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Introduction

The main purpose of this thesis is to calculate the relic density of the lightest neutralino, assumed to be
a DM candidate, in the NMSSM. All of the calculations of the relic density will take into account all possible
neutralino pair-annihilation into SM-like final states, with the lightest neutralino is chosen as the most propable
DM particle. Various approximations are made in order to achieve reasonable results, which can be compared
with cosmological data.

In the first chapter, we reexamined the astrophysical evidences which support the idea that a large amount
of dark matter should exists to compensate the missing mass distribution, as well as the basic properties deduced
from our observations. A well-known dark matter candidate so-called WIMP is mentioned with the reason why
WIMPs together with freeze-out mechanism are considered in many contexts as the very likely mechanism for
describing and explaining the nature of the DM.

Follows up the idea of DM is the calculation framework for the relic density of DM species in Chapter II
where we review the detailed derivation of the reformulation of the Boltzmann equation and examine carefully
various approximation schemes.

The next three chapters provide the basic descriptions of the Standard Model and its supersymmetric
extensions. A brief review of the Standard Model and its unsolved questions are presented in Chapter III,
which leads us to an extend the SM by incorporating a supersymmetry between fermions and bosons. Basic
constructions of a supersymmetric model using superspace and superfields language are represent in Chapter IV,
which will be used to build the simplest supersymmetric extension of SM namely the MSSM, and a modification
called NMSSM to solve the µ problem arising internally from the MSSM. The full Lagrangian, mass spectrum
and related quantities are considered in both models.

With the dark matter properties listed in the first chapter, a type of massive and electrically neutral
particle within the context of MSSM and NMSSM so-called neutralino is very well-suited as being a dark
matter candidate. Up to tree-level, we consider all possible 2 to 2 processes of neutralino pair annihilation into
SM-like particles in Chapter VI. The analytic expressions of scattering amplitude of all mentioned processes are
represented together with the analysis on their cross sections. Some tricks on the helicity amplitude method
are described at the beginning of this chapter and are implemented into the code.

Chapter VII discuss our numerical results for a particular parameter point. The public package FeynCALC
is used to generate and simplify helicity amplitudes which are then implemented in our private code. The
numerical integrals are taken care of by VEGAS algorithm from package CUBA due to its convergence rate,
especially when we deal with multidimensional integration range and the integrand contains multiple peaks due
to resonances.
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I
Dark Matter in the Universe

Outline

I.1 Observatory Evidences for Dark Matter . . . . . . . . . . . . . . . . . . . . . . 1

I.2 Basic Properties of Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . 3

I.3 Freeze-out Mechanism & WIMPs . . . . . . . . . . . . . . . . . . . . . . . . 5

Let us start by a brief discussion about the abundance of particles called dark matter (DM), whose existence
has not been experimentally confirmed but plays an essential role in the answers of various questions related to
the formation of the Universe, as well as providing a reasonable explanation of other astronomical observations.

The main purpose of this chapter is to deliver a review of DM, evidences and motivations. We also represent
the common genesis mechanism of DM so-called freeze-out mechanism and a class of DM candidates namely
WIMPs. These are relevant to later discussion on the calculation framework of DM abundance as well as the
DM candidate we choose to proceed those calculations.

I.1 Observatory Evidences for Dark Matter
Here we want to have a bird’s eye view of the most well-known astronomical evidences of the DM. We would

not discuss them in detail, as there are many other works done that we mention in the references.

Peculiar motion of galaxy clusters

The very first evidence of dark matter came from the work of Fritz Zwicky [1] when he examined the Coma
galaxy cluster in 1933. Theoretically the velocity dispersion of galaxies can be related to the average mass of
the system using the virial theorem. He noticed that the outer members of the Coma cluster were moving far
too quickly to be merely tracing the gravitational potential of the visible cluster mass. His calculations showed
that if the Newtonian gravity governs the cluster kinematic then the measured velocities must corresponds to
a cluster mass of 400 times larger than the one inferred from the observed luminous matter. He proposed that
there exists a large amount of unseen matter which is called dark matter and popularized that terminology.

Rotation curves of spiral galaxies

The study of rotation curvers of the spiral galaxies confirmed further the existence of a large amount of
non-luminous matter. A rotation curve represents the evolution of the velocity of stars with respect to their
distance from the center of the galaxy. Assuming that the mass is spherically distributed in the considered
galaxy (meaning we ignore the contribution of the spiral arms), the Gauss Law indicates that the relation
between the radial velocity of a star which is moving under the gravitational effect of the given galaxy is

vrot =
√
GM(r)

r
, (I.1.1)

1



Observatory Evidences for Dark Matter

where r is the distance between the rotating object and the center of mass of the galaxy, G is the gravitational
constant and M(r) is the total mass distribution of the star. At large distance where majority of the galaxy
mass is enclosed, we expect the mass term M is no longer depend on r, yields the simple relation vrot ∝ r−1/2.

However, the work of V. C. Rubin and J. Ford, W. Kent on the rotation curve of Andromeda galaxies
([2]) showed a very slow decrease of rotational velocity with respect to the distance to the galaxy. In Ref. [3],
Bosma and his colleagues showed that the observed flatness of rotational curve cannot be solved by modifying the
relative weight of the diverse galactic components. It requires a new type of matter component to compensate
the missing mass in calculations. The mass distributionM(r) ∝ r can be introduced to solve the above flatness,
which is the expected relations from a self-gravitational gas of non-interacting particles.

Figure I.1: Comparison between rotation curve from the observation and the prediction based on the luminous
disk of the dwarf spiral galaxy M33, with the observed flat curve indicates that the presence of the DM within
the cluster. Figure taken from [4].

It should be mentioned that the discrepancies in velocity rotation curves could also arise by modifying
the Newtonian gravity. Such MOdified Newtonian Dynamics (MOND) theory, first suggested by M. Milgrom
(Ref. [5]), is proposed as an alternative to DM.

Gravitational lensing and the Bullet cluster

The gravitational lensing occurs when the light from a more-distant galaxy is bent around an massive object
before being observed. This phenomenon is predicted theoretically by the Einstein’s General Relativity, in
which the gravity of massive object distorts the space-time. This phenomenon is similar to the optical lensing
where light goes through inhomogeneous medium, creating a translated and distorted image of the distant light
source. The image of the more-distant galaxy looks like a ring, so-called the Einstein’s ring. Depending on
the ring radius the effect is classified as micro-, weak- or strong-lensing. All of them are exploited to find the
distribution of mass (both visible and invisible) in the Universe. Many past and current surveys such as Cosmic
Lens All-Skey Survey, Sloan Digital Sky Survey, Sloan Lens ACS have provided a lot of data which support
the idea that individual galaxy is built of baryonic material encased inside a much larger halo of dark matter.
Interestingly, the observed mas distribution shows that the visible matter concentrates at the core of the galaxy
and dominates over the dark matter, however the falls at large radius. This is consistent with requirements to
explain the flatness of rotation curves at the outer part of galaxies. For a comprehensive review of this effect
we refer the reader to, for instance, [6].

2



Basic Properties of Dark Matter

Figure I.2: An example of gravitational lensing effect of a galaxy cluster called Abell 370. Astronomers chose
Abell 370 as a target for Hubble because its gravitational lensing effects can be used for probing remote galaxies
that inhabited the early Universe. Source: https://hubblesite.org/image/4024/gallery/18-gravitational-lensing.

The observation of the Bullet Cluster provides the best current evidence for the nature of DM and disfavor
the MOND solutions. In observing the collision between two clusters of galaxies, the major ingredients of these
clusters behave differently during the collision. The stars of the galaxies (objects that emit visible light) is not
significantly affected by the collision, most of these are slowed down by the impact of gravity but its distribution
is not charged during and after the collision. In contrast, the intergalatic gases made up the majority of the
visible matter largely diffuse, heat up and emit X-ray. They seem to move slower compared to the stars and
concentrate at the center of the Bullet Cluster. Observations of mass distribution of the Bullet Cluster through
gravitational lensing shows that the dominant mass goes along with the galaxies and does not coincide with the
concentration of the intergalatic gases. This can only be explained by the dark matter halos which come along
with the galaxies and do not interact when two clusters collide.

I.2 Basic Properties of Dark Matter
Before moving to the searches of the DM candidate experimentally and the DM candidates from theoretical

perspective, we want to make a brief summary of the DM properties that we learn from the astrophysical
observations. Various results from measurements arguably suggest that suitable candidates for DM should be a
neutral, nonrelativistic, non baryonic and yet stable ones. This section represents the simple arguments as well
as astrophysical observations that lead to the claimed set of DM properties.

Electrically neutral & Collisionless

Dark matter is (possibly) a set of particles that do not absorb, reflect or emit photon, since such events are
detectable at some characteristic forms of radiation. DM particles thus generally believed to be electrically
neutral or at least are milicharged particles. Constraints on heavy millicharged particles are inferred from
cosmological and astrophysical observations (e.g [7]) give an upper bound on the charge ε as

ε ≤ 3.5× 10−7(MDM/GeV)0.58, (MDM > 1 GeV) (I.2.1)

which is more stringent than the upper bound from CMB [8]

ε ≤ 7.6× 10−4MDM/(TeV)1/2
. (I.2.2)

The same arguments apply for the interaction between the DM and ordinary matters; in some context this
property is referred as "collisionless". The DM particles collide with neutral atoms can lead to excitation or
even ionization if the colliding energy is sufficiently high.

Non-baryonic

3
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Basic Properties of Dark Matter

From the results of CMB, no more than 20% matter content is made of ordinary matters: atoms and
molecules, which are bound states of protons, neutrons and electrons. Protons and neutrons carry most of the
mass and is collectively named as baryonic matter. The rest 80% of matter content is an unknown non-baryonic
form, which refers to the non-baryonic DM problem. More specifically, measurements of anisotropies indicate
that the Universe is close to flat, hence the mass-energy density of the Universe must be equal to the critical
density ρc = 3H2

0/(8πG), where G is the Newton’s gravitational constant, and H0 is the present value of the
Hubble constant. It is useful to expressed the abundance of each type of matter and energy in unit of energy
density through the density parameter

Ωi = ρi/ρc, (I.2.3)

where i stands for baryonic matter, non-baryonic matter or energy density.

As mentioned in [9], the combination analysis of three types of observations: supernova measurements of the
recent expansion history of the Universe, cosmic microwave background measurements of the degree of spatial
flatness, and measurements of the amount of matter in galaxy structures obtained through big galaxy redshift
surveys, suggests the matter density Ωm ' 0.27, the energy density ΩΛ ' 0.73. The baryon density does not
exceed Ωb ' 0.05, then the remaining Ωm − Ωb ' 0.22 is of non-baryonic DM.

Figure I.3: Three measurements which determine the percentage of energy density, matter density and baryon
density. The black plus sign gives the best fit point obtained from the data [10]. Figure taken from Ref. [9].

Planck spacecraft observations of the CMB in 2013 gave a more accurate estimate of 68.3% dark energy,
26.8% dark matter and 4.9% ordinary matter (Ref. [11, Table 10]).

Long-lived

Since the footprint of the DM can still be observed nowadays through the gravitational effects in the cluster
of galaxies and its essential role for structure formation, DM is widely believed to be composed of stable or at
least long-lived particles with the lifetime exceeding the age of the Universe.

A wide class of stable DM candidates is proposed by models in which new discrete symmetry is imposed
to ensure that the lightest particle with an exotic charge is suitable as a DM candidate. For instance, we can
assume that all particles are either even or odd with respect to a specific discrete symmetry. The lighest odd
particle is stable since it cannot decay into lighter particles of the SM (that are assumed to be evenly charged).
Within the scope of the thesis, we will discuss about the supersymmetric extension of the SM with an extra
symmetry so called R-parity that distinguish between a SM particle and its superpartner. In the R-parity
conserved models, the lightest supersymmetric particle is chosen to be the DM candidate. More details will be
discussed in Chapter V and VI.
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Massive & non-relativistic

From the simulations of the early Universe, it is soon realized that the DM has to be non-relativistic (cold
dark matter, or CDM for short) at the epoch of structure formation (which is not necessarily true at present
time for formation of galaxies). Hot dark matter (HDM) has a larger free-streaming length than standard
cold dark matter, i.e the HDM particles travel with relativistic velocity, and the distance they travel before
becoming non-relativistic is larger than the scale of the density fluctuations required for galaxy formation ([12];
for neutrinos HDM see [13]). One thus conclude that HDM particles cannot constitute the majority of DM.

On the other hand, cold dark matter simulations at the galactic scales can lead to too much structuer in DM
haloes. A possible solution for this situation is warm dark matter (WDM). These particles are relativistic when
freezing-out, but becomes non-relativistic sufficiently quick after. With the WDM scenarios, the sub-galactic
structure formation is suppressed. A studying about the satellite galaxies in the Milky Way (Ref. [14]) shows
that WDM masses somewhat larger than 1 keV would yield a minimum dark matter halo mass consistent with
the mass scale being observed.

I.3 Freeze-out Mechanism & WIMPs

Decoupling & Freeze-out of particles

Astrophysical data have shown that the DM exists and constitues four fifth of the total matter in the
Universe at the present time. A question one can ask is how it was produced in the early Universe. There
are many proposals of the DM genesis mechanism, together with the DM candidates; for a review we refer the
readers to [7; 15]. In our study the DM candidate is the lighest supersymmetric particle, we therefore adopt
the most relevant production mechanism so-called freeze-out. All detailed calculations of DM relics will be
presented in Chapter II and Chapter VI; here we give a short introduction that motivates our study. Due to
its simplicity yet robustness, freeze-out mechanism is considered in many contexts as a very likely one to be
realized in nature. Let us go a little more detailed about decouplings and freeze-out of a particle species before
the discussion of the corresponding DM candidate so-called WIMPs as below.

The basic ideas are proceeded as follows. We consider a homogeneous and isotropic Universe which is well-
described by the FRW cosmological model (see Appendix D). Within this framework, our Universe expands
with the rate of expansion determined by the Hubble parameter H ≡ Ṙ/R with R is the scale factor corresponds
to the spatial coefficient of the FLRW metric. The DM species are assumed to be abundant and in the thermal
equilibrium (i.e both in kinetic and chemical equilibrium) with the thermal bath containing all other types of
particles in the early Universe, when the equilibrium temperature exceeds the mass mχ of the DM particle. The
kinetic equilibrium is maintained by the elastic scattering processes between the DM species and other type of
particles. A system of particles in kinetic equilibrium has the phase space occupancy given by the Bose-Einstein
or Fermi-Dirac distributions depends on its statistical nature:

f(p, T ) = 1
E(p)−µ(T )

T ± 1
, (I.3.1)

with the + sign for bosons and − sign for fermions; µ is the chemical potential of the given particles collection
and generally depends on temperature T . On the other hand, chemical equilibrium is achieved when the rate of
forward and backward reactions of a reversible process are at equal. With the given distribution one can derive
a full set of evolution equations for the density of each species i, which we will represent in the next chapter. It is
reasonable and intuitively to guess that the change of number density depends on two main factor: the dilusion
of the system due to the expansion of Universe characterized by rate of expansion H, and the collision processes
where the number of particles is not conserved, which is characterized by the interaction rate Γi = ni 〈σivi〉.
To a sufficiently good approximation, we can distinguish between two regimes based on the comparison of Γi
and H:

• Γi & H: particles of species i are being created and destroyed within a Hubble time; the collision term thus
dominates and the collection of particles of the given species evolves while remain in thermal equilibrium.

• Γi . H: the collision term cannot compensate the expansion of the Universe. The system then departs
from thermal equilibrium (i.e decouple from the thermal bath). The abundance of the species i (by
abundance here we mean the total number of particles within a comoving volume) remains nearly constant
of after decoupling, a phenomenon which is known as freeze-out.
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1 10 100

equilibrium

relativistic non-relativistic

freeze-out

relic density

Figure I.4: A schematic illustration of the freeze-out mechanism. Before freeze-out point, the number density
traces closely with the equilibrium one. The number density then begin to deviate from the equilibrium and
reaches a constant value after decoupling from thermal bath, while the equilibrium density is Boltzman supressed
with the factor e−m/T . Figure taken from [16].

WIMPs & the WIMP miracle

WIMPs stand for weakly interacting massive particles, which is a type of CDM candidate and is the
most frequently considered subject in studying about DM particles, corresponds to the WIMP miracle - a
simple mechanism of the dark matter generation in the early Universe. Here we give a brief review about
this mechanism: assuming the existence of heavy stable and neutral particle χ. Assuming χ interact weakly
with other particles, but the χχ annihilation rate is sufficiently large to keep χ in thermal equilibrium at
high temperature. When the temperature drops, at some point the species χ decouple from thermal bath and
"freeze-out", implying that the quantity nχ/s approaches a constant value 1 , where s is the entropy density. A
complete approximation scheme can be found in e.g [17]. The result on mass-to-entropy ratio yields

ρχ(T0)
s0

= mχ
nχ(T0)
s0

' ln (M∗Plmχσ0)√
g∗(Tf )MPlσ0(Tf )

. (I.3.2)

On the other hand, the mass-to-entropy ratio calculated via astronomical observations is

ρDM(T0)
s0

= ΩDMρc
s0

≈ 0.26× 5× 10−6 GeV cm−3

3000 cm−3 = 4× 10−10GeV. (I.3.3)

Comparing Eq. (I.3.2) and (I.3.3) one obtains the estimate on the order of the weighted annihilation cross
section:

σ0(Tf ) ≡ 〈σχv〉 (Tf ) ∼ 10−36(cm2), (I.3.4)

which is of order of weak scale interacion. This "coincidence" is referred as the WIMP miracle.

It is arguably that the most prominent and well-motivated WIMP candidate is the neutralino of a super-
symmetric extension of the standard model. These are the mass eigenstates of the basis containing two neutral
Higgsino and two neutral gauginos, which is a neutral particle that interact weakly with the rest of the particle
content. We will first represent the theoretical background of relic density calculations in Chapter II, next we
construct the basis of the NMSSM - a supersymmetric extension of SM, and finally focus on calculations of relic
density with the lighest neutralino being the studying objects in Chapter VI and VII.

1 This can be understand roughly as follows: after freezing out, the number of particles in a comoving volume is conserved; the
same holds for the total entropy in that volume. This implies their ratio remains constant after χ freezing-out, so as to the ratio
between number density and entropy density. More detailed discussion will be proceeded on the next chapter.
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As mentioned in the first chapter, many measurements has put constraints on the relic density of the DM.
Our next tasks are to represent a theoretical background for calculating the relic density of a general particle
species. The evolution of the number density of such species is described by the Boltzmann transport equation.
Using reasonable approximations, one can cast the Boltzmann equation into a non-linear first order differential
equation of Ricatti form, and the task becomes solving this first order ordinary differential equation with physical
initial condition. We start with the solution of the Boltzmann equation by dividing our work into two parts:

• Chapter II focuses on the derivation and reformulation of the Boltzmann equation, with detailed discussion
on the approximation schemes and asymptotic behaviour of the solution in some special cases.

• Chapter VII summarizes the steps on solving the Boltzmann equation numerically, including the cases
that approximations can give a rough result.

II.1 The Boltzmann Transport Equation
This chapter is devoted to introduce the key concepts of the Boltzmann equation, which describe the time

evolution of the distribution function. Recall that a distribution function f = f(xµ, pµ) is defined generally
on the phase space and is dependent on four-position and four-vector. Note that through the mass-energy
equivalence E2 = m2 + p2, and since m is a const for each type of particle, we can write

f(xµ, pµ) = f(x,p, t). (II.1.1)

The physical meaning of the distribution function is such that
g

(2π)3 f(x,p, t)dΓ = g

(2π)3 f(x,p, t)d3x d3p

= # of particles in the volume element d3x about x and with momenta in a range d3p about p at time t,
(II.1.2)
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where g is the number of intrinsic degrees of freedom (i.e spin degrees of freedom; other quantum numbers are
contained within the calculations of cross sections later) of the particle under consideration. Eventhough both
d3x and d3p are not Lorentz-invariant, the phase space element dΓ is a Lorentz-scalar so that the number of
particles within the given infinitesimal phase-space volume is also a Lorentz-scalar.

The Boltzmann equation attemps to describe the evolution equation of phase-space distribution f , which is
expressed abstractly in the form

L̂[f ] = Ĉ[f ], (II.1.3)

where the first term is obtained by acting the Liouville operator on the distribution to describe the change of
number of particles within a unit phase-space volume. The second term, so-called collision functional, describes
the change of the number due to collisions between them.

II.1.1 The Liouville Term
In order to distinguish between the phase-space differential and time differential, let us temporarily use

the notation ∆ for the increment of the phase-space volume. We start by considering the number of particles
contained in a volume ∆Γ(t) at a specific time t

∆N(t) = f(x,p, t)∆Γ(t). (II.1.4)

The changes in position and momentum with respect to time are

dx
dt = dx

dτ

dτ
dt = p

m

m

E
= p
E
, (II.1.5)

dp
dt = F(x,p, t). (II.1.6)

The change in number of particles within this volume after an infinitesimal amount of time dt is

d∆N(t) = ∆N(t+ dt)−∆N(t) = [df(x,p, t)] ∆Γ(t) + f(x,p, t)d∆Γ(t). (II.1.7)

The variation of the distribution with respect to time is obtained by Taylor expanding f around the point
(x,p, t)

df(x,p, t) = f(x + dx,p + dp, t+ dt)− f(x,p, t) = ∂f

∂t
dt+ ∂f

∂xdx + ∂f

∂pdp. (II.1.8)

Next we calculate the variation of the phase-space volume

d∆Γ(t) =
{

det
[
∂ (x + pdt/E,p + Fdt)

∂(x,p)

]
− 1
}

∆Γ(t) =
(
∂

∂p · F
)

∆Γ(t)dt. (II.1.9)

Plugging the variations (II.1.8) and (II.1.9) back to (II.1.7) yields

d∆N(t) =
[
∂f

∂t
+ p
E
· ∂f
∂x + ∂(Ff)

∂p

]
∆Γ(t)dt. (II.1.10)

The LHS describes the change in number of particles within a Lorentz-invariant phase-space volume, thus
implies that the RHS is also a Lorentz scalar, and is possibly cast into a manifestly covariant form. We shall
show below how to write explicitly such form. Consider the first two terms in Eq. (II.1.10) and noting that
dt/E = dτ/m, we have [

∂f

∂t
+ p
E
· ∂f
∂x

]
dt =

[
E
∂f

∂t
+ p · ∂f

∂x

]
dt
E

= pµ

m

∂f

∂xµ
dτ. (II.1.11)

This means that the last term ∂(Ff)∂p can also be written in an covariant manner. Note that the "classical"
force vector F defined in Eq. (II.1.6) is not the spatial part of some four-vector. For convenience, let us introduce
a new vector which can be interpret as spatial part of a four-force vector by rescaling F as

K ≡ γF = p0F
m

. (II.1.12)
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Obviously, the covariant form containing K is

Kµ = dpµ
dτ (II.1.13)

Similar to the Minkowski orthogonality relation between four-position xµ and four-velocity vµ ≡ dxµ/dτ , we
shows here a similar relation between four-momentum pµ and four-force Kµ using the on-shell condition:

pµpµ = m2 ⇒ d
dτ (pµpµ) = 0⇒ 2pµ

∂pµ

∂τ
= 0

⇒ Kµpµ = 0⇒ K0p0 = K · p. (II.1.14)

The proof of the invariance of the third term in Eq. (II.1.10) can be proceed as follows

∂(Ff)
∂p dt = E

m

∂(Ff)
∂p dτ = E

m

[
p
E

∂

∂p0 + ∂

∂p

]
·
(
mKf

p0

)
dτ

= ∂

∂p0

(
p ·Kf

p0

)
+ ∂

∂p · (Kf)dτ

(II.1.14)=
[
∂

∂p0

(
K0f

)
+ ∂

∂p (Kf)
]
dτ = ∂

∂pµ
(Kµf)dτ. (II.1.15)

Note that in the calculations above, E is the on-shell energy while p0 is consider as a variable independent of p
and we only set p0 = E after all of the derivatives have been taken. From Eq. (II.1.11), (II.1.15) and (II.1.10)
we obtain the covariant form of the change in particle number

d∆N(t) =
[
pµ

m

∂f

∂xµ
+ ∂

∂pµ
(Kµf)

]
∆Γdτ

⇒ L̂[f ] ≡ d∆N(t)
dt ∆Γ = 1

E

[
pµ

∂f

∂xµ
+m

∂(Kµf)
∂pµ

]
. (II.1.16)

The last attempt we make to generalize the Liouville term by taking into account the effect of gravitational
field. Following the work in [18, Section 12.3], the modification is made to the four-gradient term

pµ
∂f

∂xµ
−→ pµ

∂f

∂xµ
− Γµρσpρpσ

∂f

∂pµ
, (II.1.17)

where the components of Christoffel symbol Γµρσ can be calculated via derivatives of the metric tensor

Γµρσ = 1
2g

µν (gνρ,σ + gνσ,ρ − gρσ,ν) . (II.1.18)

Let us consider a homogenous and isotropic space. It is suitable to work with the Friedmann-Lemaître-
Robertson-Walker (FLRW) cosmological model with the corresponding metric reads

(ds)2 = gµνdxµdxν = dt2 −R(t)2dΣ2, (II.1.19)

where the dimensionless quantity R(t) represents the scale factor of the Universe, and the homogenous and
isotropic spatial part can be cast into the form

dΣ = dr2

1− kr2 + r2 (dθ2 + sin2 θdφ2) . (II.1.20)

The results are greatly simplified since most of the components of the metric as well as the Christoffel symbols
(calculated using Eq. (II.1.18)) vanishes, leaving only the following non-zero ones

g00 = 1, gij = −R2δij , Γ0
ij = ṘRδij , Γi0j = Ṙ

R
δij = Hδij , (II.1.21)

where H ≡ Ṙ/R is the Hubble parameter; the dot indicates a derivative with respect to time. Plugging these
components into Eq. (II.1.17) yields

L̂[f ] = E

[
∂f

∂t
−H |p| ∂f

∂ |p|

]
= E

[
∂f

∂t
−H |p|

2

E

∂f

∂E

]
. 1 (II.1.22)
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The number density is obtained by taking integral of the phase-space distribution over momentum

n = g

∫ d3p
(2π)3 f. (II.1.23)

To obtain the evolution of the number density, let us consider the following integral

g

∫ d3p
(2π)3

L̂[f ]
E

= g

∫ d3p
(2π)3

[
∂f

∂t
−H |p| ∂f

∂ |p|

]
= g

∂

∂t

∫ d3p
(2π)3 f − gH

∫ d |p|
4π2 |p|

3 ∂f

∂ |p|

= dn
dt + 3gH

∫ d |p|
4π2 |p|

2
f = dn

dt + 3Hn , (II.1.24)

where we perform the integration by parts on both terms containing derivative over time and over the norm of
momentum, and dropping the boundary terms. 1 In a collisionless process or a system which are in chemical
equilibrium where the rate of production of particles is identical with the rate of annihilation, the Liouville
functional must evaluate to zero, indicating

ṅ+ 3Hn = 0 (II.1.25)

Furthermore, a collisionless or equilibrium system implies the conservation of number of particles within a
comoving box. Indeed, we can rewrite the expression (II.1.24) in collisionless system as

g

∫ d3p
(2π)3

L̂[f ]
E

= ṅ+ 3Hn = 1
R3

d
(
nR3)
dt = 0. (II.1.26)

II.1.2 The Collision Term
Taking the integral over momentum both sides of the relativistic Boltzmann equation, and applying the

explicit form of the Liouville operator in Eq. (II.1.24) gives

dn
dt + 3Hn = g

(2π)3

∫
Ĉ[f ] dp

3

E
(II.1.27)

We now consider the creation or annihilation of particles due to collision. The derivation the explicit
form of this term is quite lengthy, we refer the reader to Ref. [20, Section 1.3]. Below we use the result
in a general form before applying some approximations on this collision term. Labelling the particle under
consideration χ, and assuming a collection of general processes for creation and annihilation χ are of the form
(χ+ a+ · · · ↔ i+ j + . . . ), the integral of the collision term in momentum space is 2

gχ
(2π)3

∫
Ĉ[fχ] d

3p
Eχ

= −
∑

processes
spins

∫
dΠχ dΠa . . . dΠi dΠj . . .

× (2π)4δ(4) (pχ + pa + · · · − pi − pj − . . . )

× 1
Si,j,...

[
|Mχ+a+···→i+j+...|2 fχfa . . . (1 + ηifi)(1 + ηjfj) . . .

− |Mi+j+···→χ+a+...|2 fifj . . . (1 + ηχfχ)(1 + ηafa) . . .
]
,

(II.1.28)

with a sum over all possible processes where the number of χ is not conserved, and over all spin degrees
of freedom of both inital and final states. The Lorentz invariant phase-space element is defined as (taking into

1 It should be noted that the momentum vector p is so-called the local momentum, obtained by scaling the usual momentum
with a factor R(t). See Ref. [19, p. 15] for the discussion on this newly introduced quantity.

1 It is often assumed that the phase-space distribution and its derivative vanishes at the integration boundary at infinity.
2 This collision term belongs to Uehling-Uhlenbeck equation, a quasi-classical Boltzmann equation that incorporates the quantum

statistics. These modification can be ignored in some cases of interest as we mentioned below.
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account the spin degrees of freedom g)

dΠ = 1
(2π)3

d3p

2E . (II.1.29)

|M|2 is the unpolarized square matrix element. The symmetry factor Si,j,... is included to account for identical
final state particles, such that if there are N identical particles⇒ Si,j,... = N !. Finally, the factor η characterizes
the statistics of the type of particle under consideration, given by

η =


+1 for Bose-Einstein statistics
0 for Maxwell-Boltzmann statistics
−1 for Fermi-Dirac statistics

. (II.1.30)

It is necessary to take a look at the collision term Eq. (II.1.28) and see if there is any approximation can
be done to simplify this expression further. Some notes should be taken at this step:

• Compared to the classical version of Boltzmann equation, the collision term (II.1.28) has no factor 1/2
ahead. This fact also valid when the two incoming particles are identical (e.g in the case of Majorana
fermions; we will consider later the Majorana fermion pair-annihilation with our study object is the lightest
neutralino in Chapter VI.)

• In the scope of this thesis, the coannihilations would be neglected and would be consider in future plan.
This makes sense when the mass difference between the DM particle and the coannihilation particles are
small enough so that the contribution of these processes are negligible. For the sake of completeness,
we will represent the general approach of calculating the DM relic density including the coannihilations
effects at the end of this chapter.

• Assuming the equilibrium distribution follows the relativistic Boltzmann distribution in the cosmic co-
moving frame (the frame where the collection of particles is considered to be at rest, i.e there is no bulk
flow of particles).

f eq(p) = 1
e(E(p)−µ)/T ± 1 ≈ e

−(E(p)−µ)/T ≈ e−E(p)/T . (II.1.31)

This is a good approximation for temperatures T . 3mχ. Note that from now on, our calculations stick
mainly to the Boltzmann distribution and thus the comoving frame is always assumed, unless explicitly
stated. At early Universe, the chemical potentials of all particles are presumably negligible.

• The quantum statistical factor can be ignored, i.e both of the Pauli-blocking term (1 − f) and Bose-
enhancement (1 + f) term ∼ 1. These mechanical factors can be neglected if we consider the massive
particles which decouple in the early Universe while they are a non-degenerate gas, as mentioned in [21,
Section 2]. This happens due to the fact that f is negligible if we already apply the condition of the
Boltzmann statistics above, i.e when T . 3m.

• The annihilation products (i, j, ...) go quickly to equilibrium with the thermal background1. Thus the
phase-space distribution can be replaced by the corresponding equilibrium distribution

fi ≡ f eqi , fj ≡ f
eq
j , . . . (II.1.32)

• With the assumption that all annihilation products is in equilibrium with the thermal bath, the principle
of detailed balance can be applied: each elementary process is in equilibrium with its reverse process.
This principle can be represented by the equality between the phase-space of the equilibrium system of
the initial states and final states, i.e

f eqi f
eq
j · · · = f eqχ f

eq
a . . . (II.1.33)

• Assuming no CP violation (equivalently T invariance) in the DM sector, hence the unitarity of the scat-
tering matrix implies∫

|Mi+j+···→χ+a+...|2 (2π)4δ(4) (pχ + pa + · · · − pi − pj − . . . )dΠi dΠj . . .

1 This is straightforward if the products are electrically charged since they interact with the thermal photons present. Ref. [21]
also mention this is true in most cases of interests for neutral particles.
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The Boltzmann Transport Equation

=
∫
|Mχ+a+···→i+j+...|2 (2π)4δ(4) (pχ + pa + · · · − pi − pj − . . . )dΠi dΠj . . .

(II.1.34)

To simplify the expression, we use here the definition of the unpolarized cross section

1
Si,j,...

∑
spins

∫
|Mχ+a+···→i+j+...|2 (2π)4δ(4) (pχ + pa + · · · − pi − pj − . . . )dΠi dΠj . . .

= 4F (gχga . . . )σχ+a+···→i+j+..., (II.1.35)

where the products inside the parentheses are over spins of all incoming states, and the invariant flux F
is defined as

F =
√

(p1 · p2)2 −m2
1m

2
2. (II.1.36)

It is obvious that the cross section contains all the information about the collision process. Since there is
a sum over all possible processes where the number of particles χ is non-conserving, we introduce a new
notation of total cross section σχ for saving space

σχ ≡
∑

processes
σχ+a+···→i+j+.... (II.1.37)

Using Eq. (II.1.32), (II.1.33), (II.1.34), (II.1.35) and (II.1.37), The collision term (II.1.28) can be rewritten
as

gχ
(2π)3

∫
Ĉ[fχ] d

3p
Eχ

= −
∫

4Fσχ
(
fχfa · · · − f eqχ f eqa . . .

)
(gχdΠχ) (gaΠa) . . . (II.1.38)

where the RHS is being integrated over the products of momenta spaces of incoming particles. At this
point, the expression of the collision term is remarkably simplified compared to the original form, but is
not in a practical form for numerical computation. Let us keep working on further approximations.

• We shall assume that the main contribution to the total cross section comes from 2 to 2 scattering
processes: χ1χ2 → ψ1ψ2, where ψ1 and ψ2 are SM-like particles. The collision term (II.1.38) is explicitly
written as

gχ
(2π)3

∫
Ĉ[fχ1 ] d

3p1
E1

= −
∫

4Fσχ1

(
fχ1fχ2 − f eqχ1

f eqχ2

)
(gχ1dΠχ1) (gχ2dΠχ2)

= −
∫
σχ1

F

E1E2

(
fχ1fχ2 − f eq

χ1
f eq
χ2

) gχd3p1
(2π)3

gχd3p2
(2π)3

= −
∫
σχ1vMøl (dn1 dn2 − dneq1 dneq2 ) , (II.1.39)

with the Møller velocity is defined as 1

vMøl ≡
F

E1E2
=
√

(p1 · p2)2 −m2
1m

2
2

E1E2
, (II.1.40)

such that the invariant interaction rate per unit volume per unit time can be written in an arbitrary frame
of reference as 2

dN
dV dt = σvMøln1n2. (II.1.41)

1 Note that the Møller velocity only coincides with the relative velocity in cases the velocities of incoming particles are colinear.
Indeed

vMøl ≡

√
(p1 · p2)2 −m2

1m
2
2

E1E2
=

√
1−

2p1 · p2
E1E2

+
(p1 · p2)2

E2
1E

2
2
−

(
E2

1 − p2
1
) (
E2

2 − p2
2
)

E2
1E

2
2

=
√

v2
1 + v2

2 − 2v1v2 + (v1 · v2)2 − v2
1v2

2 =
√

(v1 − v2)2 − (v1 × v2)2,

thus |vMøl| = |v1 − v2| only when v1 × v2 = 0.
2 The RHS of this equation is indeed invariant and is easily checked: plugging the definition (II.1.40) into (II.1.41), and note

that the quantity n/E is invariant under a Lorentz transformation:
n

E

Λ−→
n′

E′
=
γn

γE
=
n

E
.

