar{e}_k + \lambda^{'ijk} L_i Q_j \bar{d}_k + \mu^{'i} L_i H_u + \frac{1}{2} \boldsymbol{\lambda}^{''ijk} \bar{u}_i \bar{d}_j \bar{d}_k \end{split}$$

• New symmetry R-parity:

$$R = (-1)^{3(B-L)+2S}$$

- B: Baryonic number L: Leptonic number
- L: Leptonic numbe
- S: Spin number

R-parity violating (RPV) model

- Violate B or L
- Single sparticle production is possible
- LSP not necessary stable \rightarrow possibility for new signals
- MET not necessarily large

- Many constraints on SUSY
 searches disappear
- Top squark decays via λ_{323}'' favored by MFV

Top-squark RPV phenomenology and searches in ATLAS

• Top-squark is LSP

• Higssino $(\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ is LSP

•
$$m_{\tilde{t}} - m_{\chi^0,\chi^{\pm}} > m_t$$

Search for RPV decay of top squarks pair in events with multi-b-jets

For natural SUSY, a triplet of higssino-like states are LSP $(\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$

No leptonic final states can be used for this scenario Search for signal in events with high *b*-jet multiplicity

Theoretical framework

2 Experimental setup

- Large Hadron Collider
- ATLAS detector

3) Search for new physics in fully hadronic final states

4 Conclusions

The Large Hadron Collider (LHC) at CERN

- Circular collider of protons/ions
- Proton-proton (*pp*) collisions:
 - 2010-2012: $\sqrt{s} = 7,8$ TeV (Run 1)
 - 2015-2018: $\sqrt{s} = 13$ TeV (Run 2)
- Long shutdown in 2019 2020
 - Prepare for high luminosity increase
 - 2021-2023: $\sqrt{s} = 13/14$ TeV (Run 3)

ATLAS Luminosity Public

The Large Hadron Collider (LHC) at CERN

The ATLAS detector

- Multi-purpose detector:
 - Higgs boson physics
 - SM precision measurements
 - New physics searches

- 3 sub-components:
 - Inner detector (ID)
 - Calorimeters
 - Muon Spectrometer (MS)
- Large pp collisions dataset in Run 2, $L \sim 140 \ {\rm fb}^{-1}$

Overview of particles passage through ATLAS detector

- Electrons: Energy deposition in calorimeter and charged track in ID
- **Photons**: Energy deposition in calorimeter, no track in ID
- Muons: Combined track in ID and MS
- Jets: Energy deposition in calorimeters and charged tracks in ID
- MET: negative vectorial sum of selected physics objects and the soft term

Jet reconstruction and b-jet identification

- Jet reconstruction:
 - Quarks/ gluons \rightarrow fragmentation and hadronization \rightarrow collimated spray of particles, a jet
 - Jets reconstructed by $anti-k_t$ algorithm
- *b*-jet identification
 - $b\text{-hadrons travel few hundreds }\mu m$ before decay.
 - Impact parameter track resolution of $\sim 10~\mu{\rm m}$
 - Reconstructs the Secondary Vertex (SV) to identify *b*-jet
 - Multivariate *b*-tagging algorithm separates *b*-jet from light and *c*-jet

Theoretical framework

2 Experimental setup

Search for new physics in fully hadronic final states

- Analysis strategy
- \bullet Multijet background estimation: $\mathrm{TRF}_{\mathrm{MJ}}$ method
- Results

4 Conclusions

2) Experimental setup

3 Search for new physics in fully hadronic final states

- Analysis strategy
- \bullet Multijet background estimation: $\mathrm{TRF}_{\mathrm{MJ}}$ method
- Results

4 Conclusions

Signal and background processes

Nguyen Hoang Dai Nghia

RPV top squark production: Analysis strategy

- \geq 4 hadronic jets with $p_T > 120$ (140) GeV
- additional jets must have $p_{\rm T}>25~{\rm GeV},$ $|\eta|<2.5$
- \geq 2 *b*-tagged jets
- Events containing leptons are vetoed
- **Strategy**: Counting events in different jet and *b*-tagged jet multiplicity regions
- Top-quark backgrounds simulated by NLO MC generators
- \bullet Most dominant **multijet** background estimated by data-driven $({\rm TRF}_{\rm MJ})$ method

February 4th, 2021

22 / 43

Event categorization

• N_j : number of jets, N_b : number of b-tagged jets

Validation regions for $\mathrm{TRF}_{\mathrm{MJ}}$ method

- N_j : number of jets, N_b : number of *b*-tagged jets
- \bullet Validation regions (VR-MJ) based on $C_{\rm mass}~(H_T/M_{\rm jets})$ cut