For more discussion about the Møller flux and related quantities, we refer to [22].
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The Boltzmann Transport Equation

• Assuming that the particle species χ1 maintains in the kinetic equilibrium even after decoupling (out of
chemical equilibrium). Follows the arguments on symmetry in [19, Chapter 6], the distributions in kinetic
equilibrium are proportional to that of chemical equilibrium, which allows us to rewrite Eq. (II.1.39) as

gχ1

(2π)3

∫
Ĉ[f (1)

χ ] d
3p1
E1

= −〈σχ1vMøl〉 (n1n2 − neq1 n
eq
2 ) , (II.1.42)

with the thermal averaged of the total cross section times Møller velocity is taken with the assumed
Boltzmann distribution

〈σχ1vMøl〉 =
∫
σχ1vMøl dneq1 n

eq
2∫

dneq1 n
eq
2

. (II.1.43)

Together with Eq. (II.1.24) and (II.1.42), the Boltzmann equation can now be cast into the form

gχ
(2π)3

∫
L̂[f (1)

χ ] d
3p1
E1

= gχ
(2π)3

∫
Ĉ[f (1)

χ ] d
3p1
E1

⇒ ṅ1 + 3Hn1 = −〈σχvMøl〉 (n1n2 − neq1 n
eq
2 ) , (II.1.44)

which is applicable both before and after decoupling.

As mentioned earlier, the total cross section is summed over all final states and averaged over initial spins
without the symmetric factor for identical final states, which is the case of our interest since we will consider
the annihilation of a Majorana fermion so-called neutralino later. Let n = nχ1 = nχ2 , Eq. (II.1.44) in such cases
with identical initial states becomes 1

ṅχ + 3Hnχ = −〈σχvMøl〉
[
n2
χ − (neqχ )2] . (II.1.46)

In the scope of this thesis, only the annihilation of the lightest neutralino will be investigated, thus we will
simply ignore the non-identical initial particles above (i.e no co-annihilation processes will be covered in the
context).

The asymptotic value of the number density must approach 0 when t tends to ∞. One can easily verified
that the temperature drops when t increases, thus the collision term significantly drops, leaving behind the
asymptotic collisionless Boltzmann equation. The total number of a species "freeze-out" and tends to a constant
value while the volume of space keep increasing due to the expansion of the Universe, leading to the behaviour
of nχ at large t (or small T ). It is practical to define a new quantities which should be independent of the
expansion of the space. Introduce the comoving number density by scaling nχ with a factor of entropy density
s: Yχ = nχ/s. Assuming the entropy conservation in a comoving volume, we have

d
dt
(
sR3) = 0⇒ ṡR3 + 3R2Ṙs = 0⇒ ṡ = −3Hs. (II.1.47)

Taking the time derivative of Yχ gives

dYχ
dt = d

dt

(nχ
s

)
= ṅχ

s
− nχṡ

s2 = ṅχ + 3Hnχ
s

= −〈σχvMøl〉
[
n2
χ − (neqχ )2]

s
= −s 〈σχvMøl〉

[
Y 2
χ − (Y eq

χ )2] . (II.1.48)

1 It should be noted that there is a factor 1/2 in front of total cross section if we have to deal with non-identical initial particles.
For instance the reactions between a charged particle χ and its anti-partner χ, the density n = nχ + nχ = 2nχ; the evolution of
each species χ and χ is the same as Eq. (II.1.46), meaning

ṅχ + 3Hnχ = −〈σχvMøl〉
[
n2
χ − (neq

χ )2
]
,

⇒ ṅ+ 3Hn = 2 (ṅχ + 3Hnχ) = −
1
2
〈σχvMøl〉

[
(2nχ)2 − (2neq

χ )2
]

= −
1
2
〈σχvMøl〉

[
n2 − (neq)2

]
. (II.1.45)
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The Boltzmann Transport Equation

It is customary to express Yχ as a function of dimensionless parameter x ≡ mχ/T where T is the temperature
of thermal bath:

dYχ
dt = dYχ

dx
dx
ds

ds
dt = −dYχ

dx
dx
ds (3Hs)

⇒dYχ
dx = − 1

3Hs
ds
dx

dYχ
dt = 1

3H
ds
dx 〈σχvMøl〉

[
Y 2
χ − (Y eq

χ )2] . (II.1.49)

The final modification on the Boltzmann equation is to expressH and s in terms of degrees of freedom parameters.
Recall that from one of the Friedmann equation, Eq. (D.2.1a), shows a relation between the Hubble parameter
and the energy density:

H =
√

8πGρ
3 , (II.1.50)

where G is the gravitational constant. The energy density ρ and entropy density s are functions of T and can
be written in the form

ρ = geff(T )π
2

30T
4, s = heff(T )2π2

45 T 3, (II.1.51)

where the temperature-dependent geff and heff are respectively the effective internal and spin degrees of freedom.
Substituting Eq. (II.1.51) and (II.1.50) back to (II.1.49), we finally arrive at the equation of the evolution of
the comoving density Yχ with respect to x

dYχ
dx = −

√
π

45G
g

1/2
∗ m

x2 〈σχvMøl〉
[
Y 2
χ − (Y eq

χ )2] , (II.1.52)

g
1/2
∗ = heff

g
1/2
eff

(
1 + 1

3
T

heff

dheff

dT

)
, (II.1.53)

with the degrees of freedom parameter g∗ accounts for the temperature dependence of the relativistic degrees
of freedom of energy density and entropy density.

Note that the effective energy and spin degrees of freedom include two contributions: one from the species
in thermal equilibrium which share the same temperature T , the other from the decoupled species which no
longer stay in equilibrium with the photon bath and thus having a different temperature Ti, with i stands for
the species (both bosons and fermions) we are considering.

geff = gth
eff(T ) + gdec

eff (T ) =
∑
i∈th

gi(T ) +
∑
i∈dec

gi(T )T
4
i

T 4 . (II.1.54)

Similarly for the calculations of effective entropy degrees of freedom

heff = hth
eff(T ) + hdec

eff (T ) =
∑
i∈th

hi(T ) +
∑
i∈dec

hi(T )T
3
i

T 3 , (II.1.55)

with the effective degrees of freedom of each species at temperature T is calculated numerically via the following
integrals

gi(T ) = 30
π2T 4 ρi(T ) = 30

π2T 4
gi

(2π)3

∫
Ei(p)d3p

eEi(p)/T + ηi

= 15gi
π4 x4

i

∫ ∞
1

y
√
y2 − 1

exiy + ηi
y dy, (II.1.56)

hi(T ) = 45
2π2T 3 si(T ) = 45

2π2T 3
gi

(2π)3

∫ 3m2
i + 4P 2

i d3p

3Ei(p)Ti
1

eEi(p)/T + ηi

= 45gi
4π4 x

4
i

∫ ∞
1

y
√
y2 − 1

exiy + ηi

4y2 − 1
3y dy, (II.1.57)

with gi,mi and ηi are the internal (spin) degrees of freedom, mass and statistical factor of species i; xi = mi/T .
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Solution to the Boltzmann Equation

In addition, the x-dependence of the equilibrium comoving density Y eq
χ is derived directly from its definition:

neq
χ = gχ

(2π)3
∫
d3p e−E/T = gχT

3

2π2 x2K2(x),

s = heff(T )2π2

45 T 3
⇒ Y eq

χ =
neq
χ

s
= 45gχ

4π4
x2K2(x)
heff(mχ/x) , (II.1.58)

with K2(x) is a modified Bessel function of the second kind. The derivation of neq
χ in terms of K2(x) is

represented in Appendix E.

10 4 10 2 100 102 104

T(GeV)

2

4

6

8

10

g1/
2

g1/2(T)
g1/2

eff (T)
h 1/2

eff (T)

Figure II.1: Degrees of freedom parameter as a function of temperature. This parameter remains roughly con-
stant away from the mass threshold T ∼ mi. At temperature roughtly 1 TeV, all the SM particles are relativistic
and in thermal equilibrium with g∗ = 106.75 1. With low temperature T < 0.5MeV , only photons and three
neutrinos have significant contribution with g∗ ≈ 2.Input data is imported from the input file dsdofDHS.dat of
the package DarkSUSY. More detailed discussion on these degrees of freedom can be found in e.g [23].

In practice, we import the numerical values of these degrees of freedom from input of the package DarkSUSY
(Ref. [24, Chapter 23]).

II.2 Solution to the Boltzmann Equation

II.2.1 Thermal average

Old treatment: expansion solution

In old context, the thermal averaging is usually done by expanding σχvMøl in terms of energy (or relative
velocity), and the classical Maxwell-Boltzmann is applied. To be clear, one writes

〈σχvMøl〉n.r =
∫
σχvlabe

−|p1|2/2mχT e−|p2|2/2mχTd3p1 d3p2∫
e−|p1|2/2mχT e−|p2|2/2mχTd3p1 d3p2

. (II.2.1)

1 The degrees of freedom of relativistic particles is simply g∗ =
∑

i∈bosons gi + 7/8
∑

i∈fermions. With totally 28 degrees of
freedom of bosons (photons: 2, W±, Z: 3× 3, gluons: 8× 2, Higgs: 1) and 90 from fermions (quarks: 6× 3× 4, charged leptons:
3× 4, neutrinos: 3× 2), we have

g∗(T ≤ 1TeV ) = gb +
7
8
gf = 28 +

7
8
× 90 = 106.75 (II.1.59)
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Solution to the Boltzmann Equation

We make a change of integration variables from p1,p2 to total momentum pT = p1+p2 and relative momentum
pR = p1 − p2. Note that |p|21 + |p2|

2 = |pT |
2+|pR|

2

2 , and that the differential volume in momentum space is

d3p = 4π |p|2 d |p| , (II.2.2)

Eq. (II.2.1) can be expressed as

〈σχvMøl〉n.r =
∫
σχvlabe

−(|pT |2+|pR|
2)/4mχT |pT |

2 |pR|
2 d |pT | d |pR|∫

e−(|pT |2+|pR|2)/4mχT |pT |
2 |pR|

2 d |pT | d |pR|

=
∫
σχvlabe

−|pR|
2/4mχT |pR|

2 d |pR|∫
e−|pR|

2/4mχT |pR|
2 d |pR|

=
∫
σχvlabe

−xε√εdε∫
e−xε
√
εdε

= 2x2/3
√
π

∫ ∞
0

σχvlab
√
ε e−xε dε, (II.2.3)

where at the second equality we cancel all terms related to |pT | since σχvlab depends only on pR, thus the
integration over |pT | is trivial. Furthermore, we have made another change of integration of variable from |pR|
to ε via the relation

|pR|
2 = 4m2

χε ⇒ ε =
(
|pR|
2mχ

)2
. (II.2.4)

Note that in rest frame of one incoming particle, ε is interpreted as the total kinetic energy per mass unit.

Assumes σχvlab is a smooth function of energy and thus can be expressed as a Taylor series with respect to
ε 1

σχvlab =
∞∑
n=0

a(n)

n! ε
n, (II.2.5)

with a(n) = dn(σχvlab)/dεn|ε=0.

〈σχvMøl〉n.r = a(0) + 3
2a

(1)x−1 + 15
8 a

(2)x−2 +O(x−3). (II.2.6)

This expansion formula can be used as a fast-calculation method for dealing with thermal averaging. As
an example, let us consider the lowest order coefficient a(0) whose expression can be directly obtained from
Eq. (C.1.12)

a(0) = σχvlab
∣∣
ε=0 =

 βf (s,mi,mj)
64π2 (s− 2m2)Si,j

∑
i,j

∫
dΩ|Mχχ→i+j |2


s=4m2

χ

= 1
64πm2

χ

βf (s,mi,mj)
Si,j

∑
i,j

∫ 1

−1
d(cos θ) |Mχχ→i+j |2


s=4m2

χ

, (II.2.7)

where M̄ has been summed over final states and averaged over initial states. Below we represent a rough
solution of the Boltzmann equation (II.1.52) with s-wave approximation (i.e considering only the leader term
a(0); the thermal average 〈σχvMøl〉 is then obviously independent of temperature).

1 In most cases the cross section is "well-behaved" and such expansion is possible. Exceptions occurs when expanding near
resonances or threshold energy where we must other methods for approximating 〈σχvMøl〉.
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Figure II.2: An illustration of Yχ(x) when consider the lowest order of expansion over ε. The initial condition
is loosely set: Yχ(x = 20) = 2.5Y eq

χ (x = 20). The above solution is generated using integrate.odeint method of
package scipy of Python. Well-below x = 20 (or typically below xf ), Yχ(x) traces closely with Y eq

χ (x), however
the integrate.odeint produces an oscillatory solution.

Since 〈σχvMøl〉 in this s-wave dominant is temperature independent and assuming the initial condition at
x = 20, the solution after typical freeze-out point (i.e x ≥ 20) can be easily obtained using any numerical
method for solving first order ODE. This equation with x < 20 is stiff, and an explicit method fails to converge.

A better treatment: single-integral formula

We now represent a more modern treatment of taking the thermal average of the cross section times Møller
velocity by a single-integral formula. At the end of the calculations, we see that the integral over momentum
space is simplified to an integral over total energy. Let us consider the following thermal average formula

〈σχvMøl〉 =
∫
σχvMøle

−E1/T e−E2/Td3p1 d3p2∫
e−E1/T e−E2/Td3p1 d3p2

, (II.2.8)

where p1, p2 and E1, E2 are respectively the three-momenta and energies of incoming particles in the cosmic
comoving frame. 1 The normalization factor, i.e the denominator of Eq. (II.2.8), is merely the squared of
the equilibrium number density without the factor gχ/(2π)3, which is represented in Appendix E. Using the
expression (E.2.14), we have∫

e−E1/T e−E2/Td3p1 d3p2 =
[

(2π)3

gχ
neq
χ

]
=
[
4πT 3x2K2(x)

]2
, (II.2.9)

and what left is to clarify the numerator of (II.2.8). Converting the integral over momenta space by first taking
the differential of the relation between energy-momentum

E2 = p2 +m2 ⇒ EdE = pdp

⇒ d3p1 d3p2 =
(

4π |p1|
2 d |p1|

)(
4π |p2|

2 d |p2|
)
d
(

cos θ
2

)
= 8π2 |p1| |p2|dE1 dE2 d cos θ (II.2.10)

The Mandelstam variable s can be expressed in terms of the given quantities as

s ≡ (p1 + p2)2 = (E1 + E2)2 − (p1 + p2)2 = 2m2
χ + 2E1E2 − 2 |p1| |p2| cos θ. (II.2.11)

1 Recall that the Boltzmann formula f ∝ e−E/T is used assuming the isotropy of momentum, i.e we are working within the
comoving frame where the system of particles is at rest as a whole.
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Solution to the Boltzmann Equation

We consider the transformation of integration variables (E1, E2, cos θ)→ (E+E−s), with the new variables are
defined as 

E+ = E1 + E2

E− = E1 − E2

s = 2m2
χ + 2E1E2 − 2 |p1| |p2| cos θ

, (II.2.12)

with the corresponding Jacobian

∂ (E+, E−, s)
∂ (E1, E2, cos θ) =


1 1 0
1 −1 0

2E2

(
1− |p1|
|p2|

cos θ
)

2E2

(
1− |p1|
|p2|

cos θ
)
−2 |p1| |p2|

 , (II.2.13)

⇒ det
[
∂ (E+, E−, s)
∂ (E1, E2, cos θ)

]
= 4 |p1| |p2| . (II.2.14)

We now express the differential momenta space (II.2.10) in the new variables

d3p1 d3p2 = 8π2 |p1| |p2|dE1 dE2 d cos θ = 2π2 det
[
∂ (E+, E−, s)
∂ (E1, E2, cos θ)

]
dE1 dE2 d cos θ

= 2π2dE+ dE−ds. (II.2.15)

The original integration boundary {E1 ≥ mχ, E2 ≥ mχ,−1 ≤ cos θ ≤ 1} transforms into
s ≥ 4m2

χ

E+ ≥
√
s

|E−| ≤
√

1−
4m2

χ

s

√
E2

+ − s

. (II.2.16)

Let us calculate the numerator of (II.2.8) in these new variables:∫
σχvMøle

−E1/T e−E2/Td3p1 d3p2 = 2π2
∫ ∞

4m2
χ

ds
∫ ∞
√
s

dE+

∫ √1−4m2
χ/s
√
E2

+−s

−
√

1−4m2
χ/s
√
E2

+−s
dE− σχvMølE1E2e

−E+/T

= 4π2
∫ ∞

4m2
χ

ds σχF

√
1−

4m2
χ

s

∫ ∞
√
s

dE+ e
−E+/T

√
E2

+ − s, (II.2.17)

where at the second equality we note that σχvMølE1E2 = σχF is a function of s only. Indeed, σχ is a function
of total energy while the Møller flux factor can be expressed as a function of s as

F =
[
(p1 · p2)2 −m4

χ

]1/2 =
[(

s− p2
1 − p2

2
2

)2

−m4
χ

]1/2

=
[(
s− 2m2

χ

)2
4 −m4

χ

]1/2

= 1
2

√
s
(
s− 4m2

χ

)
.

(II.2.18)

The integrand is thus independent of E− and is easily calculated. Consider the integral over E+, we continue
to change the integration variable to a dimensionless y ≡ E+/

√
s. With the help of the integral representation

of modfied Bessel function (E.1.2), we proceed our calculations as∫ ∞
√
s

dE+ e
−E+/T

√
E2

+ − s = (T
√
s)
√
s

T

∫ ∞
1

dy
√
y2 − 1e−y(

√
s/T ) = T

√
sK1(

√
s/T ). (II.2.19)

Plugging (II.2.18), (II.2.19) into (II.2.17), and deviding it by the denominator (II.2.9) gives the important
single-integral formula:

〈σχvMøl〉 = 1
8T 5x4K2

2 (x)

∫
ds (s− 4m2

χ)
√
sK1(

√
s/T )σχ. (II.2.20)

As claimed in [21, Section 3], taking the thermal average in the comoving frame is identical to taking the
thermal average in the laboratory frame: 〈σχvMøl〉 = 〈σχvlab〉lab; the latter is easier to evaluate. It is therefore
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Solution to the Boltzmann Equation

practical to change the integration variable from total energy s to the kinetic energy per unit mass in the lab
frame ε, defined by

ε = (E1,lab −mχ) + (E2,lab −mχ)
2mχ

. (II.2.21)

In the laboratory frame, one of the two incoming particles is at rest. Denoting the energy and momentum of
the moving particle Elab and plab respectively, we rewrite ε as

ε = Elab −mχ

2mχ
=

2mχ(Elab +mχ)− 4m2
χ

4m2
χ

=

[
(Elab +mχ)2 −

(
E2
lab −m2

χ

)]
− 4m2

χ

4m2
χ

=
(E1,lab + E2lab)2 −

(
p1,lab + p2lab

)2 − 4m2
χ

4m2
χ

=
(p1,lab + p2lab)2 − 4m2

χ

4m2
χ

=
s− 4m2

χ

4m2
χ

. (II.2.22)

The relative velocity in the laboratory frame can be expressed in terms of the kinetic energy density. Note that
the definition of velocity appears in the formula of momentum:

p2
lab =

m2
χv

2
lab

1− v2
lab

= E2
lab −m2

χ, (II.2.23)

and the energy of the incoming particle can be calculated via the kinetic energy density ε from its definition:
Elab = mχ(2ε+ 1). Thus

m2
χv

2
lab

1− v2
lab

= m2
χ (2ε+ 1)2 −m2

χ = 4m2
χε(ε+ 1)

⇒ vlab =

√
4ε (1 + ε)m2

χ

4ε (1 + ε)m2
χ +m2

χ

=
√

4ε (ε+ 1)
(1 + 2ε)2 = 2

√
ε(ε+ 1)

1 + 2ε . (II.2.24)

Eq. (II.2.20) together with (II.2.22) and (II.2.24) gives us the following single-integral formula for calculating
thermal average of interaction rate:

〈σχvMøl〉 =
∫ ∞

0
dεK (x, ε)σχvlab (II.2.25)

where the thermal kernel is expressed in terms of ε and x ≡ mχ/T represent the thermal distribution of ε

K (x, ε) = 2x
K2

2 (x)
√
ε(1 + 2ε)K1(2x

√
1 + ε). (II.2.26)

We can check numerically that K (x, ε) is normalized for all x∫
dεK (x, ε) = 1. (II.2.27)

This distribution vanishes near the minimum energy (i.e
√
s = 2mχ) and at the limit of high energy, and

have a global maximum in its range simila to the non-relativistic distribution. At low temperature limit, the
species under consideration becomes non-relativistic, thus follows the Maxwell-Boltzmann distribution. At high
temperature limit, the plot of K (x, ε) tends to dispersed toward the large value of ε, implies that the higher
tempearture of the species, the more kinematic energy it gains and the larger contribution of cross section at
high energy to the average. This is the asymptotic behaviour of the given thermal kernel at small x, as being
shown in the plot below.
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Figure II.3: Plot of the thermal kernel K (x, ε) with respect to x and ε.

With this analytic formula, an numerical integration can be easily done if we know the value of 〈σχvlab〉.
This formula has some the following advantages

• The given single-integral formula overcomes the multi-dimensional integrals.

• An expansion of σχvlab is a treatment in approximating the thermal average in old literature, which fails
in case σχvlab varies rapidly with ε.

For backward compatibility with Eq. (II.2.6), let us consider again the expansion solution of 〈σχvMøl〉 in
relativistic manner. Recall that the asymptotic expansion of the Bessel functions with large argument z is

Kn(z) '
√

π

2z e
−zPn(z), (II.2.28)

Plugging this expansion into Eq. (II.2.25), one obtains

〈σχvMøl〉 ' 2
√
x3

π

∫ ∞
0

dε
√
ε

1 + 2ε
(1 + ε)1/4 e

−2x(√1+ε−1)P1
(
2x
√

1 + ε
)

P 2
2 (x) σχvlab. (II.2.29)

To obtain the series of 〈σχvMøl〉 with respect to x, consider again the expansion Eq. (II.2.5). Let y ≡
2x
(√

1 + ε− 1
)
, and using the series (E.1.8), one can calculate analytically all integrals of each power of ε

in terms of Gamma function: ∫ ∞
0

dy yn+1/2e−y = Γ
(

3
2 + n

)
= (2n+ 1)!!

2n

√
π

2 . (II.2.30)

The thermal average can then be expressed in terms of power of negative x as follows (see [21, Eq. (3.30)])

〈σχvMøl〉 = a(0) + 3
2a

(1)x−1 +
[

9
2a

(1) + 15
8 a

(2)
]
x−2 +O(x−3). (II.2.31)
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Relic density with coannihilations

As already clarified in [25], one must pay attention when performing standard calculations of DM relic
density in three special cases: coannihilations, "forbidden" annihilation channels and annihilation near pole of
the cross sections. The coannihilations occurs when we consider a set of similar particles whose masses are nearly
degenerate, with the DM candidate being the lightest and stable one. The relic density of the DM candidate
then depends significantly on the annihilation of heavior particles in the given set into the lightest one. The
second case concerns annihilation into more massive particles than the DM candidate, which is usually claimed
as kinematically forbidden. The third case has been mentioned above, with an expansion treatment propsed in
[21, Section 6].

In a general scenario, a DM model can contains several DM candidates. For precision calculation of the
relic density, one must track the evolution of densities of all DM candidates taking into account all possible
coannihilation partners. The rest of the particle content is assumed to be in thermal equilibrium with the heat
bath or decay into the DM sector. For ease of representation, let us follow the work of [26]. Consider N DM
particles χ1, · · · , χN which is in ascending order of mass: mχ1 < mχ2 < · · · < mχN . Assumes further that these
particles are differ from SM particles by a multiplicative quantum number. In the next several chapters we will
see that in supersymmetric models, the desired quantum number is R-parity, which is also our case of interest.
The lighest particle is protected by this symmetry from decay further into SM particles, thus being stable. We
then consider all reactions which change χi number densities:

χiχj ↔ X

χiX ↔ χjX
′

χi ↔ χjX

. (II.2.32)

The set of coupled equations for evolution of number density of χi is

dni
dt =− 3Hni −

N∑
j=1
〈σijvij〉

(
ninj − neq

i n
eq
j

)
−
∑
j 6=i

[〈
σ′Xijvij

〉
(ninX − neq

i n
eq
X )−

〈
σ′Xjivji

〉 (
njnX − neq

j n
eq
X

)]
−
∑
j 6=i

[
Γij (ni − neq

i )− Γji
(
nj − neq

j

)]
, (II.2.33)

where X,Y denotes the set of relevant SM particles. The relative velocity between particles χi and χj is defined
as

vij =

√
(pi · pj)2 −m2

im
2
j

EiEj
, (II.2.34)

which is clearly the generalization of the Møller velocity defined in Eq. (II.1.40). The RHS of Eq. (II.2.33)
contains the thermal average of all processes mentioned in (II.2.32). The first term describes the dillusion due
to the expansion of the Universe. The second term corresponds to the χiχj annihilation with total annihilation
cross section

σij =
∑
X

σ (χiχj → X) . (II.2.35)

The third term describes the interaction between the class of DM particles with the thermal bath, with

σ′Xij =
∑
Y

σ (χiX → χjY ) (II.2.36)

is the inclusive scattering cross section. The final term describes the decay of χi into the lightest one in the
DM sector χ1, with inclusive decay rates

Γij =
∑
X

Γ (χi → χjX) . (II.2.37)

The final abundance is simply the sum of all number densities of χi: n =
∑
i χi. With the two final terms being

canceled, we are left with the evolution equation for total abundance

dn
dt = −3Hn−

N∑
i,j=1

〈σijvij〉
(
ninj − neq

i n
eq
j

)
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= −3Hn−
N∑

i,j=1
〈σeffv〉

[
n2 − (neq)2

]
, (II.2.38)

with the effective annihilation rate

〈σeffv〉 =

∫∞
0 dpeff p

2
effWeffK1

(√
s

T

)
m4

1T

[∑
i

gi
g1

m2
i

m2
1
K2

(mi

T

)] , (II.2.39)

and the annihilation rate per unit volume

Weff ≡
∑
ij

pij
p11

gigj
g2

1
Wij =

∑
ij

√
λ
(
s,m2

i ,m
2
j

)
s(s− 4m2

1)
gigj
g2

1
Wij ,

Wij ≡
1

gigjSf

∑
internal d.o.f

∫ ∏
f

d3pf
(2π)32Ef

|M|2 (2π)4δ(4)(pi + pj −
∑
f

pf ), (II.2.40)

with Sf is the symmetry factor of final states. We can easily check that the general expression for thermal
average of annihilation rate (II.2.39) coincides with the formula (II.2.25) if no coannihilation is taken into the
consideration.

II.2.2 Freeze-out approximation
Generally, the Boltzmann equation is of the form of the Ricatti equation, which has no known analytic

solution, and has to be solved numerically to give the yield at specific x. We have to integrate (II.1.52) to the
point x = x0 = m/T0 at current temperature T0 ≈ 2.725K. The initial condition, however, is an asymptotic
condition based on the fact that at early time (x → 0), the comoving density is of the same order of Y eq

χ .
Since (II.1.52) has a singularity at x = 0, we must set the initial condition at some x and assuming that
Y (x0) ∼ Y eq

χ (x0). The value of x at which we choose to be the initial condition is known at freeze-out point,
where the actual density of particles depart from the equilibrium density as we represented in Section I.3. This
subsection aims to represent a way to obtain the asymptotic initial condition based on solving the freeze-out
condition.

An approximation method for calculating the relic density known as freeze-out approximation gives a quite
accurate result of the relic density, and is the main method we implemented in our code for now. This approx-
imation scheme has the advantages that we can control the calculated time through the number of sampled
points of the integration, thus achieving a rough estimation of the result of the relic density Ωh2θ−3. Another
pros is by generating first a table of 〈σχvMøl〉, we can obtain the full solution of Yχ(T ) as long as T is in the
range of generated data, thus roughly providing the shape of Yχ(T ).

The basics of freeze-out approximation based on the fact that at early times, the density of a given species
traces closely with its equilibrium density, i.e Yχ(x� 1) ∼ Y eq

χ (x). The freeze-out value is defined as the point
where the rate of the annihilation is of the same order of the rate of expansion. At later stage after freezing-out,
the equilibrium particle density is supressed by the Boltzmann factor ∼ e−m/T while the density of species
that left the thermal bath approaches a constant value, and thus the contribution of the equilibrium term in
Eq. (II.1.52) can be safely ignored.

To formulate the above physical picture, let us consider the deviation of the actual comoving density from
its equilibrium: ∆Y = Yχ − Y eq

χ . Taking derivative with respect to x and plugging in Eq. (II.1.52) gives

d∆Y

dx = −
( π

45G

) g1/2
∗ m

x2 〈σχvMøl〉∆Y

(
∆Y + 2Y eq

χ

)
−

dY eq
χ

dx . (II.2.41)

As claimed, before the decoupling Yχ follows closely with Y eq
χ and thus the change in deviation d∆Y /dx can be

ignored. Define the freeze-out xf is the point at which ∆ = δY eq
χ , which gives the condition for freezing-out:

−
( π

45G

)1/2 g
1/2
∗ m

x2 〈σχvMøl〉Y eq
χ δ(δ + 2) +

d lnY eq
χ

dx = 0, (II.2.42)

with δ is a given number, and is typically chosen in the range [1.5, 2.5] (see e.g Ref. [21, p. 163], [24]). As we
shall see in the numerical results of xf (see Fig. VII.3), the variation of xf with respect to the chosen δ would
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be ignorable compared to the integration range, and thus does not give significant impact on Yχ(x). A more
explicit form of the freeze-out condition is achieved by inserting the formula of equilibrium comoving density in
Eq. (II.1.58) into (II.2.42)( π

45G

)1/2 45g
4π4

K2(x)
heff(T ) g

1/2
∗ m 〈σχvMøl〉 δ (δ + 2) = K1(x)

K2(x) −
1
x

d ln hc(T )
d lnT . (II.2.43)

At the stage after decoupling (i.e x > xf ), the contribution of Y eq
χ is small compared to Yχ, and can be neglected.

Taking integration over two temperature thus yields the freeze-out approximation result for Y 0
χ

dYχ
dx ≈ −

( π

45G

)1/2 g
1/2
∗ m

x2 〈σχvMøl〉Y 2
χ ⇒ d

(
1
Yχ

)
≈ −

(
G

45π

)1/2
g

1/2
∗ 〈σχvMøl〉

⇒ 1
Yχ(T ) = 1

Y fχ
+
( π

45G

)1/2 ∫ Tf

T

g
1/2
∗ 〈σχvMøl〉 dT, (II.2.44)

with Y fχ = (δ + 1)Y eq
χ (xf ) is the value of the density at freeze-out point. This solution as a rule works within

∼ 2% accuracy (Ref. [27]). Due to the "approximated" initial condition at Tf , the above integration gives the
meaningful result only in the range of temperature T ∈ (Tf ,∞). As we shall see, the precision of the numerical
solution to Yχ(x) generally depends on the initial condition, and there are various other approaches to interpret
the problem. We refer the reader to the papers on the public code on DM such as [24; 27; 28], where the
authors represent their own approach on solving the dark matter relic density.

Despite the advantages of the freeze-out approximation listed at the beginning of this section, we however
experience the problem of estimation of the error comes from the neglection the equilibrium term. Another
more accurate solution (taking into account the contribution of Y eq

χ , together with an error estimation) would
be solving the ODE (II.1.52) with an iterative methods. However, an explicit method like Runge-Kutta fails
to converge due to the stiff nature of the given ODE. In the package DarkSUSY(Ref. [24, Section 23.2]), an
implicit trapezoidal method is applied to overcome the difficulties. Basically, the equation is discretized with the
trapezoidal method first, and solved iteratively using the Euler method. The step size will be adapted when the
difference between two updated solution exceeds a given limit. The detail of the algorithm and implementation
can be found in the manual of DarkSUSY.

Finally, the numerical results of the relic density of a species in the units of the critical density ρ0
c =

3H2
0/(8πG) = 1.9× 10−29h2 g cm−3 is given by

Ωχ =
ρ0
χ

ρc
=
mχs0Y

0
χ

ρc

⇒ Ωχh2 = 2.755× 108 mχ

GeV
χ0, (II.2.45)

where Y 0
χ is calculated from Eq. (II.2.44) at the temperature of current background radiation T = T0 ≈ 2.726K

Y 0
χ ≈

1
1
Y fχ

+
( π

45G

)1/2 ∫ Tf

T0

g
1/2
∗ 〈σχvMøl〉 dT

(II.2.46)

The first term 1/Y fχ can be further discarded due to its small contribution. This approximation corresponds to
an infinite DM relic density at Tf , and works within ∼ 20% precision as mentioned in [27].
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This chapter is a detour through the Standard Model of physics, where we want to emphasize the funda-
mentals from which this model is built to describe known elementary particles as well as their interactions. The
outcome of this model has been tested with thousands of measurements and the fact that SM gives a extremely
good predictions make it becomes one of the most successful theory ever, and thus the name "Standard".

Nevertheless, the SM is still considered as an effective model as there are several observations where SM
cannot provide an acceptable explanation. This is what drive the devolopment of the physics beyond the SM by
investigating subtle modifications such that the new model gives predictions consistent with existing data, yet
provides plausible answers to the imperfection parts of the SM. One possible way to extend the Standard Model
is to enlarge its symmetry group, either the internal symmetry SU(3)C × SU(2)L × U(1)Y or the spacetime
symmetry. Supersymmetry belongs to the second path of extending the symmetry group, and will be represented
in detail in the next chapter of the thesis.

III.1 Introduction
With a long history of development, the particle physics is certainly one of the widest and richest branch

of science. From the very first discovery of the nuclear structure by the gold foil experiment in the early 20th
century, until the current era of high energy particle accelarators with many of these experiments have been set
up around the world, producing an extremely rich and detailed data on elementary particles. Alongside with
the rapid growth of high energy experiments, theoretical particle physics aims to formulate the fundamental
properties of the particles that built up the Universe, and the principles governing the interaction between these
small building blocks. The theoretical models thus were developed to uncover the information hidden deeply
in the data. The Standard Model of partile physics is one outstanding models, not only it is an extremely
compact systhesis of knowledge about the elementary particles and their interactions but also the reliability of
this model has been tested through tens of thousands of measurements with high agreements. To name a few:
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• SM has predicted the existance of the W and Z bosons, the gluons, the top and charm quarks before their
first observations. These are also the last particles being discovered: the W and Z bosons in 1983, the top
quark in 1995, the tau neutrino in 2000, and the Higgs boson in 2012.

• SM gives one of the most precision prediction in particle physics, e.g the agreement between measurement
of anomalous magnetic dipole moment of the electron and a precise theoretical calculation of the anomalous
magnetic dipole moment in terms of structure constant α.

• The prediction of Higgs boson, which is responsible for the symmetry breaking process to generate masses
for elementary particles in the SM. It has been half a decade since its first time being theorized by Peter
Higgs (Ref. [29]) and five other physicists including Robert Brout and Francois Englert (Ref. [30]); Gerald
Guralnik, C. Richard Hagen, and Tom Kibble (Ref. [31]), until this particle is verified by the ATLAS and
CMS experiments at CERN’s Large Hadron Collider in 2012 (Ref. [32]).

The Standard Model contains twelve named fermions and five named bosons, together with their anti-
partner (in some cases, a particle is its own anti-particle). There are quarks and leptons in the class of fermions;
the distinction between these two type of particle is if they have strong interaction or not. On the other
hand, we have gluons, photon, W, Z and Higgs are all bosons. While the first 4 types of bosons listed above
are vector bosons (spin 1) particles, responsible for describing the fundamental interactions (strong, weak and
electromagnetic interactions), the scalar Higgs participate in the Higgs mechanism for breaking the symmetry
group SU(2)L × U(1)Y .

In addition, the fermions are all come into three generations. Same type of particles in each generation
differ by their flavour quantum number and mass, but their interactions are identical. Each member of a higher
generation also have greater mass compared to the previous generations. The heavier mass a particle have, the
more unstable it is, hence particles tend to decay to the first generation, explaining why the most abundant
part of matter is made up from members of the first family.

Their basic properties (mass, spin and charges) are summarized in the table below.
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Name Particle Mass Electric charge
Fermions (spin 1/2)

u 2.2+0.5
−0.4 (MeV)

Up-type quarks c 1.275+0.025
−0.035 (GeV) 2/3

t 172.76± 0.3 (GeV)

d 4.7+0.5
−0.3 (MeV)

Down-type quarks s 95+9
−3 (MeV) −1/3

b 4.65± 0.3 (GeV)

e 0.51099895000(15) (GeV)

Charged leptons µ 105.6583755(23) (MeV) −1

τ 1776.86± 0.12 (MeV)
νe

Neutrinos νµ
∑
imνi < 0.23(GeV) 0

ντ
Vector bosons (spin 1)

Gluons g 0 0

W bosons W± 80.379± 0.012 (GeV) ±1

Z boson Z 91.1876± 0.0021 (GeV) 0

Photon γ 0 0
Scalar bosons (spin 0)

Higgs boson H 125.18± 0.16 (GeV) 0

Table III.1: Particle content in SM with their basic properties: mass, spin and electric charges.

Experiments show a variaty of properties of these particles, e.g the periodicity of particles over generations,
and specific reaction channels each type of particle take part in. These properties are the foundation on which
the SM is built. With the internal symmetry SU(3)C × SU(2)L × U(1)Y , the rich contents of particles can be
ordered in the corresponding multiplets as shown in Table III.2.

26



Building Blocks of the Standard Model

Name Multiplets SU(3)C × SU(2)L ×U(1)Y

Fermions
QL = (uL, dL) (3,2, 1/3)

Quarks multiplets uR (3,1,−4/3)

dR (3,1, 2/3)

Leptons multiplets L = (νL, eL) (1,2,−1)

eR (1,1, 1)
Vector bosons

Gluons Gaµ (8,1, 0)

W vector field W i
µ (1,3, 0)

B vector field Bµ (1,1, 0)
Scalar bosons

Higgs boson Φ = (Φ+,Φ0) (1,2, 1)

Table III.2: Particle multiplets in the SM. The bold number represent the dimension of the representation of
SU(N)C where the multiplets belong to, with a bar on top indicates the complex conjugate representation.
Matter multiplets usually belongs to either 1 (the trivial representation) or N (the standard representation)
and their complex conjugate representations. Gauge multiplets belongs to the adjoint representation N2 − 1
of the corresponding group, and is a singlet in 1 otherwise. The unbold number in the triplet represents the
hypercharge of each multiplet.

The rest of this chapter is divided into two parts. The first part is meant to be a revision of the basic
ingredients of the Standard Model, and the formulation of this theory using the Lagrangian interpretation. The
second one lists the issues of the SM, which motivates the development of theories beyond the SM.

III.2 Building Blocks of the Standard Model

III.2.1 Symmetries & the gauge sector
Symmetry is a long-standing concept in the history of physics. Especially in the branch of particle physics,

symmetries play a vital role as they becomes dominate the understanding of fundamental principles of physics.
In the context of the SM, the internal symmetry group is the foundation of the construction of SM Lagrangian,
providing a discription on three of four known fundamental interactions in the nature: the strong, weak and
electromagnetic interaction. Specifically, these symmetries were successfully included via the gauge theory
developed by Yang and Mills [33] whose main idea is introducing new bosons into the models as interactions
carrier particles. The gauge group SU(3)C is described in the Quantum Chromodynamics (QCD) (see e.g
Ref. [34]) with 8 massless gauge bosons so-called gluons for mediating the strong interaction. On the other
hand, the unified electroweak interaction describing by the SU(2)L×U(1)Y introduces to the model four vector
fields, including three W i

µ and one Bµ. After the electroweak symmetry is simultaneously broken, the SM
predicts new massive charged gauge bosons W± and a neutral gauge boson Z, whose existance is verified by
the UA1 and UA2 collaboration at CERN in 1983.

The strategy of employing the local symmetry SU(N) into the Lagrangian of matter sector requires adding
N2 − 1 vector fields. In order to describe the dynamics of the intermediate gauge bosons, we add the corre-
sponding Lagrangian whose form is generally written as

LG = −1
4F

a
µνF

aµν , (III.2.1)

where the flavour index a ranges from 1→ (N2−1) and the tensor of gauge field strength F aµν ≡ ∂µAaν−∂νAaµ+
gfabcAbµA

c
ν , with fabc being the structure constants of group SU(N). The total Lagrangian is locally SU(N)

invariant if we make the following modification on the derivative of the fermion fields

∂µ −→ Dµ = ∂µ − igAaµT a, (III.2.2)
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where T a are generators of SU(N). We further force the vector fields transform under e−igαa(x)Ta ∈ SU(N) as

Aaµ −→ Aaµ + 1
g
∂µα

a(x)− fabcαb(x)Acµ. (III.2.3)

In the context of SM, the Lagrange must be invariant under the local symmetry gauge group SU(3)C ×
SU(2)L × U(1)Y . According to the Yang-Mills theory, we add the following gauge bosons into SM Lagrangian
for gauge sector

• One gauge field Bµ corresponds to Abellian gauge group U(1)Y with the corresponding coupling constant
g′.

• Three gauge fields W i
µ correspond to non-Abellian gauge group SU(2)L whose three generators are the

isospin operators Ii = σi/2, with the three matrices σ1, σ2, σ3 being the Pauli matrices. The coupling
constants is denoted as g.

• Eight gauge fields Gaµ correspond to non-Abellian gauge group SU(3)C , whose eight associated generators
are half of the Gell-Mann matrices {λa/2, a = 1 . . . 8}. The coupling constant with the matter sector is
denoted as gs.

Note that the SM Lagrangian have no mass term since it violates the gauge symmetry group. We know that
fermion mass term mixes the left and right chiral fermions 1 . Recall that in SM, the left chiral spinors transform
under the fundamental representation of SU(2)L while the right chiral spinors are singlet of this group. Take
lepton sector for example, under the gauge transformation eL ↔ νL while eR remains the same. A fermion
mass term hence does not respect the symmetry SU(2)L of the SM and is not allowed. In a similar manner,
a mass term of gauge boson is forbidden since such term is not invariant under the local gauge transformation
(III.2.3).

III.2.2 The matter sector
The SM matter sector contains 12 fermions (and their anti-partners), including 6 quarks (each with three

colors) and 6 leptons. Except for neutrinos where we have not understand its Majorana or Dirac nature
yet, these fermions transforms under the spinor representation (1/2, 0) ⊕ (0, 1/2) of the proper orthochronous
Lorentz group, hence being described by the four-components Dirac spinor Ψ, whose equation of motion is the
well-known Dirac equation

(iγµ∂µ −m) Ψ = 0. (III.2.4)

The mathematical framework allows us to decompose the Dirac spinor into a composition of left and right
chiralitiesWeyl spinors ΨL and ΨR; each of those Weyl spinor belongs to either (0, 1/2) or (1/2, 0) representation
of Lorentz group:

Ψ = PLΨL + PRΨR, (III.2.5)

where PL and PR are the left- and right-chiral projection operators. The Dirac equation for a Dirac spinors can
be break down to a system of equations for describing the Weyl spinors ΨLΨ and ΨRΨ, with the mass term
being the mixing of chirality eigenstates. The importance of this left-right projection of Dirac spinors becomes
essential in the formulation of weak interaction where we know that only left-handed fermions will participate in.
Note that before the electroweak symmetry is broken and hence all of the particles in the models are massless,
the description of chirality and helicity (i.e the projection of the spin onto the direction of momentum) are the
same. We therefore can split a type of particle into two sub-types base on the orientation of the spins.

The last piece about representing a fermion we want to mention is Majorana fermion, described by a spinor
satisfying the Majorana condition:

ΨC
M = ΨM , (III.2.6)

i.e this type of fermion is left invariant under a charge-conjugation. From the definition, it follows that the U(1)
current vanishes: ΨC

γµΨC = −ΨMγ
µΨM . This implies that a Majorana fermion is electrically neutral since its

U(1) current vanishes, meaning that Majorana fermions cannot couple directly to electromagnetic field. Only
neutrinos are neutral fermions in the SM and are the only candidates for Majorana fermions. However, the fact
that these particles are Dirac-fermions or Majorana-fermions remains inconclusive.

1 Recall a usual Dirac mass term can be written in terms of left and right chiral spinors as −mΨΨ = −m(ΨLΨR + ΨRΨL).
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Leptons

Leptons are fermions that do not undergo strong interactions, and thus do not appear in the combination
form like quarks. Mathematically speaking, leptons are singlet under the SU(3)C group, thus have no color
charge. The six leptons over three generations can be divided further into two subgroup: one are electrically
neutral, extremely light weight 1 . This is the subgroup of neutrinos, which have three flavours corresponding
to their partner leptons: νe, νµ and ντ . On the other hand, electron e−, muon µ− and tau τ− are all negatively
charged (with the same unit electric charge), hence much easier to measured. Electron is the lightest of all
electron-like leptons, which is the stable and most abundant charged lepton in the Universe since the muon and
tau unstable, and rapidly decay into electrons and neutrinos. In fact, the identification of electron as a particle
by J. J. Thomson and his team in 1897 is one of the earliest discovery in the particle physics history.

Before the symmetry group SU(2)L×U(1)Y is broken by the Higgs mechanism, all of the leptons (and their
anti-partners) are massless and can be cast into the following multiplets:

L =
{(

νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

}
, e = {eR, µR, τR} . (III.2.7)

We know that the left and right chiral fermions behave differently under weak interaction. The left-handed
fermions (and right-handed anti-fermions) participate in the weak interaction and thus being ordered into a
doublet. The right-handed one do not interact weakly with other particles, and is a singlet under SU(2)L
group. Note further that these right chiral leptons are negatively charged and can interact electrically. Unlike
{eR, µR, τR}, the right-handed neutrinos and the left-handed anti-neutrinos have no known interaction with
other elementary particles in the context of the SM, and thus are not included in the SM.

Quarks

Quarks are spin-1/2 particles that participate in all three interactions in the SM. Similar to leptons, we have
six type of quarks, each of which is a triplet of SU(3)C (with the corresponding quantum numbers so called
color including red, blue and green). Due to the confinement property of the strong interaction, the quarks are
always detected in the bound states; all of these quarks compositions are known to be colorless and have integer
electric charge. A baryon is a type of composite subatomic particle which contains an odd number of valence
quarks (at least 3) while a meson is made of one quark and one antiquark. Collectively the quarks bound states
are called as hadrons.

As for the multiplets of the leptons, we also have quarks being ordered into multiplets under the internal
symmetry group of SM as shown in Table III.2. All quarks are electrically charged, with up-type quarks contains
a fractionary electric charge of 2/3 unit charge whereas the down-type quarks have a charge −1/3.

The quark flavours can be mixed to form the mass eigenstates, which is characterized by the 3×3 Cabibbo-
Kobayashi-Maskawa matrix (CKM) matrix. Specifically, from the unitary transformation of the flavour basis
ui, di to mass eigenbasis ûi, d̂i

ûi = Uuijuj , d̂i = Udijdj , (III.2.8)

the bilinear terms of up- and down-type quarks is rotated into diagonal form

L = huijuiuj + hdijdidj −→ L̂ = Mu
i uiui +Md

i didi, (III.2.9)

where Mu
i ,M

d
i are the masses of up-type and down-type quarks in generation space. The charged current is

tranformed form weak interaction basis to

LCC =
[
uiγ

µ
(
1− γ5) diWµ + h.c

]
−→ L̂CC =

[
ûiV

CKM
ij γµ

(
1− γ5) d̂iWµ + h.c

]
. (III.2.10)

The CKM matrix has one complex phase describing the CP violation in weak interaction in the quark sector.

III.2.3 Breaking symmetries: the Higgs mechanism
The motivation of this mechanism is that the mass terms of fermions and gauge bosons is not allowed in

the SM Lagrangian since their appearance explicitly violate the SM symmetry group ×SU(2)L × U(1)Y . As
1 In SM, the neutrinos are considered to be massless. In fact, this mass is so tiny that only recently neutrinos are confirmed to

be massive.
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we know, most of the fermions and gauge bosons have non zero mass (except photon and gluons), implying
the symmetry must be broken somehow. The briliant idea is by adding appropriate fields into the model, the
symmetry of the total Lagrangian can be kept, while a non zero vacuum breaks this symmetry to generate
masses for particles. That mechanism is known as electroweak spontaneous symmetry breaking (EWSB). In
the SM, the minimal case of symmetry breaking is by adding an SU(2)L complex scalar doublets with the
corresponding Lagrangian

LΦ = (DµΦ)† (DµΦ)− V (Φ), (III.2.11)

where the Higgs doublet Φ(x) =
(
φ+(x)
φ0(x)

)
, and

DµΦ = ∂µ −
i

2gY Bµ −
i

2g
′σjW j

µ, (III.2.12)

V (Φ) = −µ2 |Φ|2 + λ |Φ|4 = −µ2Φ†Φ + λ
(
Φ†Φ

)2
. (III.2.13)

A physical minimum of the Higgs potential requires the positivity of parameter λ. The vacuum expectation
value (vev) is then the value at which V (Φ) is minimal:

∂V (Φ)
∂(|Φ|2)

∣∣∣∣
Φ=〈Φ〉

= −µ2 + 2λ(〈Φ〉† 〈Φ〉) = 0⇒ 〈Φ〉† 〈Φ〉 = µ2

2λ

⇒
∣∣〈φ+〉∣∣2 +

∣∣〈φ0〉∣∣2 = µ2

2λ. (III.2.14)

In order to achieve the two minima for spontaneous symmetry breaking, we insists µ2 > 0.

Figure III.1: Illustration of the Higgs potential in three cases: µ2 < 0, µ2 = 0 and µ2 > 0. Source: [35,
Fig. 28.1].

To preseve the U(1)Q symmetry, after EWSB the vev of each fields are evaluated as

〈
φ+〉 = 0⇒

〈
φ0〉 = v√

2
=
√
µ2

2λ, (III.2.15)

The Higgs field can then be expanded around the chosen minimum

Φ(x) =
(

φ+(x)
1
2 [v + h(x) + iχ(x)]

)
, (III.2.16)

with only one massive neutral CP-even h field, and two massless states including one charged φ± and one
neutral CP-odd G0. These massless fields are unphysical Nambu-Goldstone bosons that are absorbed by the
weak gauge bosons to generate their masses. One simple way to see how W± and Z gain their masses is by
working in the unitary gauge where the Higgs doublet can be expanded around its vacuum in the form

Φ =

 0

(v + h)√
2

 . (III.2.17)
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Let us consider the kinetic term of the Higgs doublet after EWSB

KΦ = (DµΦ)† (DµΦ)

= 1
2(∂µh)(∂µh) + 1

8g
2(v + h)2(W 1

µ + iW 2
µ)(Wµ

1 −W
µ
2 ) + 1

8(v + h)2(gW 3
µ − g′Bµ)(gW 3µ − g′Bµ).

(III.2.18)

By defining a new basis 1

W±µ ≡
W 1
µ ± iW 2

µ√
2

, Zµ ≡
gW 3

µ − g′Bµ√
g2 + g′2

, Aµ ≡
g′W 3

µ + gBµ√
g2 + g′2

, (III.2.19)

one obtains a massive charged gauge boson (with its antiparticle) W , a massive neutral gauge boson Z and a
massless gauge field A with the mass spectrum

MW = gv

2 , MZ =
√
g2 + g′2v

2 , Mγ = 0. (III.2.20)

Similarly, we plug the expansion (III.2.17) into the Yukawa couplings (III.3.8) to diagonalize this Lagrangian,
which results in

mf = yfv√
2
, (III.2.21)

where the subscript f represents the leptons and quarks in three generations. There is no such mass term
for neutrinos, thus the SM predicts that the neutrinos are massless particles, which has been rejected by the
neutrino oscillation experiments such as Super-Kamiokande Observatory and Sudbury Neutrino Observatory.

III.3 The Standard Model Lagrangian
The classical Standard Model Lagrangian is constructed having in mind the basic ideas of the gauge sym-

metry group SU(3)C × SU(2)L × U(1)Y representing the three fundamental interactions, the particle contents
over three generations and the Higgs mechanism which generate masses of these fundamental particles through
the process electroweak spontaneous symmetry breaking. This Lagrangian is thus a combination of the kinetic
terms for fermions and gauge bosons, the Yang-Mills couplings between the fermion fields via gauge fields, the
Lagrange for Higgs sector and the Yukawa couplings: 2

LSM = LG + LΨ + LΦ + LY , (III.3.1)
1 In this basis, the general covariant derivative (III.3.7) is expressed as follows

Dµ = ∂µ − igsGaµTa − i
g
√

2

(
W+
µ I

+ +W−µ I
−
)
− i

g

cW

(
I3 − s2WQ

)
Zµ − ieQAµ,

with I± ≡ (σ1 ± iσ2)/2, and the charge operator relates to the I3 and YW operators by the Gellmann-Nishijima formula Q =
I3 + YW /2.

2 For quantization purposes, a gauge-fixing term and Faddeev-Popov term must be included into this Lagrange.
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Figure III.2: Tree-level interactions between particles in matter sector by exchanging gauge bosons or Higgs
bosons as being described by the SM Lagrangian (III.3.1). Lines represent the bosons being exchanged, with
gluons (plain black), γ (dashed), Z and W (dotted) and Higgs boson (green). Source: [36, Fig. 1.2].

Let us examine each term of LSM explicitly. The first term is the gauge kinetic terms, which describe the
kinematics of the three types of gauge fields G, W and B as

LG = −1
2 Tr [GµνGµν ]− 1

2 Tr [WµνW
µν ]− 1

4BµνB
µν = −1

4G
aµνGaµν −

1
4W

iµνW i
µν −

1
4B

µνBµν , (III.3.2)

where the implicit sum is apply on the indices a = 1, . . . , 8 and b = 1, 2, 3. Each of the field strength tensor is
constructed from the corresponding gauge fields as follows

Gµν = GaµνT
a, Gaµν = ∂µG

a
ν − ∂νGaµ + gsf

abcgbµg
c
ν ; (III.3.3)

Wµν = W i
µνI

i, W i
µν = ∂µW

a
ν − ∂νW a

µ + gsε
ijkgjµg

k
ν ; (III.3.4)

Bµν = ∂µBν − ∂νBµ. (III.3.5)

The fermionic fields Lagrangian can be split into two parts: the kinematic terms governed by the Dirac
equation, and the coupling with gauge fields. Specifically

LΨ = L(0)
Ψ + LYMint . (III.3.6)

These two terms can be collected by introducing the gauge covariant derivatives, which generally written as

Dµ = ∂µ − igsT aGaµ − igIjW j
µ − ig′

YW
2 Bµ. (III.3.7)

An explicit mass term would break the gauge symmetry of the SM through EWSB with the Lagrange
has already given in Eq. (III.2.11). The final part of the SM Lagrangian we mentioned above is the Yukawa
couplings between the Higgs boson and other fermions in the particle contents:

LY = LΦY LE −QΦY DD −QΦCY UU + h.c (III.3.8)

where L = (νL, eL) is the left-chiral lepton doublet, Q = (uL, dL) is the left-chiral quark doublet; the corre-
sponding right-chiral quantities are denoted by E,D,U . The superscript C denotes the charge conjugation of
Φ to assure a neutral hypercharge coupling: ΦC = iσ2Φ∗. Note that Y L, Y D and Y U are matrices acting on
three generations; these 3× 3 matrices contains information about Yukawa couplings parameters.

III.4 Challenges to the SM
Despite being the most rigorous and successful theory in particle physics with incredible precision predic-

tions, there are various phenomena that SM remains inadequate to explain, hence SM is widely considered as an
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incomplete theory, i.e the SM of physics is merely a low-energy approximation of some deeper theory of nature.
Such unanswered questions motivate the development of the Beyond Standard Models.

The neutrino mass problem: Neutrinos are massless particles in the context of the SM, which has been
ruled out by the famous neutrino oscillations experiments. Theoretically one can add the neutrino mass terms
into the SM picture, but this gives rise to a theoretical problem about extraordinarily smallness of these by-hand
added mass terms. This tininess implies that the neutrino mass terms may not arise by the same mechanism as
other masses of elementary particles, open a chance for other BSM theories to propose more reasonable answers.

Gravity: A well-known fact in particle physics is that the SM efficiently describes three over four fun-
damental interactions in nature, with gravitational interaction does not included. As discussed above, the
strong, weak and electromagnetic interactions result from the exchanging of force-carrier particles, e.g gluons
carry strong interactions between quarks while W and Z bosons mediating the weak interaction. The idea to
incorporate gravity into the SM with the same approach (i.e applying Yang-Mills theory by adding intermediate
bosons so-called graviton) have not been successful since gauge symmetry for gravity cannot be considered as
an internal symmetry. Up to now, there are no existed theory succeeded in unifying this weakest interaction in
nature with the other three, proving the difficulties on fitting the gravitational interaction into a bigger picture.

The strong CP problem: This theoretical orientation problem is about the smallness of θQCD parameter.
Specifically, apart from the typical QCD Lagrange there is one CP-violated term that can be added:

LθQCDG = θQCD
16π2 G

a
µνG̃

aµν , (III.4.1)

with the dual field strength tensor G̃aµν ≡ 1
2ε

µνρσGaρσ. Such term contributes to the neutron electric dipole
moments, and the work [37] put an upper bound on |θQCD| < 10−11. As there is no known explanation within
the SM context that CP needs to be conserved in strong interaction, the above stringent raises a fine-tuning
problem.

The hierarchy problem: The SM contains quartic divergence, which can be seen by using the cut-off
method to compute one-loop correction to Higgs mass such as

∆m2
H = −

|λ|f
8π2

[
Λ2 + 2m2

f log
(

Λ
mf

)
+ . . .

]
, (III.4.2)

where the cut-off scale Λ can be as large as the Planck mass Mpl ∼ 1019 GeV. With the experimental Higgs
mass ∼ 125 (GeV), one to fine-tune counterterms in such a way that there is a cancellation of the quartic terms
so that the quantum correction remains of electroweak scale. A plausible solution to this issue can be found in
the context of supersymmetric extension of the SM.

The dark matter: The last issue of SM we want to mention here is that no elementary particle within
the SM is compatible with the cosmological observations on the relic density of the dark matter. As discussed
at the beginning of this thesis, the only particle satisfying the proposed list of properties of DM (namely
massive, neutral, stable, non-baryonic,. . . ) in the context of SM are neutrinos. Unfortunately, the constraints
on neutrinos masses makes them to be insufficient to be compatible with the current relic density of DM.
Moreover, the tiny value of mass make neutrinos remain relativistic while decoupling from thermal bath; or put
another way neutrinos are hot dark matter candidates. This indicates that "at very least, structure formation
with neutrino-dominated Universe is more complicated than the standard inflation pictures" as stated and
demonstrated with various reasons in [38].
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IV.1 History & Motivation for Supersymmetry
In 1967, Coleman and Mandula [39] proved a theorem which says that under certain assumptions (including

Lorentz invariance, particle-finiteness, weak elastic analyticity, occurence of scattering, etc.), the only possible
symmetries of the S-matrix are:

• CPT symmetry.

• Poincaré symmetry, with generators Pµ and Mµν . This is the group of Minkowski spacetime isometries,
meaning the interval between events are left invariant under the group action.

• Some internal symmetry group with generators B` which are Lorentz scalars.

This theorem can be evaded by relaxing some of its assumptions. In 1975, Haag, Lopuszanski and Sohnius
[40] generalized the notion of Lie algebra to include anticommutators. This extension allows to include spinor
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generators Qα that transform fermions to bosons and vice versa, allows the states of different spin mix with
each other. In such theory, the largest possible symmetry group is

SuperPoincaré× Internal Symmetries

A theory can be systematically extended by modifying the internal symmetry groups, e.g the simplest Grand
Unified Theory (GUT) model is built upon the group SU(5) or the 331 model whose gauge group is SU(3)C ×
SU(3)L × U(1)X . Such extension is more limited when consider the spacetime symmetries, which can be
extended to include the supersymmetry between fermionic and bosonic states under the persuasive assumptions
above. Specifically, starting from the usual Poincaré group whose algebra comprised of four generators for
translations Pµ and 6 independent generators for rotations and boosts contained in Mµν :

[Pµ, P ν ] = 0, (IV.1.1)
[Mµν , Pσ] = i (ηνσPµ − ηµσP ν) , (IV.1.2)
[Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ − ηνσMµρ − ηµρMνσ) , (IV.1.3)

one can extend the symmetry group by imposing internal symmetries generated by Bl, and adding a set of
fermionic generators QIα, Q

J

α̇. The role of these fermionic generators can be loosely spoken as changing the spin
of a states, i.e

Q|B〉 ∼ |F 〉, Q|F 〉 ∼ |B〉. (IV.1.4)

Let us mention some of the reasons why supersymmetry becomes well-known and widely studied in the
context of high energy physics:

• In the minimal case, one consider only a pair of Q and Q, and thus double the number of particles in
the original model due to the equality of bosonic states and fermionic states. This means any particle
would have its superpartner that has different spin, and thus the minimal extension of the SM doubles the
number of elementary particles, features a rich particle content. This provide a wider range of solutions
for phenomenological problems, such as the DM candidate.

• The hierarchy problem of SM addressed in Section III.4 is resolved in SUSY theories by taking into
account the one-loop correction of the fermion superpartner. In comparison with (III.4.2), the total mass
correction to Higgs from both loop reads

∆m2
H = 1

8π2

(
λS − |λf |2

)
Λ2 + . . . , (IV.1.5)

where λS is the scalar coupling. The invariance of supersymmetry requires λS = |λ|f the mass correction
is perfectly canceled. In realistic there are reasons that SUSY must be broken, though the cancellation
of quadratic divergences can hold if the soft-term is consider to break SUSY. Such scenarios yield a
logarithmically divergent terms

∆m2
H = m2

soft

[
λ

16π2 log
(

Λ
msoft

)
+ . . .

]
, (IV.1.6)

where msoft describes the mass difference between the fermion and its superpartner. A sufficiently small
msoft implies the small Higgs mass correction, provides a possible solution to the fine-tuning problem.

• Another interesting feature of a supersymmetric model is the existence of multiplicatively conserved quan-
tum number known as R-parity. If supersymmetric is indeed realized in the nature, the conservation of
R-parity make the lightest supersymmetric particle becomes stable and thus being a suitable DM candi-
date. We will come back to the discussion of R-parity later in Section V.1.

IV.2 SuperPoincaré Algebra
A more detail discussion and derivation of the (anti)commutation relations can be found in Appendix A.3.

For simplicity, we will investigate the minimal case with N = 1 from here and follows in this thesis. Below we
represent a list of the algebra that generate the SuperPoincaré group, in the minimal case N = 1:
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Minimal SuperPoincaré algebra

[Pµ, P ν ] = 0,
[Mµν , Pσ] = i (ηνσPµ − ηµσP ν) ,
[Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ − ηνσMµρ − ηµρMνσ) ,

[Pµ, Qα] = 0,
[
Pµ, Q

α̇
]

= 0,

[Mµν , Qα] = − (σµν) βα Qβ ,[
Mµν , Q

α̇
]

= − (σµν)α̇β̇ Q
β̇
,{

Qα, Qβ̇

}
= 2(σµ)αβ̇Pµ,

{Qα, Qβ} = 0,
{
Qα̇, Qβ̇

}
= 0,

[Bl, Bm] = ifnlmBn,

[Qα, Bl] = 0,
[
Qα̇, Bl

]
= 0.

(IV.2.1a)
(IV.2.1b)
(IV.2.1c)

(IV.2.1d)

(IV.2.1e)

(IV.2.1f)

(IV.2.1g)

(IV.2.1h)

(IV.2.1i)
(IV.2.1j)

Note that we also cover the possible internal symmetry groups, generated by the set {B`}. In the mini-
mal case with only one pair of fermionic operators, the supersymmetry and internal symmetry are unrelated
according to the two last identities (IV.2.1j). For a more general consideration of the SuperPoincaré algebra,
see Appendix A.3.

IV.3 Superspace & Superfields formalism

IV.3.1 Superfields & Supersymmetric Variations

Consider a superfield built up on superspace coordinates Y (x, θ, θ), we can decompose Y into sum of fields,
each corresponds to a specific power of θ and θ. Note further that this expansion is finite since θ and θ
anticommute implying any product involving more than two θ’s or θ’s vanishes. Thus the most general scalar
superfield is expanded as

Y (x, θ, θ) = ϕ(x) + θψ(x) + θχ(x) + θθ M(x) + θθ N(x)
+ θσµθ Vµ(x) + θθ θλ(x) + θθ θρ(x) + θθ θθ D(x). (IV.3.1)

The following quantities

ϕ,ψ, χ,M,N, Vµ, λ, ρ,D (IV.3.2)

are called component fields, and their geometric nature are characterized by their transformation properties
under Lorentz group, which can be inferred from the Lorentz scalar Y (x, θ, θ):

• ϕ,M,N are complex scalar/pseudoscalar fields.

• ψ, ρ are left-chiral Weyl spinor fields.

• χ, λ are right-chiral Weyl spinor fields.

• Vµ is a vector field.

• D is a scalar field.

Thus superfield is a short way to denote a finite multiplet of fields. The space-time translations is generated
through momentum operator Pµ, which is parameterized by infinitesimal aµ as

ϕ(x+ a) = e−iaPϕ(x)eiaP = ϕ(x)− iaµ [Pµ, ϕ(x)] . (IV.3.3)

On the other hand, applying Taylor expansion of φ around x reads

ϕ(x+ a) = ϕ(x) + aµ∂µϕ(x) +O(a2). (IV.3.4)
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Equating both sides gives the following commutation relation

[ϕ(x), Pµ] = −i∂µϕ(x) ≡ Pµϕ(x), (IV.3.5)

with Pµ is the representation of spacetime translation on field space. Therefore, a translation of field ϕ by
parameter aµ induces a change on the field as

δaϕ(x) = ϕ(x+ a)− ϕ(x) = iaµPµϕ(x). (IV.3.6)

The same procedure can by applied on supercharge to obtain its differential form. We first define the infinitesimal
supersymmetry transformation induced on the general superfield Y (x, θ, θ) by a quantity (εα, εα̇) is

Y (x+ δx, θ + δθ, θ + δθ) = e−i(εQ+εQ)Y (x, θ, θ)ei(εQ+εQ)

= e−i(εQ+εQ)e−i(xP+θQ+θQ)Y (0, 0, 0)ei(xP+θQ+θQ)ei(εQ+εQ). (IV.3.7)

To merge the product of two exponentials, it is useful to employ the Baker-Campbell-Haussdorff formula

exp
{
i(xP + θQ+ θQ)

}
exp

{
i(εQ+ εQ)

}
≈ exp

{
i(xP + θQ+ θQ) + i(εQ+ εQ) + 1

2
[
i(xP + θQ+ θQ), i(εQ+ εQ)

]}
≈ exp

{
ixµPµ + i(ε+ θ)Q+ i(ε+ θ)Q− 1

2
[
θQ, εQ

]
− 1

2
[
θQ, εQ

]}
≈ exp

{
ixµPµ + i(ε+ θ)Q+ i(ε+ θ)Q+ εσµθPµ − θσµεPµ

}
≈ exp

{
i(xµ + iθσµε− iεσµθ)Pµ + i(ε+ θ)Q+ i(ε+ θ)Q

}
, (IV.3.8)

thus induces the supersymmetry variation of coordinates
δxµ = iθσµε− iεσµθ
δθα = εα

δθ
α̇ = εα̇

. (IV.3.9)

The supersymmetry variation of superfield Y is obtained using Taylor expansion around (x, θ, θ) as

δε,εY (x, θ, θ) ≡ Y (x+ δx, θ + δθ, θ + δθ)− Y (x, θ, θ)

= δxµ∂µY (x, θ, θ) + δθα∂αY (x, θ, θ) + ∂α̇Y (x, θ, θ)δθα̇

= i

(
θβσµβα̇ε

α̇ − εασµ
αβ̇
θ
β̇
)
∂µY (x, θ, θ) + εα∂αY (x, θ, θ) + ∂α̇Y (x, θ, θ)εα̇

= iεα
(
−i∂α − σµαβ̇θ

β̇
∂µ

)
Y (x, θ, θ)− i

(
i∂α̇ + θβσµβα̇∂µ

)
εα̇Y (x, θ, θ). (IV.3.10)

Similar to spacetime translation, we obtain the representation of supercharge operator on field space by equating
the above variation with

δε,εY (x, θ, θ) =
(
iεQ+ iεQ

)
Y (x, θ, θ) =

[
iεαQα − iεα̇Qα̇

]
Y (x, θ, θ), (IV.3.11)

⇒

 Qα = −i∂α − σµαβ̇θ
β̇
∂µ

Qα̇ = +i∂α̇ + θβσµβα̇∂µ

(IV.3.12)

Having the differential form of supercharge operators, we are able to find the variations of component fields
of Y (x, θ, θ):

δε,εY = i
(
εQ+ εQ

)
Y = i

[
εα
(
−i∂α − σµαα̇θ

α̇
)
− εα̇

(
i∂α̇ + θασµαα̇∂µ

)]
= εα(∂αY )− iεασµ

αβ̇
θ
β̇(∂µY ) + εα̇

(
∂α̇Y

)
− iθασµαα̇εα̇(∂µY ), (IV.3.13)

with each term is expanded as

εα(∂αY ) = εα
(
ψα + 2θα M + σµαα̇θ

α̇
Vµ + 2θαθλ+ θθ ρα − 2θαθθ D

)
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= εψ + 2(εθ)M + (εσµθ)Vµ + 2(εθ)(θλ) + (θθ)(ερ) + 2(εθ)(θθ)D, (IV.3.14)

− i(εσµ)(∂µY ) = −i(εσµθ)∂µ
[
ϕ+ θψ + θχ+ θθM + (θσνθ)Vν + (θθ)θλ

]
, (IV.3.15)

εα̇(∂α̇Y ) = −εα̇
(
χα̇ + 2θα̇N + θασµαα̇Vµ + (θθ)λα̇ + 2θα̇(θρ) + 2(θθ)θα̇D

)
= εχ2(εθ)N + (θσµε)Vµ + (θθ)(ελ) + 2(εθ)(θρ) + 2(θθ)(εθ)D, (IV.3.16)

iθασµαα̇ε
α̇(∂µY ) = i(θσµε)∂µ

[
ϕ+ θψ + θχ+ (θθ)N + (θσνθ)Vν + (θθ)(θρ)

]
. (IV.3.17)

Summing all the terms and rearranging the fields in the appropriate form

δε,εY = [εψ + εχ] + [2(εθ)M + i(θσµε)∂µϕ+ (θσµε)Vµ] +
[
(εσµθ)Vµ − i(εσµθ)∂µϕ+ 2(εθ)N

]
+
[
(θθ)(ελ) + i(θσµε)∂µ(θψ)

]
+
[
(θθ)(ερ)− i(εσµθ)∂µ(θχ)

]
+
[
2(εθ)(θλ)− i(εσµθ)∂µ(θψ)

]
+
[
2(εθ)(θρ) + i(θσµε)∂µ(θχ)

]
+
[
−i(εσµθ)(θθ)∂µM + 2(θθ)(εθ)D + i(θσµε)(θσνθ)∂µVν

]
+
[
2(εθ)(θθ)D − i(εσµθ)(θσνθ)∂µVν + i(θσµε)(θθ)∂µN

]
+
[
−i(εσµθ)(θθ)(θ∂µλ) + i(θσµε)(θθ)(θ∂µρ)

]
.