Signal region definition

- N_j : number of jets, N_b : number of b-tagged jets
- Signal regions: $N_j \ge 6$ and $N_b \ge 4$

Model-independent test setup

- N_j : number of jets, N_b : number of b-tagged jets
- Discovery regions: $(N_j \ge 8, N_b \ge 5)$ and $(N_j \ge 9, N_b \ge 5)$

Experimental setup

Search for new physics in fully hadronic final states

- Analysis strategy
- \bullet Multijet background estimation: $\mathrm{TRF}_{\mathrm{MJ}}$ method
- Results

4 Conclusions

Tag-Rate-Function multijet: TRF_{MJ} data-driven method

- TRF_{MJ} predicts the *b*-tagged jet spectrum of multijet events:
 - Based on the probability of b-tagging a jet in events with 2 (ε₂) and 3 (ε₃) b-tagged jets estimated in 5 jets events
 - After removing 2 (3) jets with highest b-tagging weight, ε_2 (ε_3) derived as a function of:
 - p_T/H_T and minimum angular distance between the jet and the removed b-tagged jets

Starting from a sample with $N(\geq 2b)$:

 $N(2b) = \sum_i P^{2b}(i)$, where $P^{2b}(i) = \prod_{j \neq b_1, b_2}^{N_i} (1 - \varepsilon_2(j))$

for $N(3b), N(4b), N(\geq 5b) \varepsilon_2$ and ε_3 used in combination

Validation of $\mathrm{TRF}_{\mathrm{MJ}}$ method in VR-MJ in data

• Number of predicted multijet events with $N_j \ge 6$ and $N_b = 3$ or $N_b = 4$

- $C_{\text{mass}}^{\text{max}}$: region dependent upper cut on C_{mass}
 - $\bullet\,$ Signal contamination less than 5%
- Systematic uncertainties are represented by the blue hatched area

Nguyen Hoang Dai Nghia

Validation of TRF_{MJ} method in Z + jets events

- VR-ZJ event selection:
 - Single isolated lepton trigger (e, μ)
 - 2 opposite-sign same flavor leptons $p_{\rm T}>$ 27 GeV
 - $m_{l^{\pm}l^{\mp}} > 60~{\rm GeV}$
 - ullet \geq 5 jets with p_{T} > 25 GeV
 - \geq 2 *b*-tagged jets
- TRF_{MJ} is derived and applied to estimate the spectrum of number of *b*-tagged jets in VR-ZJ
 - Overall agreement within uncertainties
- $\bullet \ {\rm TRF}_{\rm MJ}$ systematic uncertainties derived in MC dijet events
 - Max between residual non-closure and statistical uncertainty in each N_j, N_b

$\mathrm{TRF}_{\mathrm{MJ}}$		$N_{ m b}$		
uncertainty		4	\geq 5	
$N_{ m j}$	6	9%	27%	
	7	9%	30%	
	8	13%	18%	
	\geq 9	16%	14%	

Search for new physics in fully hadronic final states

- Analysis strategy
- Multijet background estimation: TRF_{MJ} method
- Results

Statistical model

• Profile-likelihood fit is performed on 8 SRs

$$\mathcal{L}(N^{\mathsf{data}}|\mu, \boldsymbol{\theta}) = \prod_{i \in bins} \mathcal{P}(N_i^{data}|\mu s_i(\boldsymbol{\theta}) + b_i(\boldsymbol{\theta})) \Gamma(\theta_i^{\mathsf{stat}}) \prod_{k \in \mathsf{systematics}} \mathcal{N}(\theta_{ki}^{\mathsf{sys}})$$

Impact of systematics on μ

- $\bullet\ TRF_{MJ}$ normalization uncertainty: non-closure as found in MC dijet events
- $t\bar{t}$ +jets modeling uncertainties: parton shower (PS), generator (Gen) and initial and final-state radiation (ISR, FSR)
- 50% uncertainties on cross-section of $t\bar{t}+\geq 1b$ and $t\bar{t}+\geq 1c$ backgrounds
- Jets experimental uncertainties: jet energy scale (JES), jet energy resolution (JER), jet vertex tagging (JVT)
- *b*-tagging uncertainties

Model-independent results

• Fitted background yields in $(N_j \ge 8, N_b \ge 5)$ and $(N_j \ge 9, N_b \ge 5)$ signal regions