(IV.3.18)

Comparing this with the variation of Y from definition

δε,εY (x, θ, θ) = δϕ+ θδψ + θδχ+ θθ δM + θθ δN

+ θσµθ δVµ + θθ θδλ+ θθ δθρ+ θθ θθ δD (IV.3.19)

gives the variations of component fields:

δϕ = εψ + εχ, (IV.3.20)

θδψ = 2(εθ)M + i(θσµε)∂µϕ+ (θσµε)Vµ, (IV.3.21)

θδχ = 2(εθ)N − i(εσµθ)(∂µϕ) + (εσµθ)Vµ, (IV.3.22)

θθδM = (θθ)(ελ) + i(θσµε)∂µ(θψ)︸ ︷︷ ︸
≡T1

, (IV.3.23)

θθδN = (θθ)(ερ)− i(εσµθ)∂µ(θχ)︸ ︷︷ ︸
≡T2

, (IV.3.24)

(θσµθ)δVµ = 2(εθ)(θλ)︸ ︷︷ ︸
≡T3

− i(εσµθ)∂µ(θψ)︸ ︷︷ ︸
≡T4

+ 2(εθ)(θρ)︸ ︷︷ ︸
≡T5

+ i(θσµε)∂µ(θχ)︸ ︷︷ ︸
≡T6

, (IV.3.25)

(θθ)(θδλ) = −i(εσµθ)∂µ(θθM) + 2(θθ)(εθ)D + i(θσµε)(θσνθ)∂µVν︸ ︷︷ ︸
≡T7

, (IV.3.26)

(θθ)(θρ) = 2(εθ)(θθ)D − i(εσµθ)(θσνθ)∂µVν︸ ︷︷ ︸
≡T8

+i(θσµε)(θθ)∂µN, (IV.3.27)

(θθ)(θθ)D = − i(εσµθ)(θθ)(θ∂µλ)︸ ︷︷ ︸
≡T9

+ i(θσµε)(θθ)(θ∂µρ)︸ ︷︷ ︸
≡T10

. (IV.3.28)

The θ and θ in these expressions can be eliminated to give the supersymmetric variation of pure fields. Starting
with ψ in Eq. (IV.3.21), (note that εθ = θε)

θδψ = 2(θε)M + i(θσµε)∂µϕ+ (θσµθ)Vµ ⇒ δψ = 2εM + σµε(i∂µϕ+ Vµ). (IV.3.29)

Similarly for the variation of χ in Eq. (IV.3.22)

θδχ = 2(εθ)N − i(εσµθ)∂µϕ+ (εσµθ)Vµ ⇒ δχ = 2εN − εσµ(i∂µϕ− Vµ). (IV.3.30)
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The terms from T1 to T10 requires a little lengthy calculations to bring similar form to the LHS. To save space,
we will use the identities of two-component spinors without explicitly derivation in Appendix A.2, as follows

T1 ≡ i
(
θσµθ

)
(θ∂µψ) = − i2(θθ) (∂µψσµε) , (IV.3.31)

which leads to the variation of M

θθM = (θθ)(ελ)− i

2(θθ)(∂µψσµε)⇒ δM = ελ− i

2 (∂µψσµε) . (IV.3.32)

T2 ≡ i
(
εσµθ

) (
θ∂µχ

)
= − i2

(
θθ
)

(εσµχ) . (IV.3.33)

The variation of N-field is thus

θθδN = (θθ)(ερ) + i

2(θθ)(εσµ∂µχ)⇒ δN = ερ+ i

2εσ
µ∂µχ. (IV.3.34)

Similarly, the next four terms corresponding to Vµ can be Fierz transformed into 1

T3 ≡ 2(θε)(θλ) = (θσµθ)(εσµλ),

T4 ≡ i(εσµθ)(θ∂µψ) = − i2
(
θσνθ

)
(εσµσν∂µψ) ,

T5 ≡ 2(εθ)(θρ) =
(
θσµθ

)
(ρσµε) ,

T6 ≡ i (θσµε)
(
θ∂µχ

)
= − i2

(
θσνθ

)
(∂µχσνσµε) . (IV.3.36)

The supersymmetric variation of vector field is

(θσµθ)δVµ = 2
(
θσµθ

) (
εσµλ

)
+ i

2
(
θσνθ

)
(εσµσν∂µψ) +

(
θσµθ

)
(ρσµε)−

i

2
(
θσνθ

)
(∂µχσνσµε)

⇒ δVµ = εσµλ+ ρσµε+ i

2εσ
νσµ∂νψ −

i

2∂νχσνσ
µε = εσµλ+ ρσµε+ i

2 (∂νψσµσνε− εσνσµ∂νχ) . (IV.3.37)

The terms T7 and T8 require the usage of identity
(
θσµθ

) (
θσνθ

)
= 1

2η
µν(θθ)(θθ)

T7 ≡ i (θσµε)
(
θσνθ

)
∂µVν = iθασµααε

α̇θβσν
ββ̇
θ
β̇
∂µVν = −i(θαθβ)εα̇σµαα̇σνββ̇θ

β̇
∂µVν

= i

2(θθ)εα̇σµαα̇εαβεβ̇γ̇σνββ̇θγ̇∂µVν = − i2(θθ)εα̇σµαα̇σνγ̇αθγ̇∂µVν = i

2(θθ)θγ̇σνγ̇ασµαα̇εα̇∂µVν

= i

2(θθ)(θσνσµε)∂µVν . (IV.3.38)

T8 = i(εσµθ)(θσνθ)∂µVν = iεασµαα̇θ
α̇
θβσν

ββ̇
θ
β̇
∂µVν = −iεασµαα̇σνββ̇θ

β(θα̇θβ̇)∂µVν

= i

2(θθ)εγεαγεα̇β̇σµαα̇σνββ̇θ
β∂µVν = i

2(θθ)εγσµβ̇γσνββ̇θ
β∂µVν = i

2(θθ)θβσν
ββ̇
σµβ̇γεγ

= i

2(θθ)(εσµσνθ)∂µVν . (IV.3.39)

The variations of λ and ρ are expressed as follows:

δλ = iσµε∂µM + 2εD + i

2σ
νσµε∂µVν , (IV.3.40)

δρ = 2εD − i

2σ
νσµε∂µVν + iσµε∂µN. (IV.3.41)

1 The terms T4 and T6 could be rewritten simply as

T4 = −
i

2
(
θσµθ

)
(ε∂µψ) ,

T6 = −
i

2
(
θσµθ

)
(ε∂µχ) . (IV.3.35)
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Finally we consider the two terms in the variation of D that need to be Fierz transformed

T9 ≡ i(εσµθ)(θθ)(θ∂µλ) = − i2(θθ)(θθ)(εσµ∂µλ),

T10 ≡ i(θσµε)(θθ)(θ∂µρ) = − i2(θθ)(θθ)(∂µρσµε). (IV.3.42)

⇒ δD = i

2εσ
µ∂µλ−

i

2∂µρσ
µε. (IV.3.43)

In summary, we get the change of each terms in the general superfield Y after infinitesimal supersymmetric
transformation

Supersymmetric Variations of Component Fields



δϕ = εψ + εχ

δψ = 2εM + σµε(i∂µϕ+ Vµ)
δχ = 2εN − εσµ(i∂µϕ− Vµ)

δM = ελ− i

2∂µψσ
µε

δN = ερ+ i

2εσ
µ∂µχ

δVµ = εσµλ+ ρσµε+ i

2 (∂νψσµσνε− εσνσµ∂νχ)

δλ = 2εD + i

2 (σνσµε) ∂µVν + iσµε∂µM

δρ = 2εD − i

2 (σνσµε) ∂µVν + iσµε∂µN

δD = i

2∂µ
(
εσµλ− ρσµε

)

(IV.3.44a)
(IV.3.44b)
(IV.3.44c)

(IV.3.44d)

(IV.3.44e)

(IV.3.44f)

(IV.3.44g)

(IV.3.44h)

(IV.3.44i)

IV.4 General Supersymmetric Action

IV.4.1 Basic construction
We can build an action that is automatically invariant under supersymmtric transformation using the

superspace and superfield language. First consider the integral of the type 1∫
d4x d4θ Y (x, θ, θ). (IV.4.1)

Since a measure is translational invariant, one has

δε,ε

∫
d4x d4θ Y (x, θ, θ) =

∫
d4x d4θ δε,εY (x, θ, θ), (IV.4.2)

and recall that the variation of Y with respect to ε and ε is

δε,εY (x, θ, θ) = εα∂αY + εα̇∂
α̇
Y + ∂µ

[
−i(εσµθ − θσµε)Y

]
. (IV.4.3)

Note that integration in d2θ d2θ kills the first two terms while the final term is a total derivative and is required
to be vanished at the spacetime integral boundaries. Hence the proposed integral is supersymmetric invariant

δε,ε

∫
d4x d4θ Y (x, θ, θ) = 0. (IV.4.4)

Next, we make a claim that the set of superfields is closed under field multiplication. Let Y1 and Y2 be superfields,
the variation of their product is

δ(Y1Y2) = i
[
Y1Y2, εQ+ εQ

]
= iY1

[
Y2, εQ+ εQ

]
+ i
[
Y1, εQ+ εQ

]
Y2

1 For short notation, under integral symbol we will frequently use d4θ to replace d2θ d2θ whenever there is no confusion.

40



General Supersymmetric Action

= iY1
[(
εQ+ εQ

)
Y2
]

+ i
[(
εQ+ εQ

)
Y1
]
Y2 = i

(
εQ+ εQ

)
(Y1Y2) . (IV.4.5)

The sum of two superfields is again a superfield, which follows directly from the linearity of supercharge oper-
ators. We want to find the differential operator, when acting on a superfield gives a superfield; such term will
appear in the kinetic part of SUSY Lagrangian. The first operator is spacetime derivative ∂µ, which is easily
recognized [

∂µ, e
−i(εQ+εQ)

]
= 0⇒ δε,ε(∂µ) = e−i(εQ+εQ)∂µe

i(εQ+εQ) − ∂µ = 0

⇒ δε,ε(∂µY ) = ∂µ(δε,εY ) = ∂µ
[
i(εQ+ εQ)

]
Y = i(εQ+ εQ)(∂µY ). (IV.4.6)

We construct the covariant derivatives of the following form, which are also supersymmetric invariant

Dα ≡ ∂α + iσµ
αβ̇
θ
β̇
∂µ

Dα̇ ≡ ∂α̇ + iθβσµβα̇∂µ

(IV.4.7a)

(IV.4.7b)

The structure of each covariant derivative ensure the vanishing of the anticommutation relation{
Dα,Dβ or Qβ or Qβ̇

}
= 0, (IV.4.8){

Dα̇, Qβ̇ or Qβ or Qβ̇
}

= 0, (IV.4.9)

implying DαY and Dα̇Y are indeed superfields:[
Dα, e−i(εQ+εQ)

]
= 0⇒ δε,ε(Dα) = e−i(εQ+εQ)Dαei(εQ+εQ) −Dα = 0

⇒ δε,ε(DαY ) = Dα(δε,εY ) = Dα
[
i(εQ+ εQ)

]
Y = i(εQ+ εQ)(DαY ). (IV.4.10)

[
Dα̇, e−i(εQ+εQ)

]
= 0⇒ δε,ε(Dα̇) = e−i(εQ+εQ)Dα̇ei(εQ+εQ) −Dα̇ = 0

⇒ δε,ε(Dα̇Y ) = Dα̇(δε,εY ) = Dα̇
[
i(εQ+ εQ)

]
Y = i(εQ+ εQ)(Dα̇Y ). (IV.4.11)

The last anticommutator yields

{
Dα,Dα̇

}
=
{
∂α + iσµ

αβ̇
θ
β̇
∂µ, ∂α + iσµ

αβ̇
θ
β̇
∂µ

}
= iσµβα̇∂µ

(
∂αθ

β
)

+ iσµ
αβ̇
∂µ

(
∂α̇θ̇

β̇
)

= 2iσµαα̇∂µ = −2σµαα̇Pµ. (IV.4.12)

To summarize, we can build a superfield based on other superfields using the following properties:

• A product of superfields is a superfield.

• A linear combination of superfields is a superfield. This comes directly from the linearity of supercharge
operators.

• Applying each of the following differential operators: ∂µ, Dα, Dα̇ on a superfield gives a superfield.

Follow the logic stream, we can build a SuperPoincaré invariant action by taking integral of superfield over
superspace

S =
∫

d4x L (ϕ(x), ψ(x), Aµ(x), . . . ) =
∫

d4x d4θ A(x, θ, θ), (IV.4.13)

where A is a combination of products of superfield rather than Y itself, since general Y can still be reducible,
i.e some of the component fields is possibly eliminated. In the next section we will consider a simpler superfields
by adding some constraints on the general superfield Y . Here are some promising candidates for irreducible
superfields for our theory, and will repeatedly be used on the construction of SUSY Lagrangian:

• Chiral superfield ϕ such that Dα̇ϕ = 0.

• Antichiral superfield ϕ such that Dαϕ = 0.
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• Vector superfield, satisfying the reality condition V = V .

• Linear superfield L such that DDL = 0 and L = L.

To obtain a Lagrangian describing the kinematics of known fields, we need to have superfields that contains
spinors for representing matter, and also superfields containing vector fields to describe gauge interaction. Next,
we need to combines those fields to obtain a scalar object that is invariant under SuperPoincaré transformation
and gauge transformation. Finally, both matter superfields and vector superfields must be coupled to illustrate
the matter-radiation interaction.

Of course using the superspace and superfield language requires the supersymmetric Lagrangian must be
built out of the general superfields. Such a interpretation is, however, complicated and could lead to the fact that
our Lagrangian contains exceeding information. To study the Lagrangian that contains similar information to
the original one, and thus more instructive to reduce to the case with no supersymmetry, one needs to consider
the similar building unit of the model: the fields. Let us take the SM for instance, it is built out of spin 0 Higgs
field, spin 1/2 Dirac fields and spin 1 vector fields. The claimed similarities between these building blocks can
be achived by applying the constraints to the general superfields. In the following, we will investigate each type
of the constraints in detail.

IV.4.2 Chiral & Antichiral Superfields
A chiral superfield Φ is defined as follows

Dα̇Φ = 0. (IV.4.14)

Seemingly, the antichiral superfield Ψ is a superfield such that

DαΨ = 0. (IV.4.15)

By definition, taking the complex conjugation of D yields D and vice versa, thus taking the complex conjugation
of chiral superfield yields antichiral superfield. This contains the complex nature of chiral superfield: the case
Φ happens to be real implies that{

DαΦ = 0
Dα̇Φ = 0

⇒


(
∂α + iσµ

αβ̇
θ
β̇
∂µ

)
Φ = 0(

∂α̇ + iθβσµβα̇∂µ

)
Φ = 0

,

implying that Φ is independent of θ and θ, and that ∂µΦ = 0, which has the constant solution. To deal with
the constraints (IV.4.14) and (IV.4.15), it is convenient to use change of variables. We define new coordinates{

yµ = xµ + iθσµθ

yµ = xµ − iθσµθ
(IV.4.16a)
(IV.4.16b)

It is directly realized that 1 {
Dα̇θβ = Dα̇yµ = 0
Dαθβ̇ = Dαyµ = 0 (IV.4.19a)

In this new supercoordinate system, the chiral superfield is a function of only y and θ, but not on θ explicitly.
The solution for the chiral superfield is

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y). (IV.4.20)

Taylor-expanding the above solution for Φ around x to find the solution in the original supercoordinate system

Φ(x, θ, θ) = φ(xµ + iθσµθ) +
√

2θψ(xµ + iθσµθ) + θθF (xµ + iθσµθ)
1 A proof for this is straightforward. First consider D acting on y

Dα̇yµ =
(
∂α̇ + iσνβα̇θ

β∂ν
)

(xµ + iθσµθ) = ∂α̇
(
iθσµθ

)
+ iσνβα̇θ

β∂νx
µ = −iθασµαα̇ + iσµαα̇θ

α = 0. (IV.4.17)

Taking the Hermitian conjugation yields the other identity

Dαyµ = 0. (IV.4.18)
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=
[
φ(x) + ∂µφ(x)(iθσµθ)− 1

2(θσµθ)(θσνθ)∂µ∂νφ(x)
]

+
[√

2θψ(x) +
√

2θ∂µψ(x)(iθσµθ)
]

+ θθF (x).

(IV.4.21)

We Fierz transform these following terms for simplicity. The identities we use here will be given explicitly on
Appendix A.2.

(θσµθ)(θσνθ)∂µ∂νφ = gµν

2 (θθ)(θθ)�φ,

(θ∂µψ)(θσµθ) = −1
2(θθ)∂µ(ψσµθ). (IV.4.22)

and rewrite the solution of chiral superfield as

Φ(x, θ, θ) = φ(x) +
√

2θψ(x) + i(θσµθ)∂µφ(x) + (θθ)F (x)− i√
2

(θθ)∂µψ(x)σµθ − 1
4(θθ)(θθ)�φ(x). (IV.4.23)

In practice, it is sometimes useful to work with variables yµ instead of xµ since it shortens many calculations
involving chiral superfields. Let us now investigate the form of supercharge operators in this new coordinates:

(x, θ, θ) −→ (y, θ′, θ′) :


yµ = xµ + iθσµθ

θ′ = θ

θ
′ = θ

. (IV.4.24)

Using chain rules to obtain the differential operators with respect to (y, θ′, θ′)

∂

∂xµ
= ∂yν

∂xµ
∂

∂yν
= δνµ

∂

∂yν
= ∂

∂yµ
,

∂

∂θα
= ∂θ′β

∂θα
∂

∂θ′β
+ ∂yµ

∂θα
∂

∂yµ
= ∂

∂θ′α
+ iσµ

αβ̇
θ
′β̇ ∂

∂yµ
,

∂

∂θ
α̇ = ∂θ

′β̇

∂θ
′α̇

∂

∂θ
β̇

+ ∂yµ

∂θ
α̇

∂

∂yµ
= ∂

∂θ
′α̇ − iθ

′βσµ
β̇α

∂

∂yµ
,

(IV.4.25a)

(IV.4.25b)

(IV.4.25c)

and rewrite the supercharges as

Qα = −i∂α − σµαβ̇θ
β̇
∂µ = −i(∂′α + iσµ

αβ̇
θ
′β̇
∂yµ)− σµ

αβ̇
θ
β̇
∂µ = −i∂′α, (IV.4.26)

Qα̇ = i∂α̇ + θβσµβα̇∂µ = i
(
∂
′
α̇ − iθ′βσ

µ
βα̇∂

y
µ

)
+ θβσµβα̇∂

y
µ = i∂

′
α̇ + 2θ′βσµβα̇∂

y
µ. (IV.4.27)

From the definition (IV.4.16a) and (IV.4.16b), the change of variables from (x, θ, θ) to (y, θ′′, θ′′) can be obtained
directly from (IV.4.25) by changing the sign of σµ. The supercharges in this coordinates system are

Qα = −i∂α − σµαβ̇θ
β̇
∂µ = −i(∂′′α − iσ

µ

αβ̇
θ
′′β̇
∂yµ)− σµ

αβ̇
θ
β̇
∂µ = −i∂′′α − 2σµ

αβ̇
θ
′′β̇
∂yµ, (IV.4.28)

Qα̇ = i∂α̇ + θβσµβα̇∂µ = i
(
∂
′′
α̇ + iθ′′βσµβα̇∂

y
µ

)
+ θβσµβα̇∂

y
µ = i∂

′′
α̇. (IV.4.29)

If there is no ambiguity, we simply ignore the ′ on θ′ and θ
′. The representation of these generators in new

coordinates system reads

(y, θ, θ) −→
{

Qyα = −i∂α
Q
y

α̇ = i∂α̇ + 2θβσµβα̇∂yµ
, (IV.4.30)

(y, θ, θ) −→

 Qyα = −i∂α − 2σµ
αβ̇
θ
β̇
∂yµ,

Q
y

α̇ = i∂α̇
. (IV.4.31)

The change of variables for covariant derivatives is similar to that of Q and Q, with the final results

(y, θ, θ) −→
{
Dyα = ∂α + 2iσµ

αβ̇
θ
β̇
∂µ

Dyα̇ = −∂α̇
, (IV.4.32)
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(y, θ, θ) −→
{
Dyα = ∂α

Dyα̇ = −∂α̇ − 2iθβσµβα̇∂µ
. (IV.4.33)

Our first application of these new generators is to calculate the variations of component fields φ, ψ and F
through the variation of chiral superfield Φ with respect to variable y

δε,εΦ(y, θ) =
(
εα∂α + 2iθασµ

αβ̇
εβ̇∂yµ

)
Φ(y, θ) =

√
2εψ + 2εθF + 2i(θσµε)

(
∂yµφ+

√
2θ∂yµψ

)
=
√

2εψ +
√

2θ
(√

2εF +
√

2iσµε∂yµφ
)
− θθ

(
−i
√

2εσµ∂yµψ
)
, (IV.4.34)

which leads to the variations of different field components of chiral superfield Φ as 1


δφ =

√
2εψ

δψα =
√

2i(σµε)α∂µφ+
√

2εαF
δF = i

√
2∂µ (ψσµε)

(IV.4.35a)
(IV.4.35b)
(IV.4.35c)

Several notes should be made about the chiral superfields, which will play an integral roles on building the
SUSY Lagrangian

• A linear combination of chiral superfields is again a chiral superfield. This fact follows directly from the
linearity of covariant derivative Dα̇.

• A product of chiral superfields produce a chiral superfield. More generally, any holomorphic function (one
that satisfies ∂W/∂Φ = 0) of chiral superfield is a chiral superfield as one may easily check

Dα̇W (Φ) = ∂W

∂Φ Dα̇Φ + ∂W

∂Φ
Dα̇Φ = 0. (IV.4.36)

• Later when building superpotential for chiral sector, we will face the integral of the type∫
d4x d2θ W (Φ), (IV.4.37)

where W (Φ) is a chiral superfield that is built upon Φ. In computing, it is more compact and simple
to use the variable yµ instead of xµ by safely setting yµ = xµ whenever necessary (one can compare the
length of solution for Φ with variable (y, θ, θ) in Eq. (IV.4.20) and that of (x, θ, θ) in Eq. (IV.4.21)). The
action remains the same after applying this change of variable, whose contribution vanishes after taking
the integral over spacetime.

IV.4.3 Vector Superfields
Another supersymmetric constrain we would like to consider is reality condition, which defines the vector

superfield V

V = V . (IV.4.38)

The vector superfield can be expressed in terms of component fields as

V (x, θ, θ) = C(x) + iθχ(x)− iθχ(x) + θσµθVµ + i

2 (M(x) + iN(x))

− i

2θθ (M(x)− iN(x)) + iθθθ

(
λ(x) + i

2σ
µ∂µχ(x)

)
− iθθθ

(
λ(x) + i

2σ
µ∂µχ(x)

)
+ 1

2(θθ)(θθ)
(
D(x)− 1

2�C(x)
)
. (IV.4.39)

1 Another way is by comparing the expression of Φ in (IV.4.20) with the general expression of superfield Y , and employ the
general variations (IV.3.44).
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Gauge Transformation & Wess-Zumino gauge

Notice that this vector superfield has 8B + 8F degrees of freedom (2B of C(x) and D(x), 2B of M(x) and N(x)
and 4B from Vµ; each of spinor field χ and λ contribute 4F degrees of freedom). This is too much field than
needed, so we impose the gauge fixing to reduce half of degrees of freedom (off-shell), which become 2B + 2F
for an on-shell massless vector supermultiplet. If Φ(x) is a chiral superfield then Φ(x) + Φ(x) and Φ(x)Φ(x) are
both vector superfields. We adopt the following gauge transformation

V → V + Φ + Φ = V + i
(
Λ− Λ

)
, (IV.4.40)

where Φ ≡ iΛ. This choice of gauge transformation is more natural and simpler, as we shall see when consider
the transformation of corresponding component fields. Finally, ΦΦ has the dimension 2 while V has dimension
1, which is not compatible if we use the transformation V → V + ΦΦ. Expanding in terms of component fields,
we get

Φ + Φ = φ+ φ+
√

2(θψ + θψ) + i(θσµθ)∂µ(φ− φ)− (θθF + θθF )

+ i√
2
(
θθθσµ∂µψ − θθ∂µψσµθ

)
− 1

4(θθ)(θθ)�(φ+ φ)

= 2Reφ+ iθ(−
√

2iψ)− iθ(
√

2iψ) + i

2θθ(2iF )− i

2θθ(−2iF )

+ iθθθ

(
σµ∂µψ√

2

)
− iθθθ

(
−σµ∂µψ√

2

)
+ 1

2(θθ)(θθ)(−�Reφ), (IV.4.41)

which leads to the gauge transformation of component fields of V

C → C + 2Reφ
χ→ χ− i

√
2ψ

M →M − 2ImF
N → N + 2ReF
D → D

λ→ λ

Vµ → Vµ − 2∂µImφ

(IV.4.42a)
(IV.4.42b)
(IV.4.42c)
(IV.4.42d)
(IV.4.42e)
(IV.4.42f)
(IV.4.42g)

from which one can gauge away C,M,N, χ by choosing

Reφ = −C2 , ψ = − i√
2
χ, ReF = −N2 , ImF = M

2 . (IV.4.43)

This choice of gauge is called Wess-Zumino gauge, and the gauged vector superfield can be written simply as

VWZ(x) = θσµθ Vµ(x) + iθθ θλ(x)− iθθ θλ(x) + 1
2θθ θθD(x). (IV.4.44)

Here Vµ(x) is the gauge field and λ is its supersymmetric partner. D(x) is the auxiliary field. Several observations
could be made on Wess-Zumino gauge:

• We did not impose the gauge choice on gauge field Vµ yet; i.e we still have the freedom to perform a gauge
transformation while remaining in the WZ gauge.

• WZ gauge is not supersymmetric. This fact is easy to be recognized, e.g consider the variation of left-
chiral spinor ψ in Eq. (IV.3.21), it involves Vµ and hence must be nonzero, while in the WZ gauge ψ
is gauged away by the choice as in Eq. (IV.4.43). When working in this choice, after a supersymmetry
transformation, one has to do a compensating supersymmetric gauge transformation by properly chosen
Φ.

• Each term of VWZ contains at least one θ or θ, implying

V 2
WZ = (θσµθ)(θσνθ)VµVν = 1

2(θθ)(θθ) V µVµ, (IV.4.45)

V 2+n
WZ = 0,∀n ∈ N. (IV.4.46)

We will see shortly that this property of WZ gauge is extremely useful, especially in building the radiation-
matter interaction since the Taylor expansion of an arbitrary analytic function of V using WZ gauge will be
cut-off after second order.
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IV.5 Construction of Minimal Supersymmetric Lagrangian
Up to this point, we have the necessary ingredients to build the Lagrangian describing SUSY for N = 1.

Several requirements, or restrictions on the Lagrangian should be listed before we move on:

• The Lagrangian L is a real object of mass dimension [M ]4. In order to get a renormalizable theory, the
scalar superfields cannot enter the Lagrangian to an order higher than 3.

• L must transform as a total space-time derivative under SuperPoincaré transformation. For this require-
ment, we look for the variation that is also a total derivative of some fields. The very first candidate is
the D-term of a general superfield Y (i.e the (θθ)(θθ) term), whose variation δD = i

2∂µ
(
εσµλ− ρσµε

)
has

been derived in Section IV.3.1. The second one is the F-term of chiral superfield (which is the θθ term
for chiral field) with the variation δF = i

√
2∂µ(ψσµε), first derived in (IV.4.35c). Taking the Hermitian

conjugate yields the F-term of chiral superfield, corresponding to θθ.

To get rid of non-physical Grassmann coordinates θ and θ, we can take the integral over that Grassmann
variables noting that integration can be identified as differential for θ and θ. The desired Lagrangian is of the
form

LSUSY = L1|D + (L2|F + h.c) =
∫

d4θ L1 +
(∫

d2θ L2 +
∫

d2θ L2

)
, (IV.5.1)

with L1 being a vector superfield while L2 being a chiral superfield. Since the mass dimension [θ] = −1/2, we
then have [d2θ] = 1 and [d2θ̄] = −1 1. This implies [L1] = 2 and [L2] = 3.

We first focus on the matter action and make an attempt to derive the most general supersymmetric
action describing the dynamics of a set of (interacting) chiral superfields. To include the gauge interaction, we
generalize the Yang-Mills theory to SuperYang-Mills from super field strengthWα andW α̇. Finally, by coupling
the chiral sector and the gauge sector, we achieve the goal of deriving the most general N = 1 supersymmetric
action (and thus supersymmetric Lagrangian) describing the interaction of radiation and matter. At some
point, the renormalization requirement would be suppressed in order to have more open and wholly insight to
the construction processes.

IV.5.1 Chiral Sector
The chiral sector describes the dynamics of matter without gauge interaction, and thus involves only chiral

and antichiral superfields. The most general Lagrangian for multiple chiral fields Φ = (Φ1,Φ2, . . . ) based on
the above restrictions is

Lchiral = K(Φ,Φ)|D + (W (Φ)|F + h.c) , (IV.5.2)

where the so called Kähler potential K(Φ,Φ) contribute to the kinetic part of the Lagrangian by taking integral
over the whole space, and the superpotential W (Φ) is a holomorphic function of chiral superfield (and is itself a
chiral superfield) contribution to the Lagrangian by taking integral over half space, as we noted in Eq. (IV.5.1).

Off-shell Free Lagrangian

First consider the Käler potential, there are number of requirements we want K to satisfy:

• K should be a superfield so as to contain the D-term, which is supersymmetric invariant.

• K should be a real scalar function. This is the property that the Lagrangian inherits after taking integral
over Grassmann variables.

• We want a local field theory, hence our Lagrangian cannot have terms of derivatives of order higher than 2.
Thus K(Φ,Φ) is a function of Φ and Φ, but not of DαΦ and Dα̇Φ, since applying covariant derivatives on
chiral superfields would provide (θθ)(θθ)-term contributions having higher order derivatives than needed.

The most general expression for K based on those properties would be

K(Φ,Φ) =
∞∑

m,n=1
cmnΦmΦn

, (IV.5.3)

1 Consider the general superfield Y in (IV.3.1) for example, we know that [φ] = 1 and [ψ] = 3/2, and that [θψ] = [φ] implies
[θ] = −1/2.
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with the reality condition are guaranteed by the relation cmn = c∗nm. All coefficients cmn but c11 have negative
dimension, and in a renormalizable theory those terms should not appear, and the Kähler potential have such
a simple form as follows

K(Φ,Φ) = ΦΦ. (IV.5.4)

For multiple independent chiral superfields, an implicit sum over different superfields is needed:

K(Φ,Φ) = ΦiΦi. (IV.5.5)

The reason why we did not consider i = 0 or j = 0 is because two Kähler potentials defined upon a chiral
superfields as

K ′(Φ,Φ) = K(Φ,Φ) + Λ(Φ) + Λ(Φ) (IV.5.6)

would not contribute to the action after taking integrals, and thus gives no contribution to the equation of
motions: ∫

d4x d4θ K ′(Φ,Φ) =
∫

d4x d4θ K(Φ,Φ). (IV.5.7)

Next we consider the superpotential, which contains information about non-derivative scalar interactions and
Yukawa interactions. As noted, W (Φ) is a chiral superfield built upon component chiral superfields Φi. The
most general superpotential satisfying those requirements is thus

W (Φ) =
∞∑
n=1

∑
i1,...,in

ai1,...,inΦi1Φi2 . . .Φin , (IV.5.8)

where the first sum over n corresponds to the order of power of chiral superfields, and the sum over i′s runs
through the different chiral superfields that are considered. For renormalizable theory [W ] = 3, thus the sum
over n must be cut at n = 3

W (Φ) = giΦi + 1
2mijΦiΦj + 1

3λijkΦiΦjΦk. (IV.5.9)

The general Lagrangian describing chiral sector is then

Lchiral =
∫

d4θ ΦiΦi +
[∫

d2θ

(
giΦi + 1

2mijΦiΦj + 1
3λijkΦiΦjΦk

)
+ h.c

]
, (IV.5.10)

where the different terms have the following interpretations:

• Lkin ≡
∫
d4θ ΦiΦi is the kinetic energy term.

• Lself ≡
∫
d2θ giΦi is the self-energy term.

• Lmass ≡
1
2
∫
d2θ mijΦiΦj is the mass term.

• Lint ≡ d2θ λijkΦiΦjΦk is the interaction term (including both non-derivative scalar inteaction and Yukawa
interaction.)

Now let us expand the Lagrangian in terms of component fields. Starting with the (θθ)(θθ) terms of Kähler
potential

ΦiΦi|θ2θ
2 = −1

4(θθ)(θθ)φi�φi + i(θθ)
(
θσµ∂µψi

)
(θψ) + (θθ)(θθ)F iFi + (θσµθ)(θσνθ)(∂µφi)(∂νφi)

− i(θψi)(θθ)(∂µψiσµθ)−
1
4(θθ)(θθ)φi�φi. (IV.5.11)

Performing some calculations to bring every terms into the form of mutual (θθ)(θθ):

i(θθ)
(
θσµ∂µψi

)
(θψ) = − i2(θθ)(θθ)

(
ψiσ

µ∂µψi
)
, (IV.5.12)
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(
θσµθ

) (
θσνθ

)
(∂µφi)(∂νφi) = 1

2(θθ)(θθ)gµν(∂µφi)(∂νφi) = 1
2(θθ)(θθ)(∂µφi)(∂µφi), (IV.5.13)

−i(θψi)(θθ)
(
∂µψiσ

µθ
)

= −i(θθ)(θψi)
(
∂µψiσ

µθ
)

= i

2(θθ)(θθ)
(
∂µψiσ

µψi
)
, (IV.5.14)

φi�φi + φi�φi = �(φiφi)− 2(∂µφi)(∂µφi). (IV.5.15)

Putting all terms together, we get∫
d4θ ΦiΦi = (∂µφi)(∂µφi) + i

2
(
∂µψiσ

µψi − ψiσµ∂µψi
)

+ F iFi −
1
4�(φiφi)

= (∂µφi)(∂µφi) + i

2
(
∂µψiσ

µψi − ψiσµ∂µψi
)

+ F iFi + total der. (IV.5.16)

The (θθ)−terms of Φ, ΦΦ and ΦΦΦ is fairly easy, and we list the final results below∫
d2θ Φi = Fi(y), (IV.5.17)

∫
d2θ ΦiΦj = φi(y)Fj(y) + φj(y)Fi(y)− ψi(y)ψj(y), (IV.5.18)

∫
d2θ ΦiΦjΦk =φi(y)φj(y)Fk(y) + φi(y)Fj(y)φk(y) + Fi(y)φj(y)φk(y)

− ψi(y)ψk(y)φj(y)− ψi(y)ψj(y)φk(y)− ψj(y)ψk(y)φi(y). (IV.5.19)

Note further that mij and λijk are symmetric under arbitrary permutation of its indices, and that we can use
the variable x and y interchangeably, we can rewrite the off-shell matter Lagrangian (modulo total spacetime
derivatives) as

Lchiral = (∂µφi)(∂µφi) + i

2
(
∂µψiσ

µψi − ψiσµ∂µψi
)

+ F iFi

+
{
giFi(x) +mij

[
φi(x)Fj −

1
2ψ(x)ψj(x)

]
+ λijk [φi(x)φj(x)Fk(x)− ψi(x)ψj(x)φk(x)] + h.c

}
.

(IV.5.20)

On-shell Free Lagrangian

As mentioned, this off-shell Lagrangian contains the auxiliary field Fi(x) whose derivatives do not enter the
action. Eliminating this field requires the usage of equation of motions:

∂Lchiral
∂Fi(x) − ∂µ

∂Lchiral
∂(∂µFi(x)) = 0

∂Lchiral
∂F i

− ∂µ
∂Lchiral
∂(∂µF i)

= 0
⇒

{
F i(x) + gi +mijφj(x) + λijkφj(x)φk(x) = 0
Fi(x) + g∗i +m∗ijφj(x) + λ∗ijkφj(x)φk(x) = 0

, (IV.5.21)

which gives rise to the scalar potential

V
(
φ,φ

)
≡ F iFi = (gi +mijφj + λijkφjφk)

(
g∗i +m∗irφr + λ∗irsφrφs

)
. (IV.5.22)

This scalar potential is indeed a function of scalar fields φi of power from 0 up to 4.

It is sometimes convenient to write the expansion of superpotential W (Φ) around Φi = φi. Since Φi−φi =
−
√

2θψ − θθF contains at least one θ in each of its terms, the Taylor expansion around φ contains nonzero
terms up to |Φ− φ|2. 1

W (Φ) = W (φ) + ∂W

∂φi
(Φi − φi) + 1

2
∂2W

∂φi∂φj
(Φi − φi)(Φj − φj)

1 We adopt the notation for partial derivatives
∂W

∂φi
≡
∂W

∂Φi

∣∣∣
Φ=φ

. Similarly for second order derivatives
∂W

∂φiφj
≡

∂W

∂ΦiΦj

∣∣∣
Φ=φ

.
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= W (φ) +
(√

2θψi + θθFi

) ∂W
∂φi

+ 1
2

(√
2θψi + θθFi

)(√
2θψi + θθFi

) ∂2W

∂φi∂φj

= W (φ) +
√

2(θψi)
∂W

∂φi
+ (θθ)

(
Fi
∂W

∂φi
− 1

2ψiψj
∂2W

∂φi∂φj

)
. (IV.5.23)

The Lagrangian for chiral sector is thus

Lchiral = (∂µφi)(∂µφi) + i

2
(
∂µψiσ

µψi − ψiσµ∂µψi
)

+ F iFi +
(
Fi
∂W

∂φi
− 1

2ψiψj
∂2W

∂φi∂∂φj
+ h.c

)
. (IV.5.24)

The Euler-Lagrange equation for Fi now reads

F i = −∂W
∂φi

, Fi = −∂W
∂φi

, (IV.5.25)

which gives rise to the on-shell Lagrangian

Lmatter =(∂µφi)(∂µφi) + i

2
(
∂µψiσ

µψi − ψiσµ∂µψi
)

−
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 − 1

2(ψiψj)
∂2W

∂φi∂φj
− 1

2(ψiψj)
∂2W

∂φi∂φj
. (IV.5.26)

The scalar potential is thus

V (φ,φ) ≡ F iFi =
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 . (IV.5.27)

IV.5.2 SuperYang-Mills Theory

Abelian Supersymmetric Gauge Theory

To find an expression for the field strength tensor, we first introduce

Wα ≡ −
1
4DDDαV, W α̇ ≡ −

1
4DDDα̇V, (IV.5.28)

where Wα and W α̇ are respectively a chiral and antichiral superfield, and are supersymmetric gauge invariant.
The chirality (or antichirality) comes from the fact that D3 = D3 = 0 identically (since either D or D contains
one Grassmann variable). The gauge invariance is proceeded as follows

Wα →Wα −
1
4DDDα(Φ + Φ) =Wα + 1

4D
β̇Dβ̇DαΦ

=Wα + 1
4D

β̇
{
Dβ̇ ,Dα

}
=Wα + 1

4D
β̇2iσµ

αβ̇
∂µΦ =Wα + i

2σ
µ

αβ̇
∂µD

β̇Φ =Wα. (IV.5.29)

The proof for gauge invariant property ofW α̇ is totally similar. Thus we can work with these quantities without
bothering the gauge we are using. Let us find the expression for Wα and W α̇ by plugging in the vector field in
WZ-gauge, note that we are working with the coordinates (y, θ, θ)

DαVWZ =
(
∂α + 2iσµ

αβ̇
θ
β̇
∂µ

)[
(θσµθ)Vµ + i(θθ)θλ+ 1

2(θθ)(θθ) (D − i∂µV µ)
]

= σµ
αβ̇
θ
β̇
Vµ + iθαθλ− iθθλα + θαθθ (D − i∂µV µ) + 2iσµ

αβ̇
θ
β̇
∂µ
(
θσνθVν + iθθθλ

)
. (IV.5.30)

We rewrite some terms to group the θ and θ

2iξασµ
αβ̇
θ
β̇
∂µ(θσνθVν) = −2i(ξσµθ)(θσνθ)∂µVν = i(θθ)(ξσµσνθ)

⇒ 2iσµ
αβ̇
θ
β̇
∂µ(θσνθVν) = i(θθ) (σµσνθ)α ∂µVν , (IV.5.31)
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i(θθ)(σµσνθ)α∂µVν − i(θθ)θα∂µV µ = i(θθ)(∂µVν) (σµσνθ − ηµνθ)α = 2(θθ)(∂µVν)(σµνθ)α1

= (θθ)(σµνθ)α(∂µVν − ∂νVµ) = (θθ)(σµνθ)αFµν , (IV.5.32)

2iξασµ
αβ̇
θ
β̇
∂µ
(
iθθθλ

)
= −2(θθ)(ξσµθ)(θ∂µλ) = (θθ)(θθ)(ξσµ∂µλ)

⇒ 2iσµ
αβ̇
θ
β̇
∂µ
(
iθθθλ

)
= (θθ)(θθ)σµ

αβ̇
∂µλ

β̇
. (IV.5.33)

Hence acting Grassmannian derivative D on WZ vector superfield gives

DαVWZ = σµ
αβ̇
θ
β̇
Vµ + 2iθαθλ− iθθλα + θαθθD + (σµνθ)α(θθ)Fµν + θθθθσµ

αβ̇
∂µλ

β̇
. (IV.5.34)

Next, acting DD = Dα̇D
α̇ (where Dα̇ = −∂α̇) on the above expression gives us the field strength Wα

Wα = −1
4(∂β̇∂

β̇)DαVWZ = +1
4∂β̇

[
−2iθβ̇λα + 2θαθ

β̇
D + 2(σµνθ)αθ

β̇
Fµν + 2θθθβ̇σµ

αβ̇
∂µλ

β̇
]

= 1
2δ

β̇

β̇

[
−iλα + θαD + (σµνθ)αFµν + θθ(σµ∂µλ)α

]
= −iλα + θαD + (σµνθ)αFµν + θθ(σµ∂µλ)α. (IV.5.35)

As we see, the so-called supersymmetric field strength Wα is a chiral superfield whose lowest component is not
a scalar field as before, but rather a Weyl spinor field λα. The usual field strength tensor Fµν shows up as a
component of Wα, and thus λα is the superpartner of the gauge field: the gaugino. For this reason, Wα is also
known as the gaugino superfield. We next calculate the contribution of the chiral field Wα into the Abelian
gauge Lagrangian by taking the θ2−component of W2

WαWα|θ2 =− iθθ
(
λσµ∂µλ

)
+ θθD2 + θα(σµνθ)αDFµν + (σµνθ)αθαDFµν

+ (σµνθ)α(σρσθ)αFµνFρσ + θθ(σµ∂µλ)α(−iλα).

=− 2iθθ
(
λσµ∂µλ

)
+ θθD2 + 2(θσµνθ)DFµν + (σµνθ)α(σρσθ)αFµνFρσ. (IV.5.36)

Applying some chiral spinor identities to simplify the above expression

θσµνθ = i

4 (θσµσνθ − θσνσµθ) = i

4 (θσµσνθ − θσµσνθ) = 0. (IV.5.37)

(σµνθ)α(σρσθ)αFµνFρσ = εαβ(σµν)γβθγ(σρσ)δαθδFµνFρσ = 1
2ε

αβεγδθθ(σµν)γβ(σρσ)δαFµνFρσ

= 1
2

(
−δαγ δ

β
δ + δαδ δ

β
γ

)
(θθ)(σµν)γβ(σρσ)δαFµνFρσ

= 1
2θθ

[
−(σµν)αδ (σρσ)δα + (σµν)ββ(σρσ)αα

]
FµνFρσ

= −1
2 Tr (σµνσρσ)FµνFρσ = −1

4 (gµρgνσ − gµσgνρ − iεµνρσ)FµνFρσ

= −1
2FµνF

µν + 1
4ε

µνρσFµνFρσ. (IV.5.38)

Thus the half-space integral is equal to∫
d2θ WαWα = −2iλσµ∂µλ+D2 − 1

2FµνF
µν + i

4ε
µνρσFµνFρσ. (IV.5.39)

The real Lagrangian can be obtained by adding the above integral with its Hermitian conjugate, thus gives

Lgauge =
∫

d2θ WαWα +
∫

d2θ W α̇W
α̇ = −FµνFµν − 4iλσµ∂µλ+ 2D2. (IV.5.40)

1 Here we use the identity σµσν − ηµν = −2iσµν . The proof is straightforward with the use of anticommutation relation
{σµ, σν} = 2ηµν , and the definition σµν ≡

i

4
(σµσν − σνσµ).
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Non-Abelian Supersymmetric Gauge Theory

Now consider the non-abelian case, we can generalize the vector and chiral superfields as

V = V aT a, Λ = ΛaT a, Wα =Wa
αT

a, (IV.5.41)

where the generators of gauge transformation is defined as usual[
T a, T b

]
= ifabcT c, Tr

(
T aT b

)
= Cδab. (IV.5.42)

The gauge transformation is generalized as

Φ→ e−iΛΦ, eV → e−iΛeV eiΛ. (IV.5.43)

Using the above transformation we can recover the abelian case:eV → e−iΛeV eiΛ ⇒ V → V + i(Λ − Λ) in
Eq. (IV.4.40). Such transformation make the supersymmetric field strength defined in Eq. (IV.5.28) is no
longer invariant, motivating a new definition for gauge superfields

Wα ≡ −
1
4(DD)

(
e−VDαeV

)
, W α̇ ≡ −

1
4(DD)

(
eVDα̇e−V

)
. (IV.5.44)

Let us show the gauge invariance of this new gauge field strength

Wα →−
1
4DD

[
e−iΛe−V eiΛDα

(
e−iΛeV eiΛ

)]
= −1

4DD
{
e−iΛe−V

[
(DαeV )eiΛ + eVDeiΛ

]}
= −1

4e
−iΛDD

(
e−VDαeV

)
eiΛ = e−iΛWαe

iΛ, (IV.5.45)

where we used the fact that Λ and Λ are chiral and antichiral superfields respectively, thus De−iΛ = DeiΛ = 0,
and that DDDαe−iΛ = 0 (by applying the commutation relation of D and D). Similarly for antichiral superfield
W α̇

W α̇ → e−iΛW α̇e
iΛ. (IV.5.46)

The final result is that Wα and W α̇ transform covariantly under gauge transformation. Using the WZ gauge,
the gauge field strength can be rewritten as

Wα = −1
4DD

[(
1 + V + V 2

2

)
Dα
(

1 + V + V 2

2

)]

= −1
4DD

(
DαV + 1

2DαV
2 − VDαV

)
= −1

4DDDαV −
1
8DDVDαV −

1
8DD(DαV )V + 1

4DDVDαV

= −1
4DDDαV + 1

8DDVDαV −
1
8DD(DV )V = −1

4DDDαV + 1
8DD [V,DαV ] . (IV.5.47)

The first term is the same as in abelian case that has been represented in Eq. (IV.5.28). The second term can
be expressed as

1
8DD [V,DαV ] = 1

8DD
[
θσµθVµ + iθθθλ+ . . . , σν

αβ̇
θ
β̇
Vν + . . .

]
= 1

8DD(θσµθ)(σνθ)α [Vµ, Vν ] + i

8DDθθ
[
θγ̇λ

γ̇
, σν
αβ̇
θ
β̇
Vν

]
. (IV.5.48)

The two terms in Eq. (IV.5.48) can be simplified using spinor identities

1
8DD(θσµθ)(σνθ)α [Vµ, Vν ] = −1

4(σνσµθ)α [Vµ, Vν ] = − i2 (σµνθ)α [Vµ, Vν ] , (IV.5.49)

i

8DDθθ
[
θγ̇λ

γ̇
, σν
αβ̇
θ
β̇
Vν

]
= − i8DDθθθγ̇θ

β̇
σµ
αβ̇

[
λ
γ̇
, Vµ

]
= i

8εγ̇δ̇ε
β̇δ̇σµ

αβ̇

[
λ̇γ̇ , Vµ

]
= − i8DDθθθθσ

µ

αβ̇

[
λ
β̇
, Vµ

]
= − i2θθ

[
Vµ,
(
σµλ

)
α

]
. (IV.5.50)
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Adding all terms gives Wα, which is the same as replacing the ordinary derivatives and the field strength in the
abelian gauge field strength with the covariant ones

Wα = −iλα + θαD + (σµνθ)α(∂µVν − ∂νVµ) + θθ(σµ∂µλ)α −
i

2θθ
[
Vµ,
(
σµλ

)
α

]
− i

2 (σµνθ)α [Vµ, Vν ]

= −iλα + θαD + i(σµνθ)α
(
∂µVν − ∂νVµ −

i

2 [Vµ, Vν ]
)

+ θθ

(
σµ∂µλ−

i

2
[
Vµ, σ

µλ
])

α

= −iλα + θαD + i(σµνθ)αFµν + θθ
(
σµDµλ

)
α
, (IV.5.51)

where the non-abelian version of field strength tensor and gauge covariant derivatives are

Fµν ≡ ∂µVν − ∂νVµ −
i

2 [Vµ, Vν ] , Dµ ≡ ∂µ −
i

2 [Vµ, ?] . (IV.5.52)

The contribution to Super Yang-Mills Lagrangian of the non-abelian gauge is the same as abelian case by substi-
tuting the new definition Fµν and replace the partial derivative by covariant derivative Dµ into Eq. (IV.5.39). To
introduce the coupling constant g explicitly in the coupling with matter we are going to derive, it is convenient
to make the redefinition of the vector superfields

V → 2gV ⇔


Vµ → 2gVµ
λ→ 2gλ
D → 2gD

, (IV.5.53)

which results in the change of gaugino superfieldWα → 2gWα, with the new definition of Fµν and Dµ as follows

Fµν = ∂µVν − ∂νVµ − ig [Vµ, Vν ] , Dµ = ∂µ − ig [Vµ, ?] . (IV.5.54)

If we want to keep the CP-violation term ∼ εµνρσFµνFρσ, the half-space integral ofWαWα should be multiplied
by a complex number so that the complex part corresponding to the coefficient of the dual field strength term
survives, as we shall see in the following expression of Super Yang-Mills Lagrangian:

LSYM = Tr
{
τ

∫
d2θ WαWα + h.c

}
= 4g2τ Tr

{
−2iλσµDµλ+D2 − 1

2FµνF
µν + i

4ε
µνρσFµνFρσ + h.c

}
= 4g2 Tr

{
Reτ

(
−4iλσµDµλ+ 2D2 − FµνFµν

)
− Imτ

(
1
2ε

µνρσFµνFρσ

)}
= −iλaσµDµλ

a + 1
2D

aDa − 1
4F

a
µνF

aµν + Θ
32π2 ε

µνρσg2F aµνF
a
ρσ, (IV.5.55)

with the constant τ defined as

τ ≡ 1
16g2C

− i Θ
64π2 , (IV.5.56)

with the complex part containing the CP-violation parameter Θ. Hereafter, especially when constructing the
MSSM Lagrangian, we will use the standard normalization of SU(N) generators where C = 1/2, that is

Tr(T aT b) = δab

2
⇒τ = 1

8g2 − i
Θ

64π2 , (IV.5.57)

One more thing to note about the difference between abelian and non-abelian gauge theory is that the
D-term in the vector superfield also has the variation a total derivative, and thus this term can arises in the
general supersymmetric Lagrangian:

LFI =
∫

d4θ ξ2gV = gξD. (IV.5.58)

This so-called Fayet-Iliopoulos term is also U(1)−gauge invariant as one can easily show by noting that inte-
gration of chiral superfields over d4θ vanishes. Since taking the trace of generators of SU(N) yields 0, only in
the U(1) case does this term survives.
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IV.5.3 Gauge-Matter Action
To couple the gauge fields and the matter fields, it is necessary to investigate the transformation of a chiral

superfield Φ. Let us assume that Φ transforms under the representation R of the gauge group G, T a → (T aR)ij
where i, j = 1, 2, . . . , R. The chiral fields mix under the gauge transformation defined in Eq. (IV.5.43). To
couple the radiation with matter in a supersymmetric manner, we include the vector field (which transform
covariantly under the gauge transformation) into the Kähler potential as

ΦΦ→ ΦeV Φ = ΦΦ + ΦV Φ + 1
2ΦV 2Φ. (IV.5.59)

The first term is the free Kähler Lagrangian we have calculated. Recall the definition of Φ(x, θ, θ) and
VWZ(x, θ, θ) to proceed the calculations on the next two terms

Φ(x, θ, θ) =
[
φ(x) + ∂µφ(x)(iθσµθ)− 1

2(θσµθ)(θσνθ)∂µ∂νφ(x)
]

+
[√

2θψ(x) +
√

2θ∂µψ(x)(iθσµθ)
]

+ θθF (x),

VWZ(x) = θσµθ Vµ(x) + iθθ θλ(x)− iθθ θλ(x) + 1
2θθ θθD(x)⇒

 V 2
WZ = 1

2θθθθV
µVµ

V nWZ = 0,∀n > 2
.

⇒ ΦV Φ|
θ2θ

2 = φ
(
θσµθVµ

) (
iθσνθ

)
∂νφ− ∂µφ

(
iθσµθ

)
(θσνθVν)φ+ 2(θψ)(θσµθVµ)(θψ)

−
√

2iφ(θθ)(θλ)(θψ) +
√

2iθψ(θθ)(θλ)φ+ 1
2φ(θθ)(θθ)Dφ. (IV.5.60)

With some algebra and spinor identities, the above terms can be simplified as

φ
(
θσµθVµ

) (
iθσνθ

)
∂νφ = φVµ∂νφ(θσµθ)(θσνθ) = i

2θθθθφVµ∂νφg
µν = i

2θθθθφV
µ∂µφ, (IV.5.61)

−∂µφ
(
iθσµθ

)
(θσνθVν)φ = − i2θθθθ∂µφVνφg

µν = − i2θθθθ∂µφV
µφ, (IV.5.62)

2(θψ)(θσµθVµ)(θψ) = −2(θψ)(θσµθ)(θψ)Vµ = θθ(ψσµθ)(ψθ)Vµ = −1
2θθθθ(ψσ

µψ)Vµ, (IV.5.63)

−
√

2iφ(θθ)(θλ)(θψ) = − i√
2
θθθθ(λψ), (IV.5.64)

√
2iθψ(θθ)(θλ)φ = − i√

2
θθθθ(ψλ)φ. (IV.5.65)

Similarly for the quadratic term

1
2ΦV 2Φ = 1

4θθθθφV
µVµφ. (IV.5.66)

Putting all terms together, and taking full-space integral of the gauge invariant Kähler potential gives∫
d4θ ΦeV Φ = (∂µφ)(∂µφ) + i

2
(
∂µψσ

µψ − ψσµ∂µψ
)

+ FF + i

2φV
µ∂µφ−

i

2(∂µφ)V µφ

− 1
2ψσ

µVµψ + i√
2
φλψ − i√

2
ψλφ+ 1

2φDφ+ 1
4φV

µVµφ+ Total dev.

=
[
(∂µφ)(∂µφ) + i

2φV
µ∂µφ−

i

2(∂µφ)V µφ+ 1
4φV

µVµφ

]
+
[
i(∂µψ)σµψ − 1

2ψσ
µVµψ

]
+ FF + i√

2
φλψ − i√

2
ψλφ+ 1

2φDφ+ Total dev.

= (Dµφ)(Dµφ)− iψσµDµψ + FF + i√
2
φλψ − i√

2
ψλφ+ 1

2φDφ+ Total dev., (IV.5.67)
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where the covariant derivatives Dµ = ∂µ −
i

2V
a
µ T

a
R. Rewriting ψσµDµψ = ψσµDµψ, performing the rescaling

V → 2gV and taking the sum over the participated chiral superfields, one finally gets

LKähler =
∫

d4θ Φie2gV Φi = (Dµφi)(Dµφi)− iψσµDµψ + F iFi + i
√

2gφiλψi − i
√

2gψiλφi + gφiDφi.

(IV.5.68)

IV.5.4 Full Minimal Supersymmetric Lagrangian
In summary, we have derived all the Lagrangian terms that is SuperPoincaré invariant. The most general

N = 1 renormalizable supersymmtric Lagrangian with i, j = 1, . . . ,N chiral fields, A = 1, . . . ,A abelian factors
(shows up in the Fayet-Iliopoulos term) and n = 1, . . . ,G gauge fields is

LSUSY = LSYM + Lmatter + LFI

= Tr
{
τ

∫
d2θ WαWα + h.c

}
+
∫

d4θ Φie2gV Φi +
∫

d2θ W (Φ) +
∫

d2θ W (Φ) + 2gξ
∫

d2θd2θV

= −1
4F

a
nµνF

aµν
n + Θ

32π2 g
2
nε
µνρσF anµνF

a
nρσ − iλanσµDab

µ λ
b

n + 1
2D

a
nD

a
n

+ (Dµφ)(Dµφ)− iψσµDµψ + F iFi + i
√

2gnφiλnψi − i
√

2gnψiλnφi + gnφiDnφi

− ∂W

∂φi
Fi −

∂W

∂φi
F i −

1
2
∂2W

∂φi∂φj
ψiψj −

1
2
∂2W

∂φi∂φj
ψiψj + gnξ

ADA
n . (IV.5.69)

As mentioned, D and F are auxiliary fields (meaning they are actually not independent fields, but are functions
of other fields) and can be integrated out with by using the equation of motions

F i = ∂W

∂φi
, Da

n = −gnφiT aRφi − gnξa (ξa = δaAξA). (IV.5.70)

Plugging these equations back to the original Lagrangian to obtain

On-shell Minimal Supersymmetry Lagrangian

LSUSY = LSYM + Lmatter + LFI

= −1
4F

a
nµνF

aµν
n + Θ

32π2 g
2
nε
µνρσF anµνF

a
nρσ − iλanσµDab

µ λ
b

n

+ (Dµφi)(Dµφi)− iψσµDµψ + i
√

2gnφiλnψi − i
√

2gnψiλnφi

− 1
2
∂2W

∂φi∂φj
ψiψj −

1
2
∂2W

∂φi∂φj
ψi∂ψj − V (φi, φi), (IV.5.71)

with the scalar potential now contains a part resulting from Fayet-Iliopoulos term

V (φi, φi) =
[
F iFi + Da

nD
a
n

2

]
on-shell

= ∂W

∂φi

∂W

∂φi
+
∑
a,n

g2
n

2
[
φi(T aRn)ijφj + ξa

]2
, (IV.5.72)

and clearly V (φi, φi) is positive definite, avoiding the infinitely negative energy levels. The covariant derivatives
are defined as usual with an extra sum over gauge fields

Dab
µ = ∂µδ

ab − gfabcV cµ (IV.5.73)
Dµ = ∂µ − ignVnµ = ∂µ − ignV anµT aRn. (IV.5.74)

where fabc is the constant structure of gauge group. From now on, if there is no ambiguity we denote the
generators of gauge groups briefly as T an where a is the generator index and n indicates the gauge group.
To obtain a physically meaningful Lagrangian, we need to build one that is similar to the Standard Model
Lagrangian (i.e containing leptons and quarks for matter sector, gauge fields for interaction and Higgs field)
and respect the supersymmetry. The detailed construction will be represented in the next chapter in this thesis.
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There are many ways to construct an extension of the Standard Model embedded with supersymmetry. For
instance, one can start from the (anti)commutation relations of the supersymmetric algebra, build up superfield
multiplets and construct the Lagrange containing the claimed internal symmetries as in SM. We can add as
much fermionic operators pair QIα, Q

Iα̇ as we want, there is no limitation on such a way of construction.
However, for simplicity and practical purposes, we will consider the simplest non trivial extension of the SM
with only one pair of Q,Q representing the boson-fermions symmetry; such minimal extension is called the
Minimal Supersymmetric Standard Model (MSSM) and will be discussed in the beginning of this chapter. The
rest of the current chapter is devoted to the Next-to-minimal Supersymmetric Standard Model (NMSSM), a
modification of the MSSM by introducing a Higgs singlet to the particle content to solve an issue arising from
the construction of the MSSM.

V.1 Minimal Supersymmetric Standard Model

V.1.1 MSSM Particle Content
Our tasks in this chapter are to build a realistic supersymmetric model by extending (in the minimal way)

the Standard Model (SM), and try to keep as much properties of SM as possible. The gauge symmetry group
for MSSM is thus the same as SM, that is SU(3)C × SU(2)L × U(1)Y . Since each of particles Q,U,D,L,E is
the irreducible representation of the gauge group, the extended supersymmetric version of SM must introduce a
seperate chiral superfield for each original field. Similar to gauge bosons, we must include one vector superfield
for each gauge interaction.

Since the particle content of the MSSM contains many new fermionic and bosonic fields, it may give rise to
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the chiral gauge anomalies that could make the theory inconsistent. We know that in the SM, the chiral gauge
anomalie vanish when summing over contributions of quarks and leptons in each generation. The same scenario
happens in the MSSM, i.e the contributions from quarks and leptons cancel out. Gauginos and scalar fields do
not contribute to the anomalies. On the other hand, the Higgsinos - superpartner of the Higgs fields - give a
non-vanishing contribution if there is only one Higgs doublet corresponding to only one Higgsino doublet. One
can walk around this by adding an additional Higgs doublet which has an opposite hypercharge. Apart from the
anomalies cancellation requirement, there is one more good reason why the second Higgs doublet is necessary.
In order to give masses for both up- and down-type quarks in the SM, one has to use the Higgs doublet and its
charge conjugate. This is not allowed in the supersymmetric potential, i.e one cannot consider both the Higgs
superdoublet and its charge conjugate simultaneously.

Moreover, in SM matters are divided into left-handed and right-handed multiplets, each interacts differently
with gauge fields. The chiral superfields we introduce in the supersymmetric Lagrangian in the above chapter
contains only left-handed Weyl spinors, thus we must employed the charge conjugation ψCα ≡ i(σ2)αα̇ψ

α̇ to
obtain right-handed Weyl spinors in our model. Finally, the supersymmetric partners of known elementary
particles have not been experimentally confirmed yet, which is a clue for supersymmetry breaking. A detailed
discussion on the origin of soft-supersymmetry breaking term by including a spurious field will also be covered
in this chapter. In short, the basic ingredients of the MSSM (mostly inheriting from SM) are

1. SU(3)C × SU(2)L × U(1)Y vector superfields.

2. Chiral superfields for the quarks and leptons families.

3. Two doublet Higgs fields that are responsible for EM breaking.

4. Quarks and leptons masses, which comes from the trilinear superpotential after EW breaking.

5. Soft-breaking term in Lagrangian, in charges of SUSY-breaking.

Thus, there are twice as much particles as in the standard model, plus one extra Higgs multiplet. We summarize
the particles content in Minimal Supersymmetric Standard Model in the tables below.

Super Field Spin 1/2 Spin 1 SU(3)C × SU(2)L ×U(1)Y Name Coupling Constant

Ĝ G̃ G (8,1,0) gluinos, gluons gs

Ŵ W̃ W (1,3,0) winos, W-bosons g

B̂ B̃ B (1,1,0) binos, B-bosons g′

Table V.1: The gauge multiplets content of MSSM.

Supermultiplets Spin 0 Spin 1/2 SU(3)C × SU(2)L × U(1)Y Name

Q̂ = (ûL, d̂L)T Q̃ = (ũL, d̃L)T Q = (uL, dL) (3,2,1/3)
squarks, quarks

Û c = ûc Ũ = ũR uR (3,1,−4/3)

D̂c = d̂c D̃ = d̃R dR (3,1,2/3)

L̂ = (ν̂, êL)T L̃ = (ν̃, ẽL)T ) L = (ν, eL)T (1,2,−1)
sleptons, leptons

Êc = êc Ẽc = ẽ
c
R Ec = ecR (1,1,2)

Ĥu = (Ĥ+
u , Ĥ

0
u)T Hu = (H+

u , H
0
u)T H̃u = (H̃+

u , H̃
0
u)T (1,2,1)

Higgs, Higgsinos
Ĥd = (Ĥ0

d , Ĥ
−
d )T Hd = (H0

d , H
−
u )T H̃d = (H̃0

d , H̃
−
d )T (1,2,−1)

Table V.2: The matter multiplets content of MSSM.

V.1.2 Lagrangian for MSSM
As constructed generally in the above chapter, the Lagrangian for MSSM should be a sum of the Kähler

potential for kinetic part of particles, the superpotential that contains interaction of matter with Higgs fields
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(and later gives rise to Yukawa mass term of leptons, quarks and their superpartner after electroweak is broken),
the super Yang-Mills term for gauge kinetics, the scalar potential, and the Fayet-Iliopoulos term contributed by
U(1)Y ) gauge superfield.

MSSM Kähler potential

Let us begin with the Kähler superfields, which original form is

KMSSM = Q̂ exp
[
2gsĜ+ 2gŴ + g′Y (Q)B̂

]
Q̂

+ û
c exp

[
2gsĜ+ g′Y (u)B̂

]
ûc

+ d̂
c

exp
[
2gsĜ+ g′Y (d)B̂

]
d̂c

+ L̂ exp
[
2gŴ + g′Y (L)B̂

]
L̂

+ ê
c exp

[
g′Y (Q)B̂

]
êc

+ Ĥu exp
[
2gŴ + g′Y (Hu)B̂

]
Ĥu

+ Ĥd exp
[
2gŴ + g′Y (Hd)B̂

]
Ĥd, (V.1.1)

where Y (X) denotes the hypercharge of the X superfield, where X belongs to the set of superfields listed in
Table V.2. Ignoring the terms related to D-field and F-field that contribute to the scalar potential, the general
on-shell Kähler potential reads

LOS Kähler = (Dµφ)(Dµφ)− iψσµDµψ + (i
√

2gnφiλnψi + h.c), (V.1.2)

which after applying to MSSM Kähler potential becomes

LMSSM
OS Kähler =(DQ

µ Q̃)DQµQ̃− iQσµDQ
µQ+

[
i
√

2Q̃
(
gsG̃+ gW̃ + g′

Y (Q)
2 B̃

)
Q+ h.c

]

+ (Du
µũ

c)Duµũc − iucσµDu
µu+

[
i
√

2ũ
(
gsG̃+ g′

Y (u)
2 B̃

)
uc + h.c

]

+ (Dd
µd̃
c)Ddµd̃c − idcσµDd

µd+
[
i
√

2d̃
(
gsG̃+ g′

Y (d)
2 B̃

)
dc + h.c

]

+ (DL
µ L̃)DLµL̃− iLσµDL

µL+
[
i
√

2L̃
(
gW̃ + g′

Y (L)
2 B̃

)
L+ h.c

]

+ (De
µẽ
c)Deµẽc − iecσµDe

µe+
[
i
√

2ẽ
(
gW̃ + g′

Y (e)
2 B̃

)
ec + h.c

]

+ (DHu
µ Hu)DHuµHu − iH̃uσ

µDHu
µ H̃u +

[
i
√

2Hu

(
gW̃ + g′

Y (Hu)
2 B̃

)
H̃u + h.c

]

+ (DHd
µ Hd)DHdµHd − iH̃dσ

µDHd
µ H̃d +

[
i
√

2Hd

(
gW̃ + g′

Y (Hd)
2 B̃

)
H̃d + h.c

]
, (V.1.3)

where the gauge covariant derivative for each chiral field are

DQ
µ = ∂µ − igsT aGaµ − igIbW b

µ − ig′
Y (Q)

2 Bµ,

Du
µ = ∂µ − igsT aGaµ − ig′

Y (u)
2 Bµ,

Dd
µ = ∂µ − igsT aGaµ − ig′

Y (d)
2 Bµ,

DL
µ = ∂µ − igIbW b

µ − ig′
Y (L)

2 Bµ,
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De
µ = ∂µ − ig′

Y (e)
2 Bµ,

DHu
µ = ∂µ − igIbW b

µ − ig′
Y (Hu)

2 Bµ,

DHd
µ = ∂µ − igIbW b

µ − ig′
Y (Hd)

2 Bµ.

MSSM Super Yang-Mills Lagrangian

Next consider the super Yang-Mills term for the kinetics of gauge bosons and gauginos, which has the
general form (temporarily ignore the CP-violation part)

LMSSM
SYM =

∫
d2θ

{
1

8g2
s

Tr
[
Wα(Ĝ)Wα(Ĝ)

]
+ 1

8g2 Tr
[
Wα(Ŵ )Wα(Ŵ )

]
+ 1

4g′2W
α(B̂)Wα(B̂)

}
+ h.c. (V.1.4)

The free gauge Lagrangian component-wise (ignore terms contributed to scalar potential) reads

LMSSM
OS SYM = 1

2 Tr
{
−GµνGµν − 4iG̃σµDG

µ G̃−WµνW
µν − 4iW̃σµDW

µ W̃
}
− 1

4BµνB
µν − iB̃σµDB

µ B̃, (V.1.5)

where Gµ ≡ GaµT
a, Wµ ≡ W b

µI
b, G̃ ≡ G̃aT a, W̃ ≡ W̃ bIb, and the fields strength and covariant derivatives are

defined as usual

Gµν = ∂µGν − ∂νGµ − igs [Gµ, Gν ] , DG
µ = ∂µ − igs [Gµ, ?] ,

Wµν = ∂µWν − ∂νWµ − ig [Wµ,Wν ] , DW
µ = ∂µ − igs [Wµ, ?] ,

Bµν = ∂µBν − ∂νBµ, DB
µ = ∂µ.

R-Parity & MSSM superpotential

For minimal construction of the superpotential that respects the baryon and lepton number conservation, only
interaction terms with Higgs fields is considered. That means the superpotential should contains only Yukawa
couplings, and coupling between two Higgs superfields. The MSSM superpotential is thus constructed from the
following superpotential

WMSSM = −ûcYuQ̂ · Ĥu + d̂cYdQ̂ · Ĥd + êcYeL̂ · Ĥd − µĤu · Ĥd, (V.1.6)

with the dot product indicates the Weyl spinor product, i.e ψ · χ = ψχ = ψαχα. The above compact notation
should be understand as, for example

êcYeL̂ · Ĥd = êciYe
ij(L̂j)αĤdα, (V.1.7)

with the sum over SU(2) index α = 1, 2, and over generation indices i, j. Taking the SU(2) dot product
explicitly gives the expression for the superpotential

WMSSM =− ûcYu

(
ûLĤ

0
u − d̂LĤ+

u

)
+ d̂cYd

(
ûLĤ

−
d − d̂LĤ

0
d

)
+ êcYe

(
ν̂Ĥ−d − êLĤ

0
d

)
− µ

(
Ĥ+
u Ĥ

−
d − Ĥ

0
uĤ

0
d

)
. (V.1.8)

Due to the mass differece between third family fermions and those from the first two families, in the numerical
calculations we made the following approximation

Yu,d,e =

0 0 0
0 0 0
0 0 yt,d,τ

 . (V.1.9)

Note that when writing down the MSSM superpotential (V.1.6), not all gauge invariant terms have been
included: one neglect bilinear or trilinear terms that violate the lepton and/or baryon numbers conservation.
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The presence of such terms can be generally omitted by forcing the MSSM Lagrangian to satisfy additional
discrete symmetry so-called R-parity, defined as

PR = (−1)3(B−L)+2S = (−1)2SPM , (V.1.10)
where L, B and S are respectively the lepton number, baryon number and the spin of the particle under
consideration; PM = (−1)3(B−L) thus being the matter parity. All of the SM fields have PR = +1 and their
superpartners have PR = −1. In addition, every interaction vertices in an R-parity conserving theory must
contains an even number of PR = −1 sparticles. More discussion on R-parity and the R-parity violation MSSM
can be found in Ref. [41].

R-parity conserving models have the following important phenomenological consequences

• Sparticles must always appear in even numbers at every interaction vertices, implies sparticles are only
produced in pairs.

• The lightest sparticle with odd R-parity, so-called the lighest supersymmetric particle (LSP) is stable. A
electrically neutral LSP only interact weakly with other particles. This is important since stability is one
of the main properties to make the LSP (the lightest neutralino in the our calculations in the next several
chapters) is a DM candidate.

• All sparticles must be ended up by decaying into a state that contains an odd number of LSPs.

Without this assumed symmetry, the following R-parity violated superpotential are allowed alongside with
(V.1.8)

WMSSM
RPV = λijkL̂iL̂j ê

c
k + λ′ijkL̂iQ̂j d̂

c
k + κiL̂iĤu,+λ′′ijkûci d̂cj d̂ck (V.1.11)

where the first three terms in Eq. (V.1.11) contain lepton number violating interactions while the last term
violates baryon number. To illustrate the fact that R-parity conservation wipe out all of B- and L- violating
terms in the MSSM superpotential, we note that the products (−1)2S in all interaction vertices are always 1,
leaving behind the products of matter parity PM . Since PM = −1 for all lepton and quark supermultiplets,
while PM = 1 for Higgs supermultiplets, all of the terms in (V.1.11) also violate the R-parity.