Process	$N_{\rm j} \ge$ 8, $N_{\rm b} \ge$ 5	$N_{ m j} \ge$ 9, $N_{ m b} \ge$ 5
Multijet	200 ± 40	123 ± 20
$t\bar{t} + \geq 1c$	0.6 ± 0.6	0.29 ± 0.33
$t\bar{t} + \ge 1b$	26 ± 20	$20~\pm~15$
$t\bar{t} + W$	0.11 ± 0.05	0.09 ± 0.04
$t\bar{t} + Z$	1.4 ± 0.7	0.8 ± 0.7
Wt	0.9 ± 0.8	0.9 ± 1.2
$t\bar{t}H$	3.7 ± 1.6	2.9 ± 1.4
Total background Data	$\begin{array}{r} 230 \pm 40 \\ 259 \end{array}$	$\begin{array}{c} 147 \pm 20 \\ 179 \end{array}$

- No significant excess observed
- Model-independent limits are set on the contribution of new phenomena to the signal-region yields.

Signal region	$\sigma_{ m obs}^{95}$ [fb]	$N_{\rm obs}^{95}$	$N_{\rm exp}^{95}$	$p_0(Z)$
$N_{ m j} \ge$ 8, $N_{ m b} \ge$ 5	0.76	105	85^{+30}_{-24}	0.24 (0.7)
$N_{ m j} \ge$ 9, $N_{ m b} \ge$ 5	0.54	75	52^{+20}_{-15}	0.11 (1.2)

Exclusion limits with BR($\tilde{t} \rightarrow b\chi^+(\chi^+ \rightarrow bbs)$) = 1

• For the signal model considered, set exclusion limits on $m_{\tilde{t}}$ up to 950 GeV

Exclusion limits for \tilde{H} LSP scenario

 $\bullet\,$ For the signal model considered, set exclusion limits on $m_{\tilde{t}}$ up to 950 GeV

- 1 Theoretical framework
- 2 Experimental setup
- 3 Search for new physics in fully hadronic final states

4 Conclusions

Conclusions

- SUSY is an elegant way to relate fermions and bosons and solving many SM shortcomings
 - $\bullet~$ Light top squark \rightarrow solution to the naturalness problem
- Extensive program to explore uncovered phase space for RPV models
 - $pp \to \tilde{t}\tilde{t}^* \to bbbs\bar{b}\bar{b}\bar{b}\bar{s}$ have been a blind spot for natural SUSY
- Search for RPV decay of top squarks pair production in 139 fb⁻¹ of ATLAS data:
 - $\bullet\,$ Strategy based on a profile likelihood based fit in different N_j and N_b
 - Multijet background estimated using TRF_{MJ} method. Validated in data and MC
 - No significant excess is observed
 - Model-independent observed limit on BSM cross-section is 0.54 fb in (≥9j,≥5b)
 - Observed (Expected) 95% CL exclusion limit is set for top squark mass up to 0.95 TeV (1 TeV)
- More information in 2010.01015

THANK YOU FOR YOUR ATTENTION

BACK UP

Multijet background esatimation: $\mathrm{TRF}_{\mathrm{MJ}}$ method

- $\bullet~TRF_{\rm MJ}$ based on the probability of $\mathit{b}\text{-tagging}$ a jet in multijet events
 - Starting from events with the number of *b*-tagged jets $N_b \ge 2$, one can predict the *b*-tagged jet spectrum of multijet events at high jet multiplicity

Deriving *b*-tagging probability ε_2 and ε_3 in data

- ε_2 and ε_3 are derived in 5 jets events
 - Low signal contamination and close to search regions
 - MC backgrounds are subtracted from data when estimating ε_2 and ε_3
- Parametrization with respect to:
 - $p_{\rm T}/H_{\rm T}$
 - ΔR_{\min} : minimum ΔR between jet and highest *b*-tagging weight jets

$\mathrm{TRF}_{\mathrm{MJ}}$: Predicting *b*-tagging spectrum

- Take as example events with (5 jets, ≥2 b-tags)
 - Remove 2 jets with highest *b*-tagging weight
- b-tagged probability of a jet i-th:
 ε_{MJ}(i)
- Probability to have 3 btag : $P_3 = \prod_{i=1}^{3} \varepsilon_{\rm MJ}(i)$
- Probability to have 0 btag : $P_0 = \prod_{i=1}^{3} (1 - \varepsilon_{MJ}(i))$
- Probability to have 1 btag : $P_1 = \sum_{j=1}^{3} \left(\varepsilon_j \prod_{i \neq j} (1 - \varepsilon_i) \right)$

• Permutation is considered for P_2