In the context of this thesis, the models MSSM and NMSSM is assumed to respect the R-parity conservation.
1

As derived before, the on-shell superpotential (again ignore the terms contributed to scalar potential) is

− 1
2
∂2W

∂φi∂φj
ψiψj +h.c. Each Yukawa term is a product of three different superfields, after taking sum gives three

terms contribute to the superpotential, while each product of two Higgs fields gives two terms, thus there are
6× 3 + 2× 2 = 22 fields product terms in the MSSM potential. That is

LMSSM
OS W = −1

2
∂WMSSM

∂2φi∂φj
ψiψj + h.c

= 1
2

{
uRYuuLH

0
u + uRYuũLH̃

0
u + ũRYuuLH̃

0
u − uRYudLH

+
u − uRYud̃LH̃

0
u − ũRYuuLH̃

0
u

− dRYduLH
−
d − dRYdũLH̃

−
d − d̃RYduLH̃

−
d + dRYddLH

0
d + dRYdd̃LH̃

0
d + d̃RYddLH̃

0
d

− eRYeνH
−
d − eRYeν̃H̃

−
d − ẽRYeνH̃

−
d + eRYeeLH

0
d + eRYeẼLH̃

0
d + ẽRYeeLH̃

0
d

+µ
(
H̃+
u H̃

−
d − H̃

0
uH̃

0
d

)}
+ h.c. (V.1.12)

MSSM scalar potential

Recall that the information about scalar interaction is contained in the scalar potential (that composed of
mainly auxiliary fields F and D), which generally reads

V =
∑
i

{
∂W

∂φi

∂W

∂φi
+
∑
a,n

g2
n

2
[
φi(T aRn)ijφj + ξa

]2}
. (V.1.13)

1 This assumption is somewhat artificial in the theoretical point of views since there is no such internal inconsistency if R-parity
breaking terms are introduced into the Lagrangian, but does makes sense from phenomenological perspective (e.g the constraints
by proton decay [42] and that the fact that LSP is a good DM candidates).
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Similar to the way we find the superpotential, the scalar potential can be read-off from WMSSM in Eq. (V.1.8)
using its definition. The last three terms comes from the D-terms potential (those relate to the sum over a and
n), and the rest is contributed by the F-terms

LMSSM
V = −

{(
H

0
uũL −H

+
u d̃L

)
Yu
†Yu

(
ũLH

0
u − d̃LH+

u

)
+
(
H
−
d ũL −H

0
dd̃L

)
Yd
†Yd

(
ũLH

−
d − d̃LH

0
d

)
+
(
H
−
d ν̃ −H

0
dd̃L

)
Yd
†Yd

(
ũLH

−
d − d̃LH

0
d

)
+
(
−H0

uũRYu +H−d d̃RYd

)(
−Yu

†ũRH
0
u + Yd

†d̃RH
−
d

)
+
(
H+
u ũRYu −H0

d d̃RYd

)(
Yu
†ũRH

+
u −Yd

†d̃RH
0
d

)
+H−d ẽRYeYe

†ẽRH
−
d

+H0
d ẽRYeYe

†ẽRH
0
d

+
(
−ũRYuũL + µH0

d

) (
−ũLYu

†ũR + µH
0
d

)
+
(
ũRYud̃L − µH−d

) (
d̃LYu

†ũR − µH
−
d

)
+
(
d̃RYdũL + ẽRYeν̃ − µH+

u

)(
ũLYd

†d̃R + ν̃Ye
†ẽR − µH

+
u

)
+
(
−d̃RYdd̃L − ẽRYeẽL + µH0

u

)(
−d̃LYd

†d̃R − ẽLYe
†ẽR + µH

0
u

)
+ g2

s

2
∑
a

(
Q̃T aQ̃+ ũRT

aũR + d̃RT
ad̃R

)2

+ g2

2
∑
b

(
Q̃IbQ̃+ L̃IbL̃+HuI

bHu +HdI
bHd

)2

+ g′2

2

(
Q̃
Y (Q)

2 Q̃+ ũR
Y (u)

2 ũR + d̃R
Y (d)

2 d̃R

+ L̃
Y (L)

2 L̃+ ẽR
Y (e)

2 ẽ+Hd
Y (Hd)

2 Hd +Hu
Y (Hu)

2 Hu + ξ

)2}
. (V.1.14)

MSSM soft-breaking Lagrangian

Finally, we proceed to construct the supersymmetry breaking soft term. The reason is that supersymmetry
implies that a particle and its superpartner should have the same mass, which has been experimentally ruled
out. Hence supersymmetry, if exists, must be broken. We want our model to maintain the cancellation of
quadratically divergent terms in the radiative corrections of all scalar masses, at all orders in perturbation
theory, thus the breaking term should be "soft". This requirement leads to the fact that only terms with highest
mass-dimensional order three are considered. Below we follow the path drawn in Ref. [43]. In order to control
symmetry breaking terms, we couple the so-called chiral scalar spurion field Â to the constructed Lagrangian
so that the total action remains supersymmetry invariant

Â(y) ≡ A+
√

2θa+ θθFA. (V.1.15)

By identifying A = 0, the powers of Â is cut-off and the most general real and chiral expression containing Â
and Â are

Preal = creal,1

(
Â+ Â

)
+ creal,2ÂÂ, Pchiral = cchiralÂ. (V.1.16)

Inserting the above new real superfield to terms under full-space integrals in Kähler potential, and new chiral su-
perfields into terms under half-space integrals (those belong to Super Yang-Mills Lagrangian and superpotential)
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to obtain the soft-breaking Lagrangian

LMSSM
soft =

∫
d4θ

{
PQQ̂ exp

[
2gsĜ+ 2gŴ + g′Y (Q)B̂

]
Q̂+ Puû

c exp
[
2gsĜ+ g′Y (u)B̂

]
ûc

+ Pdd̂
c

exp
[
2gsĜ+ g′Y (d)B̂

]
d̂c + PLL̂ exp

[
2gŴ + g′Y (L)B̂

]
L̂

+ Peê
c exp

[
g′Y (Q)B̂

]
êc + PHiĤi exp

[
2gŴ + g′Y (Hi)B̂

]
Ĥi

}

+
(∫

d2θ

{
− cG

2 ÂTr
[
Wα(Ĝ)Wα(Ĝ)

]
− cW

2 ÂTr
[
Wα(Ŵ)Wα(Ŵ)

]
− cB

4 ÂWα(B̂)Wα(B̂)

− cuQHÂûcYuQ̂ · Ĥu + cdQHÂd̂
cYdQ̂ · Ĥd + ceLHÂê

cYeL̂ · Ĥd − cHHµÂĤu · Ĥd

}
+ h.c

)
(V.1.17)

with the general chiral superfield Pφ built up on the chiral superfield φ as

Pφ = cφ1

(
Â+ Â

)
+ cφ2ÂÂ, φ = Q, u, d, L, e,Hu, Hd. (V.1.18)

The supersymmetry is broken by vacuum expectation value of spurion field Â, i.e Â → θθvA. After super-
symmetry broken, the soft breaking Lagrangian is a sum of mass terms for scalar fields and gauginos and up
to trilinear interactions between the scalar components of either purely chiral or purely antichiral multiplets.
Explicitly it reads

LMSSM
soft =− 1

2
(
MG̃G̃

aG̃a +MW̃ W̃
bW̃ b +MB̃B̃B̃ + h.c

)
−m2

HuHuHu −m2
Hd
HdHd − (bHu ·Hd + h.c)

− Q̃M2
Q̃Q̃− L̃M2

L̃L̃− ũcMũũ
c − d̃

c
Md̃d̃

c − ẽcMẽẽ
c

−
(
ũ
cYuAuQ̃ ·Hu − d̃

c
YdAuQ̃ ·Hd − ẽ

cYuAuQ̃ ·Hd + h.c
)
. (V.1.19)

The full Lagrangian for Minimal Supersymmetric Standard Model is

LMSSM = LMSSM
OS Kähler + LMSSM

OS SYM + LMSSM
OS W + LMSSM

V + LMSSM
soft , (V.1.20)

where each component Lagrangian has been derived in Eq. (V.1.3), (V.1.4), (V.1.12), (V.1.14) and (V.1.19).

V.1.3 Tree level mass spectrum in the MSSM

The complex MSSM (cMSSM) Higgs potential

We first consider the Higgs potential in MSSM, which can be read directly from Eq. (V.1.20)

VH =µ2|Hu|2 + µ2|Hd|2

+ g2

2
∑
b

(
HuI

bHu +HdI
bHd

)2 + g′2

2

[
Hu

Y (Hu)
2 Hu +Hd

Y (Hd)
2 Hd + ξ

]2

+m2
Hu |Hu|2 +m2

Hd
|Hd|2 + (bHu ·Hd + h.c)

=
(
µ2 +m2

Hu + g′2
ξ

2

)
|Hu|2 +

(
µ2 +m2

Hd
+ g′2

ξ

2

)
|Hd|2 + (bHu ·Hd + h.c)

+ g2

8
∑
b

(
Huσ

bHu +Hdσ
bHd

)2 + g′2

8
(
|Hu|2 − |Hu|2

)2
. (V.1.21)
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where the first line is the F-term of superpotential, the second line is the contribution of D-term in scalar
potential, and the final line comes from the soft-breaking Lagrangian. The term related to g can be simplified
by expanding as∑

b

(
Huσ

bHu +Hdσ
bHd

)
=
(
H

0
uH

+
u +H

+
uH

0
u +H

−
d H

0
d +H

0
dH
−
d

)2

+
(
iH

0
uH

+
u − iH

+
uH

0
u + iH

−
d H

0
d − iH

0
dH
−
d

)2

+
(
|H+

u |2 − |H0
u|2 + |H0

d |2 − |H−d |
2)2

=4|H+
u |2|H0

u|2 + 4|H0
d |2|H−d |

2 + 4H0
uH

+
u H

0
dH
−
d + 4H+

uH
0
uH
−
d H

0
d

+
(
|H+

u |2 + |H0
u|2 − |H0

d |2 − |H−d |
2)2

− 4|H+
u |2|H0

u|2 + 4|H0
u|2|H−d |

2 + 4|H+
u |2|H0

d |2 − 4|H0
d |2|H−d |

2

=4|H0
u|2|H−d |

2 + 4|H+
u |2|H0

d |2 + 4H0
uH

+
u H

0
dH
−
d + 4H+

uH
0
uH
−
d H

0
d

+
(
|H+

u |2 + |H0
u|2 − |H0

d |2 − |H−d |
2)2

=4|H+
uH

0
d +H

0
uH
−
d |

2 +
(
|H+

u |2 + |H0
u|2 − |H0

d |2 − |H−d |
2)2 . (V.1.22)

(V.1.23)

After plugging back the g2 term into the Higgs potential and rearranging the order, we obtain

VH =M2
Hu |Hu|2 +M2

Hd
|Hd|2 + (bHu ·Hd + h.c) + g2 + g′2

8
(
|Hu|2 − |Hd|2

)2 + g2

2
(
HuHd

) (
HdHu

)
=
(
µ2 +m2

Hu + g′2
ξ

2

)(
|H+

u |2 + |H0
u|2
)

+
(
µ2 +m2

Hd
+ g′2

ξ

2

)(
|H0

d |2 + |H−d |
2)

+
[
b
(
H+
u H

−
d −H

0
uH

0
d

)
+ h.c

]
+ g2 + g′2

8
(
|H+

u |2 + |H0
u|2 − |H0

d |2 − |H−d |
2)2 + g2

2

∣∣∣H+
uH

0
d +H

0
uH
−
d

∣∣∣2 , (V.1.24)

Here we introduce new parameters M2
Hu

and M2
Hd

, defined as

M2
Hu ≡ µ

2 +m2
Hu + g′2

ξ

2 , M2
Hd
≡ µ2 +m2

Hd
+ g′2

ξ

2 , (V.1.25)

Clearly ξ does not give any phenomenological impact since it can be absorbed into m2
Hu

and m2
Hd

. From now
on we will set this ξ to zero.

In order to break the SU(2)L×U(1)Y , the Higgs potential is required to be bounded below. Note that this
potential is gauge invariant, and thus the component fields have some degrees freedom to be gauge transformed.
We want the abelian symmetry U(1)Q is preserved, thus the vev of charged component H+

u and H−d must
vanish. We now want to decompose the Higgs doublet components as variation around their VEVs as following

Hd =
(
H0
d

H−d

)
=
((
vd + φ0

d + iχ0
d

)
/
√

2
φ−d

)
, (V.1.26)

Hu =
(
H+
u

H0
u

)
= eiϕu

(
φ+
u(

vu + φ0
u + iχ0

u

)
/
√

2

)
, (V.1.27)

where the vacuum expectation values of Higgs field can be chosen to be real. There is a possible complex phase
between two Higgs sector. Plugging these equations into Eq. (V.1.24) gives us a general expression

VH =M2
Hu

[
|φ+
u |2 +

(
vu + φ0

u

)2
2 +

(
χ0
u

)2
2

]
+M2

Hd

[
|φ+
d |

2 +
(
vd + φ0

d

)2
2 +

(
χ0
d

)2
2

]

+
{
beiϕu

[
φ+
u φ
−
d −

1
2
(
vu + φ0

u + iχ0
u

) (
vd + φ0

d + iχ0
d

)]
+ h.c

}

62



Minimal Supersymmetric Standard Model

+ g2 + g′2

8

[
|φ+
u |2 +

(
vu + φ0

u

)2
2 +

(
χ0
u

)2
2 − |φ−d |

2 −
(
vd + φ0

d

)2
2 −

(
χ0
d

)2
2

]2

+ g2

2

∣∣∣∣∣φ+
u

(
vd + φ0

d + iχ0
d

)
√

2
+
(
vu + φ0

u − iχ0
u

)
2 φ−d

∣∣∣∣∣
2

. (V.1.28)

We want to rearrange VH in powers of the fields, i.e in the following form

VH = · · · − Tφ0
d
φ0
d − Tφ0

u
φ0
u − Tχ0

d
χ0
d − Tχ0

u
χ0
u

+ 1
2
(
φ0
d φ0

u χ0
d χ0

u

)
Mφφχχ


φ0
d

φ0
u

χ0
d

χ0
u

+
(
φ−d φ−u

)
Mφ±φ±

(
φ+
d

φ+
u

)
, (V.1.29)

where the dots denote the trilinear and quartic terms of VH that is not needed in the following calculations. It
is obvious that the phase ϕu only appears alongside b, thus b can be chosen real. Expanding the Eq. (V.1.28)
yields the tadpoles coefficients

Tφ0
d

= −
[
M2
Hd
vd − b cosϕu vu −

g2 + g′2

8
(
v2
u − v2

d

)
vd

]
,

Tφ0
u

= −
[
M2
Huvu − b cosϕu vd −

g2 + g′2

8
(
v2
d − v2

u

)
vu

]
,

Tχ0
d

= −b sinϕu vu,

Tχ0
u

= −b sinϕu vd.

(V.1.30a)

(V.1.30b)

(V.1.30c)

(V.1.30d)

Similarly, the mass matrices of components of Higgs fields read

Mφφχχ =
(

Mφ Mφχ

M†
φχ Mχ

)
,

Mφ =

M2
Hd

+ g2 + g′2

8
(
3v2
d − v2

u

)
−b cosϕu −

g2 + g′2

4 vuvd

−b cosϕu −
g2 + g′2

4 vuvd M2
Hu

+ g2 + g′2

8
(
3v2
u − v2

d

)
 ,

Mφχ =
(

0 b sinϕu
b sinϕu 0

)
,

Mχ =

M2
Hd

+ g2 + g′2

8
(
v2
d − v2

u

)
b cosϕu

b cosϕu M2
Hu

+ g2 + g′2

8
(
v2
u − v2

d

)
 ,

Mφ±,φ± =

M2
Hd

+ g2

8
(
v2
u + v2

d

)
+ g′2

8
(
v2
d − v2

u

)
beiϕu + g2

4 vuvd

be−iϕu + g2

4 vuvd M2
Hu

+ g2

8
(
v2
d + v2

u

)
+ g′2

8
(
v2
u − v2

d

)
 .

(V.1.31a)

(V.1.31b)

(V.1.31c)

(V.1.31d)

(V.1.31e)

The nonvanishing phase factor sinϕu would lead to a mixing between CP-even fields φ0
u, φ

0
d and CP-odd

fields χ0
u, χ

0
d. At tree-level, we require vu and vd are indeed stationary points of the Higgs potential, the following

equations must be satisfied

∂VH
∂φ0

d

∣∣∣∣
φ0
d
,φ0
u,χ

0
d
,χ0
u=0

= ∂VH
∂φ0

u

∣∣∣∣
φ0
d
,φ0
u,χ

0
d
,χ0
u=0

= ∂VH
∂χ0

d

∣∣∣∣
φ0
d
,φ0
u,χ

0
d
,χ0
u=0

= ∂VH
∂χ0

u

∣∣∣∣
φ0
d
,φ0
u,χ

0
d
,χ0
u=0

= 0,

⇒ Tφ0
d

= Tφ0
u

= Tχ0
d

= Tχ0
u

= 0,
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⇒



M2
Hd
vd − b cosϕu vu −

g2 + g′2

8
(
v2
u − v2

d

)
vd = 0

M2
Hu
vu − b cosϕu vd −

g2 + g′2

8
(
v2
d − v2

u

)
vu = 0

b sinϕu vu = 0
b sinϕu vd = 0

. (V.1.32)

There are some significant results we obtain from the above set of equations for stationary value

• If we set the parameters of soft SUSY breaking terms to zero, i.e mHu = mHd = b = 0, then Higgs
doublets can only achieve a non-degenerate minimum at vu = vd = 0. Such vanishing VEVs would not
allow the electroweak breaking due to Higgs mechanism, proving the integral role of soft-SUSY breaking
terms.

• If the parameters b,mHu ,mHd are non-zero, the above set of equations implies the vanishing of phase
factor ϕu at tree level. Thus CP conservation in the Higgs sector still holds in MSSM at the lowest level
of perturbation.

• Using the first two equations, we can solve for the mass terms M2
Hd

and M2
Hu

in terms of parameter b:

M2
Hd

= b
vu
vd

+ g2 + g′2

8
(
v2
u − v2

d

)
, (V.1.33)

M2
Hu = b

vd
vu

+ g2 + g′2

8
(
v2
d − v2

u

)
. (V.1.34)

The above condition for stationary of Higgs potential together with the definition of MHu and MHd in
(V.1.25) insists that the SUSY parameter µ is of order of electroweak breaking scale, constrained by the
RHS of Eq. (V.1.33) and (V.1.34). This requires the extreme fine-tuning of µ, which is known as the µ
problem. A possible solution is by generating the µ parameter dynamically through EWSB of a singlet
field is proposed in the next section of this chapter.

We now introduce the new parameters tan β = vu/vd, M2
Z = (g2 + g′2)(v2

u + v2
d)/4 and M2

W = g2(v2
u + v2

d)/4.
The mass matrices and the parameters M2

Hd
and M2

Hu
using Eq. (V.1.33) and (V.1.34) are

Mφ =

b tan β + g2 + g′2

4 v2
d −b− g2 + g′2

4 vuvd

−b− g2 + g′2

4 vuvd b cotβ + g2 + g′2

4 v2
u


=
(
b tan β +M2

Z cos2 β −b−M2
Z sin β cosβ

−b−M2
Z sin β cosβ b cosβ +M2

Z sin2 β

)
,

Mφχ =
(

0 0
0 0

)
,

Mχ =
(
b tan β b
b b cotβ

)
,

Mφ±φ± =

b tan β + g2

4 v
2
u b+ g2

4 vuvd

b+ g2

4 vuvd b cotβ + g2

4 v
2
d


=
(
b tan β +M2

W sin2 β b+M2
W sin β cosβ

b+M2
W sin β cosβ b cotβ +M2

W cos2 β

)
.

(V.1.35a)

(V.1.35b)

(V.1.35c)

(V.1.35d)

Diagonalization of Higgs mass matrices in lowest order

We apply unitary transformations on both neutral and charged Higgs sectors to bring those into diagonalized
form 

h
H
A
G

 =


sinα cosα 0 0
cosα − sinα 0 0

0 0 sin β cosβ
0 0 cosβ − sin β



φ0
d

φ0
u

χ0
d

χ0
u

 , (V.1.36)
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(
H± G±

)
=
(

sin β cosβ
cosβ − sin β

)(
φ±d
φ±u

)
, (V.1.37)

and obtain the following mass eigenvalues

m2
G = m2

G± = 0,

m2
A = b

sin β cosβ ,

m2
h = 1

2

[
m2
A +m2

Z −
√

(m2
A −m2

Z) + 4m2
AM

2
Z sin2 2β

]
,

m2
H = 1

2

[
m2
A +m2

Z +
√

(m2
A −m2

Z) + 4m2
AM

2
Z sin2 2β

]
,

m2
H± = m2

A +M2
W .

(V.1.38)

(V.1.39)

(V.1.40)

(V.1.41)

(V.1.42)

We can construct a ratio between the first two elements of the normalized eigenvectors (sinα, cosα, 0, 0)
(the one that corresponds to eigenvalue m2

h) to obtain the tangent of mixing angle α. The result is

tanα =
(
m2
A +M2

Z

)2 sin 2β
(M2

Z −m2
A) cos 2β +

√
m4
A +M4

Z − 2m2
AM

2
Z cos 4β

=
(
m2
A +M2

Z

)2 sin β cosβ
M2
Z cos2 β +m2

A sin2 β +m2
h

. (V.1.43)

Constraints on parameters in Higgs sector

Here we represent two constraints on the value of b. As claimed above, we are always safely to choose b,
vu =

√
2〈H0

u〉 and vd =
√

2〈H0
d〉 to be positive. The first constraint on the parameters in Higgs potential comes

from the fact that on the trend vu → vd (thus kills the final term involving g2 + g′2), the potential is bounded
below only if

M2
Huv

2
u +M2

Hd
v2
d − 2bvuvd ≥ 0

⇒ 2b ≤M2
Hu +M2

Hd
= 2|µ|2 +m2

Hu +m2
Hd

+ g′2ϕu. (V.1.44)

Now consider the Higgs potential as a function of VEVs, and we will see shortly that investigating this potential
around its minimum gives another constrain on the MSSM parameters. The potential now reads

VH(vu, vd) = M2
Huv

2
u +M2

Hd
v2
d − 2bvuvd + g2 + g′2

8 (v2
u − v2

d)2. (V.1.45)

At the minimum, the VEVs necessary satisfy the following equations

∂VH
vu

= 2M2
Huvu − 2bvd + g2 + g′2

2 vu(v2
u − v2

d) = 0,

∂VH
vd

= 2M2
Hd
vd − 2bvu −

g2 + g′2

2 vd(v2
u − v2

d) = 0.

(V.1.46)

(V.1.47)

Let us introduce some new variables: v2 ≡ v2
u + v2

d, (g2 + g′2)v2 = 4M2
Z , tan β = vu/vd. On one side,

0 = vd
∂VH
∂vu

+ vu
∂VH
∂vd

= 2(M2
Hu +M2

Hd
)vuvd − 2b(v2

u + v2
d)

⇒ b

M2
Hu

+M2
Hd

= vuvd
v2
u + v2

d

= sin β cosβ ⇒ tan2 β = b2(1 + tan2 β)2

(M2
Hu

+M2
Hd

)2 . (V.1.48)

On the other hand

0 = vu
∂VH
∂vu

− vd
∂VH
∂vd

= 2M2
Huv

2
u − 2M2

Hd
v2
d + g2 + g′2

2 (v2
u + v2

d)(v2
u − v2

d)
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⇒0 = v2
u

(
M2
Hu +M2

Z

)
− v2

d

(
M2
Hd

+M2
Z

)
⇒ tan2 β =

M2
Hd

+M2
Z

M2
Hu

+M2
Z

. (V.1.49)

Use Eq. (V.1.48) and (V.1.49) to obtain an expression without β variable:

M2
Hd

+M2
Z

M2
Hu

+M2
Z

= b2(
M2
Hu

+M2
Hd

) (1 +
M2
Hd

+M2
Z

M2
Hu

+M2
Z

)2

⇒ b2
(
M2
Hu +M2

Hd
+ 2M2

Z

)2 =
(
M2
Hu +M2

Z

) (
M2
Hd

+M2
Z

) (
M2
Hu +M2

Hd

)2
. (V.1.50)

Now let us consider the following expression, and plugging in the Eq. (V.1.50) to replace the b variable by an
expression containing only masses(

b2 −M2
uM

2
d

) (
M2
Hu +M2

Hd
+ 2M2

Z

)2
=
(
M2
Hu +M2

Z

) (
M2
Hd

+M2
Z

) (
M2
Hu +M2

Hd

)2 −M2
uM

2
d

(
M2
Hu +M2

Hd
+ 2M2

Z

)2
. (V.1.51)

After some algebra to expand the RHS and collect the mutual factors, we end up with the following expression:(
b2 −M2

HuM
2
Hd

) (
M2
Hu +M2

Hd
+ 2M2

Z

)2
= M2

Z (MHu −MHd)2 (MHu +MHd)2 (
M2
Hu +M2

Hd
+M2

Z

)
. (V.1.52)

The RHS is positive definite, so does the LHS. Thus we achieve the second constraint on variable b, in the form
of inequality

b2 ≥M2
HuM

2
Hd

=
(
µ2 +m2

Hu

) (
µ2 +m2

Hd

)
, (V.1.53)

where the equality holds if and only if MHu = MHd ⇒ mHu = mHd . In summary, the parameters in MSSM
Lagrangian must satisfy the two constraints in Eq. (V.1.44) and (V.1.53)

Gauge bosons masses

To obtain the mass of gauge boson, we consider the kinetic parts of Higgs’ Kähler potential, which read

L = DHu
µ HuD

Hu
µ Hu +DHd

µ HdD
Hd
µ Hd. (V.1.54)

Since we need the mass terms only, we temporarily ignore the Higgs’ perturbation around vacuum. The covariant
derivatives acting on Higgs fields give

DHu
µ Hu →

(
∂µ − ig

σb

2 W
b
µ − ig′

Y (Hu)
2 Bµ

)(
0

vu/
√

2

)

= − ig2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

) 0
vu√

2

− i

2g
′Bµ

 0
vu√

2



= 1√
2

− ig2
(
W 1
µ − iW 2

µ

)
vu

ig

2 W
3
µvu −

i

2g
′Bµvu

 = 1√
2

− ig2 vu
(
W 1
µ − iW 2

µ

)
i

2vu
(
gW 3

µ − g′Bµ
)
 , (V.1.55)

DHd
µ Hd →

(
∂µ − ig

σb

2 W
b
µ − ig′

Y (Hd)
2 Bµ

)(
vd/
√

2
0

)

= − ig2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)( vd√
2

0

)
+ i

2g
′Bµ

( vd√
2

0

)

= 1√
2

− i2vd (gW 3
µ − g′Bµ

)
− ig2 vd

(
W 1
µ + iW 2

µ

)
 . (V.1.56)
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Expanding the Higgs kinetic part in terms of component gauge fields

L = 1
2

− ig2 vu
(
W 1
µ − iW 2

µ

)
i

2vu
(
gW 3

µ − g′Bµ
)

†− ig2 vu

(
W 1
µ − iW 2

µ

)
i

2vu
(
gW 3

µ − g′Bµ
)
+ 1

2

− i2vd (gW 3
µ − g′Bµ

)
− ig2 vd

(
W 1
µ + iW 2

µ

)

†− i2vd (gW 3

µ − g′Bµ
)

− ig2 vd
(
W 1
µ + iW 2

µ

)


= v2
ug

2

8 |W 1
µ − iW 2

µ |2 + v2
u

8 |gW
3
µ − g′Bµ|2 + (vu ↔ vd)

= (v2
u + v2

d)g2

8 |W 1
µ − iW 2

µ |2 + v2
u + v2

d

8 |gW 3
µ − g′Bµ|2. (V.1.57)

Redefine the W-field as W±µ ≡
W 1
µ ∓ iW 2

µ√
2

, and apply the Weinberg rotation

(
Aµ
Zµ

)
=
(
sW cW
cW −sW

)(
W 3
µ

Bµ

)
, where the Weinberg angle:


cW = g√

g2 + g′2

sW = g′√
g2 + g′2

, (V.1.58)

we finally obtain the mass term of W and B bosons

L = g2(v2
u + v2

d)
8 (W−µ )†W−µ + g2(v2

u + v2
d)

8 (W+
µ )†W+µ + (g2 + g′2)(v2

u + v2
d)

8 Zµ, (V.1.59)

which gives the expected results, and explaining the name of the parameters we used above

MW+ = MW− = MW = g
√
v2
u + v2

d

2 ,

MZ =
√
g2 + g′2

√
v2
u + v2

d

2 ,

Mγ = 0.

(V.1.60)

(V.1.61)

(V.1.62)

Neutralinos & charginos masses

The four mass eigenstates neutralinos arise from the mixing between the neutral higgsinos H̃0
u, H̃0

d and the
neutral gauginos B̃, W̃ 3. Similarly the charged higgsinos H̃+

u and H̃−d and the pair of winos W̃± combine to
form two mass eigenstates with electric charge ±1 called charginos. These mass eigenstates are conventionally
labelled in ascending order such that mχ̃0

1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
and mχ̃±1

< mχ̃±2
.

The Lagrangian for neutralino masses in the gauge-eigenstates ψ̃0 ≡
(
B̃, W̃ 3, H̃0

d , H̃
0
u

)
is written in the

following quadratic form

Lχ̃0 = −1
2
(
ψ̃0)T Mχ̃0 ψ̃0 + h.c, (V.1.63)

with the symmetric mass matrix

Mχ̃0 =


M1 0 −MZsW cβ e−iϕuMZsW sβ
0 M2 MZcW cβ −e−iϕuMZcW sβ

−cβsWMZ cβcWMZ 0 −µ
sβsWMZ −e−iϕusβcWMZ −µ 0

 . (V.1.64)

The entries M1 and M2 comes from the soft SUSY breaking term (V.1.19) whereas the entries −µ originated
from the supersymmetric higgsino mass terms in the scalar potential (V.1.14). Finally, the couplings of Higgs-
higgsino-gaugino in the Kähler potential lead to the entries containing g and g′. This matrix can be diagonalized
by apply a unitary transformation N

N∗Mχ̃0N† =


mχ̃0

1
0 0 0

0 mχ̃0
2

0 0
0 0 mχ̃0

3
0

0 0 0 mχ̃0
4

 , (V.1.65)
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and the neutralinos are given by χ̃0
i = Nijψ̃

0
j .

The superpartners of the charged Higgs and gauge bosons form a charged basis, which is expressed in terms
of the Weyl spinors as

ψ−R ≡
(
W̃−

H−d

)
, ψ+

L ≡
(
W̃+

H+
u

)
. (V.1.66)

The chargino Lagrangian in this basis is written as

Lχ̃± =
(
ψ−R
)T
Mχ̃±ψ

+
L + h.c, (V.1.67)

where the corresponding mass matrix

Mχ̃± =
(

M2
√

2sβMW e
−iϕu

√
2cβMW µ

)
, (V.1.68)

with the M2 entry sterming from the soft breaking (V.1.19), the µ entry from scalar potential (V.1.14) and the
other two is from the Kähler potential (V.1.12). The chargino mass eigenvalues can be obtained with the help
of two unitary 2× 2 matrices U and V according to

χ̃+
L = V ψ+

L , χ̃−R = Uψ−R . (V.1.69)

Generally the rotation matrix U and V is different since the mass matrix is not in symmetric form. After
diagonalization we obtain the masses of charginos

U∗Mχ̃±V† =
(
mχ̃±1

0
0 mχ̃±2

)
, (V.1.70)

where

m2
χ̃±1
,m2

χ̃±2
= 1

2

[
|M2|2 + |µ|2 + 2M2

W ∓
√(
|M2|2 + |µ|2 + 2M2

W

)2
− 4 |µM2 − e−iφuM2

W s2β |
2
]
. (V.1.71)

The gluino

The gluino is the superpartner of gluons. This sparticle is a color octet fermion and thus cannot mix with any
other particles in the MSSM like neutralinos or charginos. Furthermore, the gluino does not couple with the
Higgs field. Hence, the mass term of gluino is determined solely by the soft breaking parameter:

mG̃ = |M3| . (V.1.72)

This unique property also holds in the NMSSM where we make a modification by adding one singlet scalar
superfield Ŝ.

Quarks & leptons

The masses of quarks and leptons come from the EWSB of the trilinear Yukawa couplings with scalar Higgs
field. All of these information are contained in the MSSM superpotential (V.1.12). The only differece is we
introduce two Higgs doublet in the MSSM: Hu couples with up-type quarks and Hd couples with down-type
quarks and leptons. Hence, the quarks and leptons masses and mixing angles in the family space not only
determined by the Yukawa coupling matrix Yf but also the parameter tan β = vu/vd. Let us call y`, yqd and
yqu are respectively the eigenvalues of the Yukawa matrix Ye, Yd and Yu, where ` = e, µ, τ , qd = d, s, b and
qu = u, c, t. The masses of the charged leptons, up-type quarks and down-type quarks have the similar form as
follows

m` = y`vd√
2

= y`vcβ√
2
, md = ydvd√

2
= ydvcβ√

2
, mu = yuvu√

2
= yuvsβ√

2
(V.1.73)

While the experimental measurements suggest that mass eigenstates of charged leptons are identical with
the flavour eigenstates, this is not the case for quarks. Similar to SM, the mixing among quarks in the family
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space is non-vanishing. Diagonalizing the Yukawa matrices Yu,Yd thus requires four unitary matrices VL,R
u,d

such that

Mu ≡ diag(mu,mc,mt) = vu√
2
VL
uYuVR

u , (V.1.74)

Md ≡ diag(md,ms,mb) = vd√
2
VL
dYdVR

d . (V.1.75)

Squarks & sleptons

The mass matrices of sfermions (including squarks and sleptons) can be written collectively in the basis (f̃L, f̃R)
as

Mf̃ =
(
M2
Zc2β

(
If3 −Qfs2

W

)
13×3 + Mf̃L

+ m∗fmT
f m∗fX

∗
f

XT
f mT

f mT
f m∗f + M2

f̃R
+M2

Zc2βQ
fs2
W13×3

)
, (V.1.76)

where the index f = e, u, d; If3 and Qf are the isospin and electric charge of the fermion. M2
f̃L

is either M2
Q̃

for squarks or M2
L̃ for sleptons. mf is the mass matrix for considered fermion in the generation space, which is

Yevd/
√

2 for leptons, Ydvd/
√

2 for down-type quarks or e−iϕuYuvu/
√

2 for up-type quarks. The 3× 3 matrix
Xf is defined via

Xf ≡ Af − e−iϕuµ∗ (cotβ)2If3 13×3. (V.1.77)

When there is no mixing term between different generations of sfermions and fermions, the matrices Mf̃L,R
,

mf , Xf are all diagonal matrices. In such case, the general sfermion mass matrix (V.1.76) is decomposed as a
direct sum of 2× 2 mass matrix in each generation, i.e Mf̃ = Mf̃1

⊕Mf̃2
⊕Mf̃3

, and the diagonalization can
be performed analytically by a rotation(

f̃i,1
f̃i,2

)
= Uf̃

(
f̃iL
f̃iR

)
=
(
− sin θf̃i cos θf̃i
cos θf̃i sin θf̃i

)(
f̃iL
f̃iR

)
, (V.1.78)

with the rotation angle

cot θf̃i = − 1
2mfiX

∗
fi

{
M2
f̃iL
−M2

f̃iR
+M2

Zc2β

(
If3 − 2Qfs2

W

)
+
√[

M2
f̃iL
−M2

f̃iR
+M2

Zc2β

(
If3 − 2Qfs2

W

)]2
+ 4m2

fi
|Xfi |

}
, (V.1.79)

where Xfi = Afi − e−iφuµ∗(cotβ)2If3 .

The mass eigenvalues of each 2× 2 block matrix after diagonalization are

m2
f̃i1,2

= 1
2

{
2m2

fi +M2
f̃iL

+M2
f̃iR

+ If3M
2
Zc2β

∓
√[

M2
f̃iL
−M2

f̃iR
+M2

Zc2β

(
If3 − 2Qfs2

W

)]2
+ 4m2

fi
|Xfi |

}
. (V.1.80)

As far as we do not concern about adding the right-chiral neutrinos into the MSSM (with similar argument in
the SM: the right-chiral neutrinos have no gauge interaction with other particles and thus not being considered
as a functional part in the model), the right-chiral sneutrino do not exist. The sneutrino masses is thus 1-
dimensional, written in the basis ν̃i,L = ν̃i as (assuming the decoupling between different flavours)

m2
ν̃ = M2

L̃
+ 1

2M
2
Zc2β , (V.1.81)

with the first contribution comes from the soft SUSY breaking term, and the latter is originated from the scalar
potential.
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V.2 Next-to-minimal Supersymmetric Standard Model
With the simplest extension of the SM containing the supersymmetry, we face the µ problem mentioned

above. Recall that in the MSSM framework, the µ parameter has no priory reason for constraint the value of
µ in the desired electroweak scale, i.e typically µ ∼ MrmSUSY . On the other hand, various phenomenological
analysis and experimental measurements suggests that |µ| should not exceed significantly the mass of Z-boson.
The µ problem relates to the fact that a parameter at SUSY scale involves in the electroweak symmetry breaking,
which require an extreme fine-tuning of MSSM parameter µ. This is the main motivation for one to go beyond
the MSSM, and the section aims to represent such extension by adding a gauge singlet chiral superfield Ŝ into
the particle contents. In the model so-called Next-to-minimal Supersymmetric Standard Model (NMSSM), the µ
parameter is generated dynamically by the VEV of newly added singlet S and thus resolves the issue of MSSM.

V.2.1 NMSSM Particle Content
The general NMSSM Lagrangian is obtained from the MSSM Lagrangian by adding a gauge singlet chiral

superfield Ŝ into the particle contents. We thus introduce to the NMSSM two more Higgs field (one scalar and
one pseudoscalar) compared to the MSSM.

Super Field Spin 0 Spin 1/2 SU(3)C × SU(2)L ×U(1)Y

Ŝ S S̃ (1,1,0)

Table V.3: The newly introduced complex scalar singlet in NMSSM.

NMSSM thus becomes the simplest extension of the MSSM with the µ term is generated by EWSB process,
with only one more gauge singlet being considered. The rest of the particle contents is totally similar to that
of MSSM given in the Table V.2 and Table V.1.

V.2.2 NMSSM Lagrangian
Before we start, we want to note that most of the NMSSM Lagrangian can be derived the same way as of

the MSSM. We do not repeat those derivation, and represent in this section only the differences arising from
the additional Higgs singlet. Explicit changes are the kinetic term for Ŝ in Kähler potential, the contribution
of this singlet in the superpotential and finally the soft-SUSY breaking term. Let us consider this extension of
MSSM which posesses a superpotential composed of a Yukawa term and a Higgs term

WNMSSM = WNMSSM
Higgs +WY ukawa. (V.2.1)

Apparently, the Yukawa couplings remains intact while a slight modification on the Higgs superpotential due
to the newly added superfield Ŝ can be achieved as follows 1

WY ukawa = Ĥd · L̂Yeê
c + Ĥd · Q̂Ydd̂

c − Ĥu · Q̂Yuû
c, (V.2.2)

WNMSSM
Higgs =

(
µ+ λŜ

)
Ĥu · Ĥd + ξF Ŝ + 1

2µ
′Ŝ2 + κ

3 Ŝ
3, (V.2.3)

where the terms ∼ λ, κ are dimensionless parameters, the terms ∼ µ, µ′ are supersymmetric mass terms, and
the dimension-two parameter ξF parametrizes a supersymmetric tadpole term. Similarly the corresponding soft
SUSY breaking masses and couplings is

LNMSSM
soft =− 1

2
(
MG̃G̃

aG̃a +MW̃ W̃
bW̃ b +MB̃B̃B̃ + h.c

)
− Q̃M2

Q̃Q̃− L̃M2
L̃L̃− ũcMũũ

c − d̃
c
Md̃d̃

c − ẽcMẽẽ
c

−
(
m2
HuHuHu +m2

Hd
HdHd +m2

S |S|2
)

−
(
λAλHu ·HdS + κ

3AκS
3 +m2

3Hu ·Hd + 1
2m
′2
S S

2 + ξSS

)
−
(
ũ
cYuAuQ̃ ·Hu − d̃

c
YdAuQ̃ ·Hd − ẽ

cYuAuQ̃ ·Hd + h.c
)
, (V.2.4)

1 Here we keep the R-parity conservation that is dicussed in the construction of MSSM superpotential.
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where the first three lines are respectively mass terms of gauginos, Higgs and sfermions. The fourth line contains
interaction between scalars, and the last line is composed of trilinear couplings between Higgs field and sfermions.

We notice that all new dimensionful parameters in NMSSM (namely µ, µ′, ξF ,m2
3,m

′2
S , ξS) also participate in

the electroweak symmetry breaking, thus being bounded by the electroweak scale; but naturally these parameters
arise naturally from the supersymmetry, and thus on SUSY scale. The exclusion of scale-dependent parameters
can be achieved by requiring the Lagrangian to possess a Z3 symmetry (meaning to rotate all components of all
chiral superfields with a phase e2πi/3), thus only terms that are product of three superfields survive. In short,
we obtain the Z3-invariant NMSSM from the general one by simply setting the dimensionful parameters to zero

m2
3 = m′2S = ξS = µ = µ′ = ξF = 0. (V.2.5)

The Higgs sector of the Z3-invariant NMSSM is thus specified by seven parameters λ, κ, m2
Hu

, m2
Hd

, m2
S , Aλ

and Aκ. From now on the Z3 symmetry will always be employed to eliminate the undesired parameters, and
NMSSM in this context stands for Z3-invariant NMSSM.

To summarize, we are working with the supersymmetric potential

WNMSSM =
(
Ĥ0
d êL − Ĥ−d ν̂

)
Yeê

c +
(
Ĥ0
d d̂L − Ĥ−d ûL

)
Ydd̂

c −
(
Ĥ+
u d̂L − Ĥ0

uûL

)
Yuû

c

+ λŜ
(
Ĥ+
u Ĥ

−
d − Ĥ

0
uĤ

0
d

)
+ κ

3 Ŝ
3, (V.2.6)

and the soft breaking term (after setting m2
3,m

′2
S and ξS to zero)

LNMSSM
soft =− 1

2
(
MG̃G̃

aG̃a +MW̃ W̃
bW̃ b +MB̃B̃B̃ + h.c

)
−
(
m2
HuHuHu +m2

Hd
HdHd +m2

S |S|2
)
−
(
λAλHu ·HdS + κ

3AκS
3
)

− Q̃M2
Q̃Q̃− L̃M2

L̃L̃− ũcMũũ
c − d̃

c
Md̃d̃

c − ẽcMẽẽ
c

−
(
ũ
cYuAuQ̃ ·Hu − d̃

c
YdAuQ̃ ·Hd − ẽ

cYuAuQ̃ ·Hd + h.c
)
. (V.2.7)

V.2.3 Tree level mass spectrum in the NMSSM

With new singlet superfield Ŝ being added, the mass spectrum of NMSSM is slightly modified compared to
that of MSSM and require careful investigations. This subsection thus aims to clarify the differences between
these two supersymmetric extension of SM, including the Higgs sector, the neutralino. For other sectors, we
refer the readers to Section V.1.3.

The Neutral Higgs Sector

From the general SUSY Lagrangian, one can extract the Higgs potential (which contains Hu, Hd and newly
introduced singlet S) as follow

V NMSSM
H =

(
|λS|2 +m2

Hd

) (
|H−d |

2 + |H0
d |2
)

+
(
|λS|2 +m2

Hu

) (
|H+

u |2 + |H0
u|2
)

+m2
S |S|2

+ g2

2

∣∣∣H+
uH

0
d +H

0
uH
−
d

∣∣∣2 + g2 + g′2

8
(
|H+

u |2 + |H0
u|2 − |H0

d |2 − |H−d |
2)2

+
∣∣λ (H+

u H
−
d −H

0
uH

0
d

)
+ κS2∣∣2 +

[
−λAλS

(
H+
u H

−
d −H

0
uH

0
d

)
+ κ

3AκS
3 + h.c

]
. (V.2.8)

After the symmetry SU(2)L×U(1)Y is broken, each of the scalar Higgs field can be expanded around its vacuum
generally as

Hd =
(

(vd + hd + iad) /
√

2
h−d

)
, Hu = eiϕu

(
h+
u

(vu + hu + iau)

)
, S = eiϕs√

2
(vs + hs + ias) , (V.2.9)

where ϕu and ϕs are possible relative phases of Hu and S with respect to Hd. Due to U(1) symmetry, the
VEVs vd, vu and vs can be chosen to be positive. After plugging these expansion into Eq. (V.2.8), the Higgs
potential can be written as a sum of terms containing one neutral field (tadpoles), two fields (quadratic terms)
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and higher order (Higgs interactions). More specifically, we want to express the Higgs potential in the following
form:

V NMSSM
H =const+ thdhd + thuhu + thshs + tadad + tauau + tasas

+ 1
2φ

0TMφφφ
0 + φ

cMh+h−φ
c + higher order of φ, (V.2.10)

where the neutral Higgs vector φ0T = (hd, hu, hs, ad, au, as), the charged Higgs vector φc = (h−d , h
+
u ), our task

now is to determine the tadpole coefficients thd , thu , ths , tad , tau , tas , the neutral Higgs mass matrix Mφφ and
the charged Higgs mass matrix Mh+h− . The const part has no contribution to the symmetry breaking process,
and not of our interests. The final term contains three and four scalar interactions. For detailed discussion
about the tadpole coefficients and the mass martices, see e.g [44, section 2, 3].

The tadpole coefficients are obtained via the first derivative of the Higgs potential with respect to the
corresponding fields

tφi =
〈
∂V

∂φi

〉
= ∂V

∂φi

∣∣∣∣
φ=0

, φi = hd, hu, hs, ad, au, as, (V.2.11)

from which we can derive the following results

thd = 2MW sW cβ
e

[
m2
Hd

+ M2
Zc2β
2 + |λ|2

(
2M2

W s
2
W s

2
β

e2 + v2
s

2

)
− |λ|vstβ2

(√
2Aλcϕx + vsκcϕy

)]
, (V.2.12)

thu = 2MW sW sβ
e

[
m2
Hu −

M2
Zc2β
2 + |λ|2

(
2M2

W s
2
W c

2
β

e2 + v2
s

2

)
− |λ|vs2tβ

(√
2Aλcϕx + vsκcϕy

)]
, (V.2.13)

ths = m2
Svs + 2M2

W s
2
W

e2

[
|λ|2vs − |λ|s2β

(
|Aλ|√

2
cϕx + |κ|vscϕy

)]
+ |κ|2v3

s + 1√
2
|Aκ||κ|v2

scϕz , (V.2.14)

tad = MW sW sβ
e

|λ|vs
(√

2|Aλ|sϕx − |κ|vssϕy
)
, (V.2.15)

tau = tad
tβ
, (V.2.16)

tas = 2M2
W s

2
W s2β

e2 |λ|
(

1√
2
|Aλ|sϕx + |κ|vssϕy

)
− 1√

2
|Aκ||κ|v2

ssϕz , (V.2.17)

where we introduce the short hand notation for the phase combinations

ϕx ≡ ϕAλ + ϕλ + ϕs + ϕu, (V.2.18)

ϕy ≡ ϕκ − ϕλ + 2ϕs − ϕu, (V.2.19)

ϕz = ϕAκ + ϕκ + 3ϕs. (V.2.20)

In order that the Higgs potential acquires a minimum values at VEVs, it is necessary that all tadpole coefficients
vanishes. Since tau and tad is in a linear relation, we obtains a set of 5 independent constraints of the SUSY
parameters. The squared masses parameters m2

Hd
,m2

Hu
and m2

S can be solved by setting (V.2.12), (V.2.13) and
(V.2.14) to zero, and from (V.2.15) we find a relation between sϕx and sϕy ; all of those constraint would be
used to simplify the mass matrices of neutral Higgs later.

We next consider the terms of the Higgs potential which are bilinear in the neutral Higgs boson, from those
we can construct the 6× 6 mass matrix Mφφ, which can be written in terms of 3× 3 block matrices Mhh,Maa

and Mha as

Mφφ =
(

Mhh Mha

MT
ha Maa

)
, (V.2.21)

and all of the component matrices are symmetric. Each of the matrix elements can be computed by taking
derivative with respect to the corresponding fields, i.e

(Mφφ)φiφj = ∂2V NMSSM
H

∂φi∂φj

∣∣∣∣
φ=0

. (V.2.22)
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The specific results of the entries ofMhh read

Mhdhd = M2
Zc

2
β + 1

2 |λ|vstβ
(√

2|Aλ|cϕx + |κ|vscϕy
)
, (V.2.23)

Mhdhu = −1
2M

2
Zs2β −

1
2 |λ|vs

(√
2|Aλ|cϕx + |κrvertvscϕy

)
+ 2|λ|2M

2
W s

2
W

e2 s2β , (V.2.24)

Mhuhu = M2
Zs

2
β + 1

2 |λ|
vs
tβ

(√
2|Aλ|cϕx + |κ|vscϕy

)
, (V.2.25)

Mhdhs = 2|λ|2MW sW
e

cβvs − |λ|
MW sW

e
sβ

(√
2|Aλ|cϕx + 2|κ|vscϕy

)
, (V.2.26)

Mhuhs = 2|λ|2MW sW
e

sβvs − |λ|
MW sW

e
cβ

(√
2|Aλ|cϕx + 2|κ|vscϕy

)
, (V.2.27)

Mhshs = 2|κ|2v2
s + vs√

2
|κ||Aκ|cϕz +

√
2|λ||Aλ|

M2
W s

2
W

e2vs
s2βcϕx . (V.2.28)

Similarly, the entries of Maa which describes the mixing between the CP-odd components of the Higgs doublet
and singlet fields are

Madad = 1
2 |λ|

(√
2|Aλ|cϕx + |κ|vscϕy

)
vstβ , (V.2.29)

Madau = Madad

tβ
= 1

2 |λ|
(√

2|Aλ|cϕx + |κ|vscϕy
)
vs, (V.2.30)

Mauau = Madad

t2β
= 1

2 |λ|
(√

2|Aλ|cϕx + |κ|vscϕy
) vs
tβ
, (V.2.31)

Madas = |λ|MW sW
e

sβ

(√
2|Aλ|cϕx − 2|κ|vscϕy

)
, (V.2.32)

Mauas = |λ|MW sW
e

cβ

(√
2|Aλ|cϕx − 2|κ|vscϕy

)
, (V.2.33)

Masas = |λ|
(√

2|Aλ|cϕx + 4|κ|vscϕy
)M2

W s
2
W

e2vs
s2β − 3|Aκ||κ|

vs√
2
cϕz . (V.2.34)

Finally, the mixing between the CP-even and CP-odd components of the Higgs doublet and singlet is described
by the matrix Mha, whose elements (after plugging in condition of vanishing tadpoles) are

Mha =

 0 0 3vssβ
0 0 3vscbeta

−vssβ −vssβ −4s2β
MW sW

e

MW sW
e
|κ||λ|sϕy . (V.2.35)

The Charged Higgs Sector

In the same manner, the bilinear terms of charged Higgs bosons can be rewritten in the matrix form(
h+
d h+

u

)
Mh+h−

(
h−d
h−u

)
. (V.2.36)

By calculating the second derivatives of V NMSSM
H , we obtain the mass matrix of the charged Higgs bosons as

Mh+h− = 1
2

(
tβ 1
1 1/tβ

)[
M2
W s2β + |λ|vs

(√
2|Aλ|cϕx + |κ|vscϕy

)
− 2|λ|2M

2
W s

2
W

e2 s2β

]
. (V.2.37)

The mass eigenvalues in this case are much easier to calculate, since the det(Mh+h−) = 0⇒ there is a massless
charged Goldstone boson. The other mass eigenvalue is the trace of Mh+h− :

M2
H± = Tr (Mh+h−) = M2

W + |λ|vs
s2β

(√
2|Aλ|cϕx + |κ|vscϕy

)
− 2|λ|2M

2
W s

2
W

e2 . (V.2.38)
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The Neutralino

With one extra Higgs singlet, we now have five neutral sfermions which in the Weyl spinor basis reads ψ̃0 =(
B̃, W̃ 3, H̃0

d , H̃
0
u, S̃

)
, and the corresponding mass matrix after electroweak symmeetry breaking is

Mχ̃0 =


M1 0 −MZsW cβ e−iϕuMZsW sβ 0
0 M2 MZcW cβ −e−iϕuMZcW sβ 0

−MZsW cβ MZcW cβ 0 −µeff −µλsβ
e−iϕusβsWMZ −e−iϕusβcWMZ −µeff 0 −µλcβ

0 0 −µλsβ −µλcβ µκ

 (V.2.39)

and the Lagrange containing neutralino mass terms is written in this basis as Lχ̃0 = (χ̃0)TMχ̃0 χ̃0. Comparing
this mass matrix with that of MSSM in (V.1.64), the differences are the extended fifth column and row due to
the extension of the Higgs sector with the mass term of the higgsino component S̃

µκ ≡
√

2κvs, (V.2.40)

the mixing between the Higgs doublet and the singlet parameterized by

µλ = λv√
2
, (V.2.41)

and the µ entries are replaced by dynamically generated term

µeff = eiϕsλvs√
2

. (V.2.42)

With an appropriate unitary transformation N, we obtain the mass eigenvalues of five neutralinos(
χ̃0

1, χ̃
0
2, χ̃

0
3, χ̃

0
4, χ̃

0
5
)T = Nψ̃0 ⇒ diag

(
mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
,mχ̃0

5

)
= N∗Mχ̃0N, (V.2.43)

with the mass of neutralinos is in ascending order as usual. As mentioned, the neutralinos are colorless and
electrically neutral, thus interact with other particles weakly. With the R-parity being considered, the lightest
neutralino χ̃0

1 is the suitable candidate for the dark matter and plays the main role in our calculations in the
next several chapters.
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VI.1 Helicity Amplitude Method
The code for generating data on this thesis has been built from scratch with the input Fortran subroutines

for amplitude of all relevant processes are generated using FeynCALC, and the input parameters of NMSSM in
the SLHA format (Ref. [45]).

The present section aims to represent the helicity amplitude method that is used in calculating the cross
section of neutralino pair-annihilation processes, together with relevant techniques to simplify the spinor prod-
ucts before implementing into the code. At the very first attempt, we choose to work in the Weyl representation
(see Appendix A.1 for Dirac matrices in this representation) where the Weyl spinors corresponding to four-
momentum p = (E,p) are expressed as

χ+(p) = 1√
2|p| (|p|+ pz)

(
|p|+ pz
px + ipy

)
, χ−(p) = 1√

2|p| (|p||+ pz)

(
−px + ipy
|p|+ pz

)
. (VI.1.1)

Since the above definition is ambiguous in case pz = − |p|, we fix the notation by taking the limit where py = 0
and px → 0+, i.e

χ+(p) =
(

0
1

)
, χ−(p) =

(
−1
0

)
. (VI.1.2)
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The Dirac spinors are constructed from the Weyl spinors as follows

uλ(p) =
(
ω−λχλ
ωλχλ

)
, (VI.1.3)

vλ(p) =
(
λω−λχ−λ
−λωλχ−λ

)
, (VI.1.4)

where λ = ±1 and ω± =
√
E ± p. There are however a relation between the two types of eigenspinors, which

can help us to reduce the computational effort. Clearly from the definition of uλ(p) and vλ(p) that these two
eigenspinors is closely related via{

v−λ(p) = −γ5λuλ(p)
u−λ(p) = γ5λvλ(p)

⇒

{
vλ(p) = γ5λu−λ(p)
uλ(p) = −γ5λv−λ(p)

. (VI.1.5)

Taking bar conjugation of Eq. (VI.1.5) yields{
vλ(p) = −λu−λ(p)γ5

uλ(p) = λv−λ(p)γ5 . (VI.1.6)

Thus, knowing only uλ(p) or vλ(p) is enough for calculating the other, reducing the calculation cost. Thus the
general spinor chain of the forms uΓv, vΓu, uΓu and vΓv can be cast in the form of uΓ′u and vΓ′v, where Γ
is a products of Dirac matrices, Γ′ is the new products generating from Γ and applying identities (VI.1.5) and
(VI.1.6).

There are however other methods to construct the scattering amplitude. Below we will give one that is
useful in our calculations at tree-level, where the spinors representing particle or anti-particle states are built
from more basic quantities, which are independent of the (anti)particle momentum. For convenience, let us call
those entities "basic spinors". A full derivation and more generalized of the considered method can be found in
Ref. [46].

VI.1.1 Basic Spinors
Let us begin to calculating the spinor products in detail. 1 We first want to build the spinors based on

a specific basic spinors which are independent of the given momentum. Defining a light-like vectors k0, and a
space-like vector k1 that satisfy the following properties

k0 · k0 = 0, k1 · k1 = −1, k0 · k1 = 0. (VI.1.7)

The traces of the slash notation of these two momenta has the following properties, which will be used repeatedly
in the dervation of other formulas below{

Tr (/k0/k1) = 4k0 · k1 = 0,
Tr
(
γ5/k0 /k1

)
= 0

⇒

{
Tr (PL/k0/k1) = 4k0 · k1 = 0,
Tr (PR/k0 /k1) = 0

(VI.1.8)

where in the second identity, we used a property of the fifth gamma matrix: Tr
(
γ5γµγν

)
= 0.

For simplicity, we will sometimes change the notation of PL, PR to P− and P+ respectively. The basic
spinors are chosen to be {

w−(k0)w−(k0) = P−/k0,

w+(k0) = /k1w−(k0)
(VI.1.9)

The positive helicity basic spinor w+(k0) is constructed such that w+(k0)w+(k0) = P+/k0, and thus the com-
pleteness relation is satisfied automatically:∑

λ=±1
wλ(k0)wλ(k0) =

∑
λ=±1

Pλ/k0 = /k0.

A general spinor of massive state can now be represented on the above basis

uλ(p) = /p+m
√

2p · k0
w−λ(k0) (VI.1.10)

1 We will follows the derivation in the lecture notes in the following link: https://www.ippp.dur.ac.uk/~krauss/Lectures/
QuarksLeptons
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vλ(p) = /p−m√
2p · k0

wλ(k0) (VI.1.11)

Let us prove that such construction of spinors satisfies automatically the completeness relation for u spinors∑
λ=±

uλ(p)uλ(p) =
∑
λ=±

[
/p+m
√

2p · k0
w−λ(k0)w−λ(k0) /p+m

√
2p · k0

]

=
(
/p+m

)
/k0
(
/p+m

)
2p · k0

=
(
/p/k0/p+m2/k0

)
+m

(
/p/k0 + /k0/p

)
2p · k0

=
2(p · k0)/p+

(
m2 − p2) /k0 + 2(p · k0)m

2p · k0
= /p+m. (VI.1.12)

Similarly, by a change of sign of the mass one obtains the completeness relation for v spinors.

As mentioned at the beginning of this section, it is general enough to consider the spinor chains starting
with u and ending with u. In what follows, we denote the spinor u as a general spinor, and whenever it is a
spinor representing a particle or antiparticle based on the sign of m, i.e

u
(η)
λ (p) = /p+ ηm

√
2p · k0

w−λ(k0) =
{

spinor u if η = + −→ particle state
spinor v if η = − −→ anti-particle state

(VI.1.13)

In short, these formulas are the basics of constructing an explicit expression for the spinor products we
represent below:

Basis construction of the spinors

The basic spinors:


w+(k0) = /k1w−(k0)

w−(k0)w−(k0) = P−/k0

w+(k0)w+(k0) = P+/k0

(k0 · k0 = 0, k1 · k1 = −1, k0 · k1 = 0) .

(VI.1.14a)

(VI.1.14b)

(VI.1.14c)

Useful identities involving basic spinors

wλ(k0)wλ(k0) = Pλ/k0,

wλ(k0)w−λ(k0) = λPλ/k1/k0,

wλ1(k0)wλ2(k0) = δλ1,−λ2

2 (k0 · k1).

(VI.1.15a)

(VI.1.15b)

(VI.1.15c)

A general eigenspinors can be expressed in the given basis as

u
(η)
λ (p) = /p+ ηm

√
2p · k0

w−λ(k0), (VI.1.16)

with the equation of motion is rewritten as(
/p− ηm

)
u

(η)
λ (p) = 0 (η = ±). (VI.1.17)

The completeness relation for a general eigenspinors read∑
λ=±

u
(η)
λ (p)u(η)

λ (p) = /p+ ηm, (VI.1.18)
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from which we derive the following useful identities

/p = 1
2
∑
η=±

∑
λ=±

u
(η)
λ (p)u(η)

λ (p),

1 = 1
2
∑
η=±

∑
λ=±

ηu
(η)
λ (p)u(η)

λ (p).

(VI.1.19a)

(VI.1.19b)

The first and most simple spinor products is direct product between two spinors

S(p1, λ1, η1; p2, λ2, η2) ≡ u(η1)
λ1

(p1)u(η2)
λ2

(p2) (VI.1.20)

= w−λ1(k0)

(
/p1 + η1m1

)
√

2k0 · p1

(
/p2 + η2m2

)
√

2k0 · p2
w−λ2(k0)

= Tr

w−λ2(k0)w−λ1(k0)

(
/p1 + η1m1

)
√

2k0 · p1

(
/p2 + η2m2

)
√

2k0 · p2

 . (VI.1.21)

Let us consider the above scalar in two seperate cases. When two spinors have the same helicities, the given
scalar becomes

S(p1, λ, η1; p2, λ, η2) = 1
2
√

(p1 · k0)(p2 · k0)
Tr
[
P−λ/k0

(
/p1 + η1m1

)(
/p2 + η2m2

)]
= 1

2
√

(k0 · p1)(k0 · p2)
Tr
[
P−λ/k0

(
η2m2/p1 + η1m1/p2

)]
= η2m2(k0 · p1) + η1m1 (k0 · p2)√

(k0 · p1)(k0 · p2)
= η1m1

√
k0 · p2

k0 · p1
+ η2m2

√
k0 · p1

k0 · p2
. (VI.1.22)

Similarly when the two component spinors have different helicities

S(p1, λ, η1; p2,−λ, η2) = λ

2
√

(k0 · p1)(k0 · p2)
Tr
[
Pλ/k1/k0

(
/p1 + η1m1

)(
/p2 + η2m2

)]
= λ

2
√

(k0 · p1)(k0 · p2)
Tr
[
Pλ/k1/k0

(
/p1/p2 + η1η2m1m2

)]
= λ

2
√

(k0 · p1)(k0 · p2)
Tr
[
Pλ/k1/k0

(
/p1/p2

)]
= λ

2
√

(k0 · p1)(k0 · p2)
[(k0 · p1)(k1 · p2)− iλεµνρκk1µk0νp1ρp2κ] . (VI.1.23)

The above formula seems impractical at the first glance, but by choosing the basis vectors k0 and k1 it can be
simplified greatly. For example:

k0 = (1, 1, 0, 0), k1 = (0, 0, 1, 0), (VI.1.24)

results in

S(p1, λ, η1; p2,−λ, η2) = λ (py1 − iλpz1)

√
p0

2 − px2
p0

1 − px1
− λ (py2 − iλpz2)

√
p0

1 − px1
p0

2 − px2
. (VI.1.25)

We generalize the above spinor products by inserting a linear combination of projection operators between
u and u:

Y (p1, λ1, η1; p2, λ2, η2; cL, cR)

≡ u(η1)
λ1

(p1) [cLPL + cRPR]u(η2)
λ2

(p2, λ2) (VI.1.26)

=
w−λ1(k0)

(
/p1 + η1m1

)
(cLPL + cRPR)

(
/p2 + η2m2

)
w−λ2(k0)

2
√

(p1 · k0)(p2 · k0)
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=
Tr
{
w−λ2(k0)w−λ1(k0)

[
PL

(
cR/p1 + cLη1m1

)
+ PR

(
cL/p1 + cRη1m1

)](
/p2 + η2m2

)}
2
√

(p1 · k0)(p2 · k0)
. (VI.1.27)

Applying the property wλ(k0)wλ(k0) = Pλ/k0 = /k0P−λ in the case both helicity are identical gives

Y (p1,+, η1; p2,+, η2; cL, cR) =
Tr
{
/k0PR

[
PL

(
cR/p1 + cLη1m1

)
+ PR

(
cL/p1 + cRη1m1

)](
/p2 + η2m2

)}
2
√

(p1 · k0)(p2 · k0)

= cLη2m2

√
p1 · k0√
p2 · k0

+ cRη1m1

√
p2 · k0√
p1 · k0

. (VI.1.28)

Similarly for identical negative helicity states

Y (p1,−, η1; p2,−, η2; cL, cR) = cRη2m2

√
p1 · k0√
p2 · k0

+ cLη1m1

√
p2 · k0√
p1 · k0

. (VI.1.29)

For different helicity states, the scalar Y becomes

• Y (p1,+, η1; p2,−, η2; cL, cR)

=
Tr
{
PR/k1/k0

[
PL

(
cR/p1 + cLη1m1

)
+ PR

(
cL/p1 + cRη1m1

)](
/p2 + η2m2

)}
2
√

(p1 · k0)(p2 · k0)

=
Tr
[
cLPR/k1/k0/p1/p2

]
2
√

(k0 · p1)(k0 · p2)
= cLS(p1,+, η1; p2,−, η2). (VI.1.30)

• Y (p1,−, η1; p2,+, η2; cL, cR)

=
Tr
{
−PL/k1/k0

[
PL

(
cR/p1 + cLη1m1

)
+ PR

(
cL/p1 + cRη1m1

)](
/p2 + η2m2

)}
2
√

(p1 · k0)(p2 · k0)

= −
Tr
[
cRPL/k1/k0/p1/p2

]
2
√

(k0 · p1)(k0 · p2)
= cRS(p1,−, η1; p2,+, η2). (VI.1.31)

Having the value of scalar Y , one can proceed to calculate more complicated expression such as

X(p1, λ1, η1; p2, λ2, η2;Q; cL, cR) ≡ uη1
λ1

(p1)/Q (cLPL + cRPR)uη2
λ2

(p2) (VI.1.32)

= 1
2
∑
λ=±

∑
η=±

[
uη1
λ1

(p1) (PL + PR)u(η)
λ (Q)

] [
u

(η)
λ (Q) (cLPL + cRPR)uη2

λ2
(p2)

]
(VI.1.33)

= 1
2
∑
λ=±

∑
η=±

Y (p1, λ1, η1;Q,λ, η; 1, 1)× Y (Q,λ, η; p2, λ2, η2; cL, cR), (VI.1.34)

where we insert a derived form of completeness relation, Eq. (VI.1.19a), at the first equality. This method
can be extended into the case u(η1)

λ1
(p1)Γu(η2)

λ2
(p2), where Γ is a product of slash notation of four vectors, by a

successive insertion of the identity matrix in the form

14×4 = PL + PR = 1
2
∑
η=±

∑
λ=±

ηu
(η)
λ (p)u(η)

λ (p).

VI.1.2 Fierz Identities
Let us make a detour to the discussion of the Fierz identities. This set of identities is frequently seen in the

particle physics context to rewrite a product of two Dirac bilinears in terms of a linear combination of other
products of bilinears where the four spinors are in different orders. As mentioned in [47], the Fierz identities
assure that the following conversion is always possible

(ψ1Aψ2) (ψ3Bψ4) =
∑

(ψ1Cψ4) (ψ3Dψ2) . (VI.1.35)
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Here we do not intend to represent the detailed derivation of the full set of Fierz identities as well as the broad
range of their applications. We rather want to show a specific case in calculating the amplitude neutralino
pair-annihilation where the Fierz identities show their practicality.

The basic idea is to choose a suitable complete set of 4 × 4 matrices, and express a general 4 × 4 complex
matrix in terms of the chosen basis. Since we choose to work in the chiral representation of gamma matrices,
it is pragmatic to work with the chiral basis, defined by the following set{

ΓA
}

= {PR, PL, PRγµ, PLγµ, 2Σµν} , (µ, ν = 0, 1, 2, 3) (VI.1.36)

where µ < ν to avoid redundancy, and Σmuν ≡ i[γµ, γν ]/4. The respective dual basis is given by

{ΓA} = {PR, PL, PLγµ, PRγµ,Σµν} , (µ, ν = 0, 1, 2, 3) (VI.1.37)

The orthogonality between the two bases are given by

Tr
[
ΓAΓB

]
= 2δBA . (VI.1.38)

This identity allows the expansion of an arbitrary complex 4× 4 matrix X in terms of the basis
{

ΓA
}
as

X = XAΓA, XA = 1
2 Tr [XΓA] . (VI.1.39)

Rewritten the above expansion in element-wise manner gives

Xij = 1
2Xk`ΓA`kΓAij ⇒ Xk`

[
δikδj` −

1
2ΓA`kΓAij

]
= 0

⇒ (1)ik(1)j` = 1
2ΓA`kΓAij . (VI.1.40)

It is clear from this relation that one sees the reordering of the indices. For consistency with [47], we intro-
duce a new notation for the matrix indices by parentheses ( ) and brackets [ ], such that each open or close
parenthesis/bracket represents an independent index. Then Eq. (VI.1.40) is expressed in the form

( )[ ] = 1
2(ΓA][ΓA) (VI.1.41)

= 1
2 {(PR][PR) + (PL][PL) + (PRγµ][PLγµ) + (PLγµ][PRγµ) + 2(Σµν ][Σµν)} . (VI.1.42)

The first application we want to represent is using the derived Fierz identity to simplify the following chirally
projected combination

(PRγµ) [PLγµ] = 1
4 Tr [PRγµΓAPLγµΓB ] (ΓB ][ΓA)

= 1
4 Tr [PRγµPLPLγµPR] (PR][PL) = 1

4 Tr [PRγµγµ] (PR][PL)

= 2(PR][PL). (VI.1.43)

Note that at the second equality we have used γµγµ = 4× 1 and γµΣαβγµ = 0. A swap between PR and PL is
similar to interchanging the pair of parentheses and brackets, and we directly obtain

(PLγµ) [PRγµ] = 2(PL][PR). (VI.1.44)

Another combination that can be manipulated by the Fierz identities is

(PRγµ) [PRγµ] = 1
4 Tr [PRγµΓAPRγµΓD] (ΓB ][ΓA)

= 1
4 Tr [PRγµPLγνPRγµLγρ] (PRγρ][PRγν) = 1

4 Tr [PRγµγνγµγρ] (PRγρ][PRγν)

= −1
2 Tr [PRγνγρ] (PRγρ][PRγν) = −(PRγµ][PRγµ). (VI.1.45)

Similarly, we have

(PLγµ) [PLγµ] = −(PLγµ][PLγµ). (VI.1.46)
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The above combination is called form invariant, since the structure of the products do not change after per-
forming the Fierz transformation.

The formula (VI.1.44) and (VI.1.43) turns out to be useful in the amplitude of the process χ̃0χ̃0 → ff in
the s-channel with mediated Z bosons, where the spinor chain is of the form[

u
(η1)
λ1

Pλu
(η2)
λ2

] [
u

(η3)
λ3

Pλ′u
(η4)
λ4

]
. (VI.1.47)

Note: There are many more general spinor product structures that we do not mention here, since those do
not shows up during the calculation of the annihilation amplitude of the neutralinos. One of the straightforward
extension of (VI.1.47) would be

Z
({
p1, λ1, η1; p2, λ2, η2; c12

L , c
12
R

}
;
{
p3, λ3, η3; p4, λ4, η4; c34

L , c
34
R

})
≡
[
u

(η1)
λ1

(p1)γµ
(
c12
L PL + c12

R PR
)
u

(η2)
λ2

(p2)
] [
u

(η3)
λ3

(p3)γµ
(
c34
L PL + c34

R PR
)
u

(η4)
λ4

(p4)
]
. (VI.1.48)

By using a set of so-called Chisholm identity, we can break all the spinor product with a contracted gamma
matrix in the middle into a combination of dyadic products of spinors. See [46, Eq. (10)] for massless case and
[46, Eq. (38-42)] for a massive generalization of the Chisholm identities. With this trick, we can decompose
the spinor products (VI.1.48) into an expression of scalar Y defined in (VI.1.27).

In summary, below we list a collection of useful identities that can be implemented into the scattering
amplitude source code to significantly boost the calculating speed. The following identities, of course, not being
meant to be one of the most effective methods in calculating the amplitude numerically in our case, but should
be the most basic and direct methods we should consider when building things from scratch.

List of useful identities in calculating amplitude at tree-level

• Conversion between spinors of particle and anti-particle states{
vλ(p) = −λu−λ(p)γ5

uλ(p) = λv−λ(p)γ5 (VI.1.49)

{
vλ(p) = γ5λu−λ(p)
uλ(p) = −γ5λv−λ(p)

(VI.1.50)

• Direct product of a spinor and its bar conjugation

S(p1, λ1, η1; p2, λ2, η2) ≡ u(η1)
λ1

(p1)u(η2)
λ2

(p2). (VI.1.51)

For states with identical helicities

S(p1, λ, η1; p2, λ, η2) = η1m1

√
k0 · p2

k0 · p1
+ η2m2

√
k0 · p1

k0 · p2
. (VI.1.52)

For states with different helicities

S(p1, λ, η1; p2,−λ, η2) = λ

2
√

(k0 · p1)(k0 · p2)
[(k0 · p1)(k1 · p2)− iλεµνρκk1µk0νp1ρp2κ] (VI.1.53)

= λ (py1 − iλpz1)

√
p0

2 − px2
p0

1 − px1
− λ (py2 − iλpz2)

√
p0

1 − px1
p0

2 − px2
. (VI.1.54)

where the second equality corresponds to the choice k0 = (1, 1, 0, 0) and k1 = (0, 0, 1, 0).
• Product of spinors containing a linear combination of projection operators

Y (p1, λ1, η1; p2, λ2, η2; cL, cR) ≡ u(η1)
λ1

(p1) [cLPL + cRPR]u(η2)
λ2

(p2, λ2) (VI.1.55)

For states with identical helicities

Y (p1,+, η1; p2,+, η2; cL, cR) = cLη2m2

√
p1 · k0√
p2 · k0

+ cRη1m1

√
p2 · k0√
p1 · k0

(VI.1.56)
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Y (p1,−, η1; p2,−, η2; cL, cR) = cRη2m2

√
p1 · k0√
p2 · k0

+ cLη1m1

√
p2 · k0√
p1 · k0

. (VI.1.57)

For states with different helicities

Y (p1,+, η1; p2,−, η2; cL, cR) = cLS(p1,+, η1; p2,−, η2), (VI.1.58)

Y (p1,−, η1; p2,+, η2; cL, cR) = cRS(p1,−, η1; p2,+, η2). (VI.1.59)

• Product of spinors containing product of slashed four-vectors. Here we consider the simplest case
with only one slashed notation in the chain

X(p1, λ1, η1; p2, λ2, η2;Q; cL, cR) ≡ uη1
λ1

(p1)/Q (cLPL + cRPR)uη2
λ2

(p2) (VI.1.60)

These type of spinor products can be expressed in terms of scalar Y as follows

X(p1, λ1, η1; p2, λ2, η2;Q; cL, cR)

= 1
2
∑
λ=±

∑
η=±

[
uη1
λ1

(p1) (PL + PR)u(η)
λ (Q)

] [
u

(η)
λ (Q) (cLPL + cRPR)uη2

λ2
(p2)

]
(VI.1.61)

= 1
2
∑
λ=±

∑
η=±

Y (p1, λ1, η1;Q,λ, η; 1, 1)× Y (Q,λ, η; p2, λ2, η2; cL, cR). (VI.1.62)

• Fierz identities: Choosing the chiral basis
{

ΓA
}

= {PR, PL, PRγµ, PLγµ, 2Σµν}, the orthogonality
and completeness can be expressed as

Tr
[
ΓAΓB

]
= 2δBA , (VI.1.63)

( )[ ] = 1
2(ΓA][ΓA), (VI.1.64)

from which we derive

(PRγµ) [PLγµ] = 2(PR][PL), (VI.1.65)
(PLγµ) [PRγµ] = 2(PL][PR). (VI.1.66)

VI.2 Neutralino Pair Annihilations Amplitudes at Tree Level

In this section we represent the calculations of the annihilation amplitudes of all possible processes χ̃0
1χ̃

0
1 →

SM +SM ′, with χ̃0
1 being the lightest neutralino of all 5 neutralinos mass eigenstates. As mentioned before, we

have not included the coannihilations into the calculations of the DM relics yet; this would be one of the main
tasks in future work. The final states are SM-like particles including fermion-antifermion pairs, weak gauge
boson pairs (WW and ZZ), one Higgs boson and one weak gauge boson and pair of Higgs boson (with 5 states
of neutral Higgs bosons and 2 states of charged Higgs bosons in the NMSSM).

The relevant Feynman rules for NMSSM are derived from the full MSSM Lagragian (V.1.20), with modified
superpotential (V.2.3) and new soft-breaking term (V.2.4); these rules has been represented in Ref. [48]. In
practice, all of the vertices, mass matrices and tadpoles coefficients can be derived using SARAH (Ref. [49]) - a
mathematica package for building and analyzing SUSY and non-SUSY models.

As mentioned before, we choose to represent the spinors and Dirac matrices in Weyl basis in order to exploit
the list of identities derived in the above section for calculating amplitude at tree-level. It is thus a matter of
simplicity to use the same way to denote the coupling vertices. Consider the couplings between particle A, B
and C with the corresponding indices gA, gB and gC for the degrees of freedom of each type of particle (which
can be generation, color or its order in the mass eigenstates); such coupling is denoted as

CABCgA,gB ,gC . (VI.2.1)
Furthermore, if there are two fermions out of three composite particles of the vertex (here assuming A and B),
the interaction can in general treat the left and right chiral fermions differently. In such cases, the coupling
constant is decomposed as

iCLABCgA,gB ,gC (ΨAPLΓΨB) + iCRABCgA,gB ,gC (ΨAPRΓΨB) , (VI.2.2)
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with ΨA,ΨB are the spinors represent states of A and B respectively, Γ is a product of Dirac matrices. Ad-
ditionally, we will denote the product between two spinors, a spinor and a 4 × 4 matrix and between Dirac
matrices by a dot.

Finally, one should note that due to the fact that incoming particles are electrically neutral, the intermediate
bosons in s-channel must also be neutral. In all of the following cases, the s-channel mediators is either the
Z boson or one of the five neutral Higgs bosons in the NMSSM. To avoid singularities that happen when the
intermediated particle on mass-shell, we use the Breit-Wigner propagators

1
s−M2

h,gh

−→ 1
s−M2

h,gh
+ iMh,ghΓh,gh

, (VI.2.3)

1
s−M2

Z

−→ 1
s−M2

Z + iMZΓZ
. (VI.2.4)

With the input mass of the lightest neutralino mχ̃0 ≈ 190.749 (GeV) for calculations, s-channel resonances
can only occur with neutral Higgs mediators (for detailed set of the input parameters see Section VII.1). We
summarize all annihilation processes with the involving channels and mediators in the following tables. These
are also the processes being taken into account in the neutralino relic density in this thesis.

Process
Exchanged particles

Degrees of freedom
s-channel t-channel u-channel

Fermions final states

χ̃0
1χ̃

0
1 → `i`

i
Z, hm ˜̀m ˜̀m i = e, µ, τ

χ̃0
1χ̃

0
1 → νiνi Z ν̃i ν̃i i = e, µ, τ

χ̃0
1χ̃

0
1 → qiαu q

jβ
u Z, hm q̃kγu q̃kγu

qu = u, c, t
α, β, γ = R,G,B
i, j, k = 1, 2, 3

χ̃0
1χ̃

0
1 → qiαd q

jβ
d Z, hm q̃kγd q̃kγd

qd = d, s, b
α, β, γ = R,G,B
i, j, k = 1, 2, 3

final states
Weak gauge bosons χ̃0

1χ̃
0
1 →W+W− Z, hm χ̃n χ̃n n = 1, 2

m = 1, · · · , 5

χ̃0
1χ̃

0
1 → ZZ hm χ̃0

m χ̃0
m m = 1, · · · , 5

& one weak gauge bosons
One Higgs χ̃0

1χ̃
0
1 → H±nW

∓ Z, hm χ̃m χ̃m m,n = 1, 2

χ̃0
1χ̃

0
1 → hnZ Z, hm χ̃0

m χ̃0
m m,n = 1, · · · , 5

final states
Higgs bosons χ̃0

1χ̃
0
1 → H+

n H
−
l Z, hm χ̃m χ̃m m = 1, · · · , 5

n, l = 1, 2

χ̃0
1χ̃

0
1 → hnhl Z, hm χ̃0

m χ̃0
m n, l,m = 1, · · · , 5

Table VI.1: A complete set of relevant processes of tree-level neutralino annihilation into two body final states
in the NMSSM. The collection of charged leptons is denoted as `i, and the corresponding neutrino νi. The
up-type quarks and down-type quarks are denoted respectively qiαu and qiαd with i and α are the generation
index and color index respectively. The NMSSM particle content contains five neutral Higgs bosons and two
charged Higgs bosons, which are also considered in the annihilation products of neutralino pair.
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VI.2.1 Annihilation into SM Fermion Pairs

χ̃0

χ̃0 f̄jβ

fiα

Z

(a)

χ̃0

χ̃0 f̄jβ

fiα

hgh

(b)

χ̃0

χ̃0

fiα

f jβ

f̃kγ

(c)

χ̃0

χ̃0

fiα

f jβ

f̃kγ

(d)

Figure VI.1: Diagrams of processes χ̃0χ̃0 → ff . Figure VI.1a is the s-channel with Z-boson mediated diagram;
Figure VI.1b is the s-channel with Higgs mediated diagram; Figure VI.1c and Figure VI.1d are diagrams for
t-channel and u-channel respectively, mediated by a sfermion. Here the indices i, j, k = 1, 2, 3 indicate the
generation of the fermion, and α, β are color indices. Note that with pair of neutrino-antineutrino final states
there will be no diagrams with exchanged Higgs.

The tree-level amplitude of annihilation of lightest neutralino pair into pair of fermion-antifermion includes
four channels: two s-channel mediated by Z and Higgs bosons, one t-channel and one u-channel mediated by a
sfermion. Note that the incoming particles are colorless forces the outgoing particles have opposite color charge,
that explains the appearance of δαβ in the amplitude. The result is

Mχ̃0
1χ̃

0
1→fiαfjβ

= δi,jδα,β
s−M2

Z + iMZΓZ

{
− CRffZCLχ̃

0χ̃0

1,1 v̄ (p2, h2) .γµ.PL.u (p1, h1) ū (p3, h3) .γµ.PR.v (p4, h4)

− CRffZCRχ̃
0χ̃0

1,1 ū (p3, h3) .γµ.PR.v (p4, h4) v̄ (p2, h2) .γµ.PR.u (p1, h1)

− CLffZCRχ̃
0χ̃0

1,1 ū (p3, h3) .γµ.PL.v (p4, h4) v̄ (p2, h2) .γµ.PR.u (p1, h1)

+ CLffZCLχ̃
0χ̃0

1,1 (−ū (p3, h3) .γµ.PL.v (p4, h4)) v̄ (p2, h2) .γµ.PL.u (p1, h1)
}

+
5∑

gh=1

δi,jδα,β
s−M2

h,gh
+ iMh,ghΓh,gh

{
− CLhχ̃0χ̃0

1,1,gh CLhff
i,j,gh

ū (p3, h3) .PL.v (p4, h4) v̄ (p2, h2) .PL.u (p1, h1)

− CRhχ̃0χ̃0

1,1,gh CLhff
i,j,gh

ū (p3, h3) .PL.v (p4, h4) v̄ (p2, h2) .PR.u (p1, h1)

− CLhχ̃0χ̃0

1,1,gh CRhff
i,j,gh

ū (p3, h3) .PR.v (p4, h4) v̄ (p2, h2) .PL.u (p1, h1)

− CRhχ̃0χ̃0

1,1,gh CRhff
i,j,gh

ū (p3, h3) .PR.v (p4, h4) v̄ (p2, h2) .PR.u (p1, h1)
}

+
3∑
k=1

∑
γ=R,G,B

δα,β
t−M2

f̃ ,gh

{
−
(
CRχ̃

0ff̃
1,i,gh

)∗
CLχ̃

0ff̃
1,j,gh ū (p3, h3) .PL.u (p1, h1) v̄ (p2, h2) .PL.v (p4, h4)

−
(
CLχ̃

0ff̃
1,i,gh

)∗
CLχ̃

0ff̃
1,j,gh ū (p3, h3) .PR.u (p1, h1) v̄ (p2, h2) .PL.v (p4, h4)

−
(
CRχ̃

0ff̃
1,i,gh

)∗
CRχ̃

0ff̃
1,j,gh ū (p3, h3) .PL.u (p1, h1) v̄ (p2, h2) .PR.v (p4, h4)

84



Neutralino Pair Annihilations Amplitudes at Tree Level

−
(
CLχ̃

0ff̃
1,i,gh

)∗
CRχ̃

0ff̃
1,j,gh ū (p3, h3) .PR.u (p1, h1) v̄ (p2, h2) .PR.v (p4, h4)

}

+
3∑
k=1

∑
γ=R,G,B

δα,β
u−M2

f̃ ,gh

{(
CRχ̃

0ff̃
1,i,gh

)∗
CLχ̃

0ff̃
1,j,gh ū (p3, h3) .PL.u (p2, h2) v̄ (p1, h1) .PL.v (p4, h4)

+
(
CLχ̃

0ff̃
1,i,gh

)∗
CLχ̃

0ff̃
1,j,gh ū (p3, h3) .PR.u (p2, h2) v̄ (p1, h1) .PL.v (p4, h4)

+
(
CRχ̃

0ff̃
1,i,gh

)∗
CRχ̃

0ff̃
1,j,gh ū (p3, h3) .PL.u (p2, h2) v̄ (p1, h1) .PR.v (p4, h4)

+
(
CLχ̃

0ff̃
1,i,gh

)∗
CRχ̃

0ff̃
1,j,gh ū (p3, h3) .PR.u (p2, h2) v̄ (p1, h1) .PR.v (p4, h4)

}
, (VI.2.5)

where f can be charged leptons, up-type or down-type quarks and neutrinos. This amplitude contains the
simplest spinor structures of all considered annihilation processes:

uPL,Rv, v · PL,R · u,
(
v · γµ · P{L,R}u

) (
u · γµ · P{L,R}v

)
, (VI.2.6)

which we can apply the identities (VI.1.55), (VI.1.66) and (VI.1.65) to reduce the amount of numerical calcu-
lations.

VI.2.2 Annihilation into Weak Gauge Boson Pairs

Process χ̃0
1χ̃0

1 →W+W−

χ̃0

χ̃0

Z

W+

W−

(a)

χ̃0

χ̃0

W+

W−

hgh

(b)

χ̃0

χ̃0

W+

W−

χ̃−gχ̃

(c)

χ̃0

χ̃0

W+

W−

χ̃−m

(d)

Figure VI.2: Diagrams of processes χ̃0χ̃0 → W+W−. Figure VI.2a is the s-channel with Z-boson mediated
diagram; Fig. VI.2b is the s-channel with Higgs mediated diagram; Fig. VI.2c and Fig. VI.2d are diagrams for
t-channel and u-channel respectively, mediated by a chargino. Here the index m = 1, 2 indicates which chargino
is being considered. This notation for indexing chargino will be used in other diagrams from now on.

The analytic tree-level amplitude of neutralino annihilation with a pair of Z boson as final states reads

Mχ̃0
1χ̃

0
1→W+W−

= CWWZv̄ (p2, h2)
s−M2

Z + iMZΓZ
.

{
− CRχ̃

0χ̃0Z
1,1

(
p3.ε

∗
p3,λ3

) (
γ.ε∗p4,λ4

)
.PR + 2CRχ̃

0χ̃0Z
1,1

(
p3.ε

∗
p4,λ4

) (
γ.ε∗p3,λ3

)
.PR

− 2CRχ̃
0χ̃0Z

1,1
(
p4.ε

∗
p3,λ3

) (
γ.ε∗p4,λ4

)
.PR + CRχ̃

0χ̃0Z
1,1

(
p4.ε

∗
p4,λ4

) (
γ.ε∗p3,λ3

)
.PR
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− CRχ̃
0χ̃0Z

1,1
(
ε∗p3,λ3

.ε∗p4,λ4

)
(γ.p3) .PR + CRχ̃

0χ̃0Z
1,1

(
ε∗p3,λ3

.ε∗p4,λ4

)
(γ.p4) .PR

− CLχ̃
0χ̃0Z

1,1
(
p3.ε

∗
p3,λ3

) (
γ.ε∗p4,λ4

)
.PL + 2

(
p3.ε

∗
p4,λ4

)
CLχ̃

0χ̃0Z
1,1

(
γ.ε∗p3,λ3

)
.PL

− 2CLχ̃
0χ̃0Z

1,1
(
p4.ε

∗
p3,λ3

) (
γ.ε∗p4,λ4

)
.PL + CLχ̃

0χ̃0Z
1,1

(
p4.ε

∗
p4,λ4

) (
γ.ε∗p3,λ3

)
.PL

− CLχ̃
0χ̃0Z

1,1
(
ε∗p3,λ3

.ε∗p4,λ4

)
(γ.p3) .PL + CLχ̃

0χ̃0Z
1,1

(
ε∗p3,λ3

.ε∗p4,λ4

)
(γ.p4) .PL

}
.u (p1, h1)

+
5∑

gh=1

ChWW
gh

(
ε∗p3,λ3

.ε∗p4,λ4

)
s−M2

h,gh
+ iΓghMh,gh

v̄ (p2, h2) .
{
CLhχ̃0χ̃0

1,1,gh PL + CRhχ̃0χ̃0

1,1,gh PR

}
.u (p1, h1)

+
2∑

gχ̃=1

1
t−m2

χ̃,gχ̃

v̄ (p2, h2) .
{
−
(
CLχ̃χ̃

0W
gχ̃,1

)∗
CLχ̃χ̃

0W
gχ̃,1

(
γ.ε∗p4,λ4

)
. (γ.p4) .

(
γ.ε∗p3,λ3

)
.PR

−
(
CRχ̃χ̃

0W
gχ̃,1

)∗
CRχ̃χ̃

0W
gχ̃,1

(
γ.ε∗p4,λ4

)
. (γ.p4) .

(
γ.ε∗p3

)
.PL

+
(
CLχ̃χ̃

0W
gχ̃,1

)∗
CLχ̃χ̃

0W
gχ̃,1 mχ̃0,1

(
γ.ε∗p4,λ4

)
.
(
γ.ε∗p3

)
.PR

+
(
CRχ̃χ̃

0W
gχ̃,1

)∗
CRχ̃χ̃

0W
gχ̃,1 mχ̃0,1

(
γ.ε∗p4

)
.
(
γ.ε∗p3,λ3

)
.PL

−
(
CRχ̃χ̃

0W
gχ̃,1

)∗
CLχ̃χ̃

0W
gχ̃,1 mχ̃,gχ̃

(
γ.ε∗p4,λ4

)
.
(
γ.ε∗p3,λ3

)
.PL

−
(
CLχ̃χ̃

0W
gχ̃,1

)∗
CRχ̃χ̃

0W
gχ̃,1 mχ̃,gχ̃

(
γ.ε∗p4,λ4

)
.
(
γ.ε∗p3,λ3

)
.PR

+ 2
(
CRχ̃χ̃

0W
gχ̃,1

)∗
CRχ̃χ̃

0W
gχ̃,1

(
p2.ε

∗
p4,λ4

) (
γ.ε∗p3,λ3

)
.PL

+ 2
(
CLχ̃χ̃

0W
gχ̃,1

)∗
CLχ̃χ̃

0W
gχ̃,1

(
p2.ε

∗
p4,λ4

) (
γ.ε∗p3,λ3

)
.PR

}
.u (p1, h1)

+
2∑

gχ̃=1

1
u−m2

χ̃,gχ̃

v̄ (p2, h2) .
{
−
(
CLχ̃χ̃

0W
gχ̃,1

)
∗CLχ̃χ̃

0W
gχ̃,1

(
γ.ε∗p3,λ3

)
. (γ.p3) .

(
γ.ε∗p4,λ4

)
.PL

−
(
CRχ̃χ̃

0W
gχ̃,1

)
∗CRχ̃χ̃

0W
gχ̃,1

(
γ.ε∗p3,λ3

)
. (γ.p3) .

(
γ.ε∗p4,λ4

)
.PR

+
(
CLχ̃χ̃

0W
gχ̃,1

)
∗CLχ̃χ̃

0W
gχ̃,1 mχ̃0,1

(
γ.ε∗p3,λ3

)
.
(
γ.ε∗p4

)
.PL

+
(
CRχ̃χ̃

0W
gχ̃,1

)
∗CRχ̃χ̃

0W
gχ̃,1 mχ̃0,1

(
γ.ε∗p3,λ3

)
.
(
γ.ε∗p4,λ4

)
.PR

−
(
CRχ̃χ̃

0W
gχ̃,1

)
∗CLχ̃χ̃

0W
gχ̃,1 mχ̃,gχ̃

(
γ.ε∗p3,λ3

)
.
(
γ.ε∗p4,λ4

)
.PL

−
(
CLχ̃χ̃

0W
gχ̃,1

)
∗CRχ̃χ̃

0W
gχ̃,1 mχ̃,gχ̃

(
γ.ε∗p3,λ3

)
.
(
γ.ε∗p4,λ4

)
.PR

+ 2
(
CLχ̃χ̃

0W
gχ̃,1

)
∗CLχ̃χ̃

0W
gχ̃,1

(
γ.ε∗p4

)
.PL

(
p2.ε

∗
p3,λ3

)
+ 2

(
CRχ̃χ̃

0W
gχ̃,1

)
∗CRχ̃χ̃

0W
gχ̃,1

(
γ.ε∗p4

)
.PR

(
p2.ε

∗
p3,λ3

)}
.u (p1, h1) , (VI.2.7)

where the polarization vector εµp,λ with p = (E, px, py, pz) is defined as
εµ(p, 1) = (|p| pT )−1 (0, pxpz, pypz,−p2

T

)
εµ(p, 2) = (pT )−1 (0,−py,−px, 0)
εµ(p, 3) = (E/m |p|)

(
|p|2 /E, px, py, pz

) , (VI.2.8)

and

m =
√
E2 − |p|2, (VI.2.9)

p2
T = p2

x + p2
y. (VI.2.10)
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Note that the definitions of εµ(p, 1) and εµ(p, 2) are ambiguous in the limit pT → 0, we fix the notation by
taking the limit where py = 0 and {

px → 0+ (pz > 0)
px → 0− (pz < 0)

. (VI.2.11)

The helicity eigenvectors for λ = ±, 0 are defined as

εµp,λ=± = 1√
2

(∓εµ(p, 1)− iεµ(p, 2)) , (VI.2.12)

εµp,λ=0 = εµ(p, 3). (VI.2.13)

This process contains the most complex spinor chains compared to other tree-level neutralino annihilation,
namely

v̄ · P{L,R} · (γ · p1) (γ · p2) (γ · p3) · P{L,R} · u. (VI.2.14)

In massless limit, the above structure is easier to handle, especially the polarization vector can be written in
terms of the spinor of corresponding momentum and such expression can be break to simpler spinor chains which
can be further simplify using the identities derived at the beginning of the chapter. We however employed the
massive representation of spinors as well as polarization vectors; we have not figured out an efficient methods
to decompose the spinor structure (VI.2.14) into sum of simpler spinor products yet, thus we import directly
the 4× 4 matrices γ · p into the code in the following form

γ · p = γµpµ =


0 0 p0 − p3 −p1 + ip2

0 0 −p1 − ip2 p0 + p3

p0 + p3 p1 − ip2 0 0
p1 + ip2 p0 − p3 0 0

 , (VI.2.15)

and continuously perform the block matrix multiplications.

Process χ̃0
1χ̃0

1 → ZZ

χ̃0

χ̃0

hgh

Z

Z

(a)

χ̃0

χ̃0

χ̃0g
χ̃0

Z

Z

(b)

χ̃0

χ̃0

χ̃0m

Z

Z

(c)

Figure VI.3: Diagrams of processes χ̃0χ̃0 → ZZ. Figure VI.3a is the s-channel with Higgs mediated diagram;
Fig. VI.3b and Fig. VI.3c are diagrams for t-channel and u-channel respectively, mediated by a neutralino. Here
the index m = 1, . . . , 5 indicates which neutralino is being considered. This notation for indexing neutralino
will be used in other diagrams from now on.

The analytic tree-level amplitude of neutralino annihilation with a pair of Z boson as final states reads

Mχ̃0
1χ̃

0
1→ZZ
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=
5∑

gh=1

ChZZ
gh

s−M2
h,gh

+ iMh,ghΓgh
v̄ (p2, h2) .

{
PLε

∗
p3,λ3

.ε∗p4,λ4
CLhχ̃0χ̃0

1,1,gh + PRε
∗
p3,λ3

.ε∗p4,λ4
CRhχ̃0χ̃0

1,1,gh

}
.u (p1, h1)

5∑
gχ̃0 =1

v̄ (p2, h2) .
{
−
(
γ.ε∗p4,λ4

)
. (γ.p4) .

(
γ.ε∗p3,λ3

)
.PRC

Rχ̃0χ̃0Z
1,gχ̃0

CRχ̃
0χ̃0Z

gχ̃0,1

−
(
γ.ε∗p4,λ4

)
. (γ.p4) .

(
γ.ε∗p3,λ3

)
.PLC

Lχ̃0χ̃0Z
1,gχ̃0

CLχ̃
0χ̃0Z

gχ̃0,1

+
(
γ.ε∗p4,λ4

)
.
(
γ.ε∗p3,λ3

)
.PRC

Rχ̃0χ̃0Z
1,gχ̃0

CRχ̃
0χ̃0Z

gχ̃0,1 mχ̃0,1

+
(
γ.ε∗p4,λ4

)
.
(
γ.ε∗p3

)
.PLC

Lχ̃0χ̃0Z
1,gχ̃0

CLχ̃
0χ̃0Z

gχ̃0,1 mχ̃0,1

−
(
γ.ε∗p4,λ4

)
.
(
γ.ε∗p3,λ3

)
.PRC

Lχ̃0χ̃0Z
1,gχ̃0

CRχ̃
0χ̃0Z

gχ̃0,1 m1,gχ̃0

−
(
γ.ε∗p4,λ4

)
.
(
γ.ε∗p3,λ3

)
.PLC

Rχ̃0χ̃0Z
1,gχ̃0

CLχ̃
0χ̃0Z

gχ̃0,1 m1,gχ̃0

+ 2
(
γ.ε∗p3

)
.PRp2.ε

∗
p4,λ4

CRχ̃
0χ̃0Z

1,gχ̃0
CRχ̃

0χ̃0Z
gχ̃0,1

+ 2
(
γ.ε∗p3

)
.PLp2.ε

∗
p4,λ4

CLχ̃
0χ̃0Z

1,gχ̃0
CLχ̃

0χ̃0Z
gχ̃0,1

}
.u (p1, h1)

+
5∑

gχ̃0 =1

1
u−m2

1,gχ̃0

v̄ (p2, h2) .
{
−
(
γ.ε∗p3,λ3

)
. (γ.p3) .

(
γ.ε∗p4,λ4

)
.PRC

Rχ̃0χ̃0Z
1,gχ̃0

CRχ̃
0χ̃0Z

gχ̃0,1

+ 2
(
γ.ε∗p4

)
.PRp2.ε

∗
p3,λ3

CRχ̃
0χ̃0Z

1,gχ̃0
CRχ̃

0χ̃0Z
gχ̃0,1

−
(
γ.ε∗p3,λ3

)
. (γ.p3) .

(
γ.ε∗p4,λ4

)
.PLC

Lχ̃0χ̃0Z
1,gχ̃0

CLχ̃
0χ̃0Z

gχ̃0,1

+ 2
(
γ.ε∗p4

)
.PLp2.ε

∗
p3,λ3

CLχ̃
0χ̃0Z

1,gχ̃0
CLχ̃

0χ̃0Z
gχ̃0,1

+
(
γ.ε∗p3,λ3

)
.
(
γ.ε∗p4,λ4

)
.PRC

Rχ̃0χ̃0Z
1,gχ̃0

CRχ̃
0χ̃0Z

gχ̃0,1 mχ̃0,1

+
(
γ.ε∗p3,λ3

)
.
(
γ.ε∗p4

)
.PLC

Lχ̃0χ̃0Z
1,gχ̃0

CLχ̃
0χ̃0Z

gχ̃0,1 mχ̃0,1

−
(
γ.ε∗p3,λ3

)
.
(
γ.ε∗p4,λ4

)
.PRC

Lχ̃0χ̃0Z
1,gχ̃0

CRχ̃
0χ̃0Z

gχ̃0,1 m1,gχ̃0

−
(
γ.ε∗p3,λ3

)
.
(
γ.ε∗p4,λ4

)
.PLC

Rχ̃0χ̃0Z
1,gχ̃0

CLχ̃
0χ̃0Z

gχ̃0,1 m1,gχ̃0

}
.u (p1, h1) (VI.2.16)

VI.2.3 Annihilation into One Higgs Boson & One Weak Gauge Boson

Process χ̃0
1χ̃0

1 → H±W∓: pair of charged bosons final states.

88



Neutralino Pair Annihilations Amplitudes at Tree Level

χ̃0

χ̃0

Z

H+
n

W−

(a)

χ̃0

χ̃0 W−

hgh

H+
n

(b)

χ̃0

χ̃0

H+
n

W−

χ̃−gχ̃

(c)

χ̃0

χ̃0

H+
n

W−

χ̃−m

(d)

Figure VI.4: Diagrams of processes χ̃0χ̃0 → H±W∓. Figure VI.4a is the s-channel with Z-boson mediated
diagram; Fig. VI.4b is the s-channel with Higgs mediated diagram; Fig. VI.4c and Fig. VI.4d are diagrams for
t-channel and u-channel respectively, mediated by a chargino (by changing the electric charge, we obtain the
diagram for the process χ̃0χ̃0 → H+W−).

The analytic tree-level amplitude of neutralino annihilation with a charged Higgs boson and W boson as
final states reads

Mχ̃0
1χ̃

0
1→HnW

= 1
s−M2

Z + iMZΓZ
v̄ (p2, h2) .

{
CH

+W−Z
n CLχ̃

0χ̃0Z
1,1

(
γ.ε∗p4

)
.PL + CH

+W−Z
n CRχ̃

0χ̃0Z
1,1

(
γ.ε∗p4

)
.PR

}
.u (p1, h1)

+
5∑

gh=1

1
s−M2

h,gh
+ iMh,ghΓgh

v̄ (p2, h2) .
{(

p4.ε
∗
p4

)
ChH+W−

gh,n
CLhχ̃0χ̃0

1,1,gh PL +
(
p4.ε

∗
p4

)
ChH+W−

gh,n
CRhχ̃0χ̃0

1,1,gh PR

+ 2
(
p3.ε

∗
p4

)
ChH+W−

gh,n
CLhχ̃0χ̃0

1,1,gh PL

+ 2
(
p3.ε

∗
p4

)
ChH+W−

gh,n
CRhχ̃0χ̃0

1,1,gh PR

}
.u (p1, h1)

+
2∑

gχ̃=1

1
t−m2

χ̃,gχ̃

v̄ (p2, h2) .
{
− 2iCLHχ̃χ̃0

n,gχ̃,1 C
Lχ̃χ̃0W
gχ̃,1 PLp2.ε

∗
p4
− 2iCRHχ̃χ̃0

n,gχ̃,1 C
Rχ̃χ̃0W
gχ̃,1 p2.ε

∗
p4
PR

+ iCLHχ̃χ̃0

n,gχ̃,1 C
Lχ̃χ̃0W
gχ̃,1

(
γ.ε∗p4

)
. (γ.p4) .PL + iCRHχ̃χ̃0

n,gχ̃,1 C
Rχ̃χ̃0W
gχ̃,1

(
γ.ε∗p4

)
. (γ.p4) .PR

− iCLHχ̃χ̃0

n,gχ̃,1 C
Lχ̃χ̃0W
gχ̃,1 mχ̃0,1

(
γ.ε∗p4

)
.PL − iCRH+χ̃χ̃0

CRχ̃χ̃
0W

gχ̃,1 mχ̃0,1
(
γ.ε∗p4

)
.PR

+ iCRHχ̃χ̃0

n,gχ̃,1 C
Lχ̃χ̃0W
gχ̃,1 mχ̃,gχ̃

(
γ.ε∗p4

)
.PR

+ iCLHχ̃χ̃0

n,gχ̃,1 C
Rχ̃χ̃0W
gχ̃,1 mχ̃,gχ̃

(
γ.ε∗p4

)
.PL

}
.u (p1, h1)

+
2∑

gχ̃=1

1
u−m2

χ̃,gχ̃

v̄ (p2, h2) .
{
− iCLHχ̃χ̃0

n,gχ̃,1 C
Lχ̃χ̃0W
gχ̃,1 (γ.p3) .

(
γ.ε∗p4

)
.PL

− iCRHχ̃χ̃0

n,gχ̃,1 C
Rχ̃χ̃0W
gχ̃,1 (γ.p3) .

(
γ.ε∗p4

)
.PR

− iCLHχ̃χ̃0

n,gχ̃,1 C
Lχ̃χ̃0W
gχ̃,1 mχ̃0,1

(
γ.ε∗p4

)
.PL

− iCRH+χ̃χ̃0
CRχ̃χ̃

0W
gχ̃,1 mχ̃0,1

(
γ.ε∗p4

)
.PR

− iCRHχ̃χ̃0

n,gχ̃,1 C
Lχ̃χ̃0W
gχ̃,1 mχ̃,gχ̃

(
γ.ε∗p4

)
.PL
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− iCLHχ̃χ̃0

n,gχ̃,1 C
Rχ̃χ̃0W
gχ̃,1 mχ̃,gχ̃

(
γ.ε∗p4

)
.PR

}
.u (p1, h1) (VI.2.17)

Process χ̃0
1χ̃0

1 → hnZ: pair of neutral bosons final states.
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Figure VI.5: Diagrams of processes χ̃0χ̃0 → hnZ. Figure VI.5a is the s-channel with Z-boson mediated diagram;
Fig. VI.5b is the s-channel with Higgs mediated diagram; Fig. VI.5c and Fig. VI.5d are diagrams for t-channel
and u-channel respectively, mediated by a neutralino.

The analytic tree-level amplitude of neutralino annihilation with a neutral Higgs boson and Z boson as final
states reads

Mχ̃0
1χ̃

0
1→hnZ

= 1
s−M2

Z + iMZΓZ
v̄ (p2, h2) .

{
− iChZZ

n CLχ̃
0χ̃0Z

1,1
(
γ.ε∗p4

)
.PL − iChZZ

n CRχ̃
0χ̃0Z

1,1
(
γ.ε∗p4

)
.PR

}
.u (p1, h1)

+
5∑

gh=1

1
s−M2

h,n + iMh,nΓn
v̄ (p2, h2) .

{
− 2ChhZ

n,n C
Lhχ̃0χ̃0

1,1,n
(
p3.ε

∗
p4

)
PL − 2ChhZ

n,n C
Rhχ̃0χ̃0

1,1,n
(
p3.ε

∗
p4

)
PR

− ChhZ
n,n C

Lhχ̃0χ̃0

1,1,n
(
p4.ε

∗
p4

)
PL − ChhZ

n,n C
Rhχ̃0χ̃0

1,1,n
(
p4.ε

∗
p4

)
PR

}
.u (p1, h1)

+
5∑

gχ̃0 =1

1
t−m2

χ̃0,gχ̃0

v̄ (p2, h2) .
{
− 2iCRχ̃

0χ̃0Z
1,gχ̃0

CLhχ̃0χ̃0

gχ̃0,1,n
(
p2.ε

∗
p4

)
PL − 2iCLχ̃

0χ̃0Z
1,gχ̃0

CRhχ̃0χ̃0

gχ̃0,1,n
(
p2.ε

∗
p4

)
PR

+ iCRχ̃
0χ̃0Z

1,gχ̃0
CLhχ̃0χ̃0

gχ̃0,1,n
(
γ.ε∗p4

)
. (γ.p4) .PL + iCLχ̃

0χ̃0Z
1,gχ̃0

CRhχ̃0χ̃0

gχ̃0,1,n
(
γ.ε∗p4

)
. (γ.p4) .PR

− imχ̃0,1C
Rχ̃0χ̃0Z
1,gχ̃0

CLhχ̃0χ̃0

gχ̃0,1,n
(
γ.ε∗p4

)
.PL − imχ̃0,1C

Lχ̃0χ̃0Z
1,gχ̃0

CRhχ̃0χ̃0

gχ̃0,1,n
(
γ.ε∗p4

)
.PR

+ imχ̃0,gχ̃0C
Lχ̃0χ̃0Z
1,gχ̃0

CLhχ̃0χ̃0

gχ̃0,1,n
(
γ.ε∗p4

)
.PL

+ imχ̃0,gχ̃0C
Rχ̃0χ̃0Z
1,gχ̃0

CRhχ̃0χ̃0

gχ̃0,1,n
(
γ.ε∗p4

)
.PR

}
.u (p1, h1) (VI.2.18)

+
5∑

gχ̃0 =1

1
u−m2

χ̃0,gχ̃0

v̄ (p2, h2) .
{
iCLχ̃

0χ̃0Z
gχ̃0,1 CLhχ̃0χ̃0

1,gχ̃0,n
(γ.p3) .

(
γ.ε∗p4

)
.PL + iCRχ̃

0χ̃0Z
gχ̃0,1 CRhχ̃0χ̃0

1,gχ̃0,n
(γ.p3) .

(
γ.ε∗p4

)
.PR
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+ imχ̃0,1C
Lχ̃0χ̃0Z
gχ̃0,1 CLhχ̃0χ̃0

1,gχ̃0,n

(
γ.ε∗p4

)
.PL + imχ̃0,1C

Rχ̃0χ̃0Z
gχ̃0,1 CRhχ̃0χ̃0

1,gχ̃0,n

(
γ.ε∗p4

)
.PR

+ imχ̃0,gχ̃0C
Rχ̃0χ̃0Z
gχ̃0,1 CLhχ̃0χ̃0

1,gχ̃0,n

(
γ.ε∗p4

)
.PR

+ imχ̃0,gχ̃0C
Lχ̃0χ̃0Z
gχ̃0,1 CRhχ̃0χ̃0

1,gχ̃0,n

(
γ.ε∗p4

)
.PL

}
.u (p1, h1) (VI.2.19)

VI.2.4 Annihilation into Higgs Boson Pairs

Process χ̃0
1χ̃0

1 → H+
n H−

` : pair of charged Higgs bosons final states
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Z

H+
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ℓ
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H−
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Figure VI.6: Diagrams of processes χ̃0χ̃0 → H−n H
+
` . Figure VI.6a is the s-channel with Z-boson mediated

diagram; Fig. VI.6b is the s-channel with Higgs mediated diagram; Fig. VI.6c and Fig. VI.6d are diagrams for
t-channel and u-channel respectively, mediated by a chargino.

The analytic tree-level amplitude of neutralino annihilation with charged Higgs bosons as final states reads

Mχ̃0
1χ̃

0
1→H

+
nH
−
`

= CHHZδn,`
s−M2

Z + iMZΓZ
v̄ (p2, h2) .

{
CLχ̃

0χ̃0Z
1,1 [γ.(p3 − p4)] .PL + CRχ̃

0χ̃0Z
1,1 [γ.(p3 − p4)] .PR

}
.u (p1, h1)

+
5∑

gh=1

ChHH
`,n,gh

s−M2
h,gh

+ iMh,ghΓgh
v̄ (p2, h2) .

{
PLC

Lhχ̃0χ̃0

1,1,gh + PRC
Rhχ̃0χ̃0

1,1,gh

}
.u (p1, h1)

+
2∑

gχ̃=1

1
t−m2

χ̃,gχ̃

v̄ (p2, h2) .
{
CRHχ̃χ̃0

n,gχ̃,1 C
LHχ̃
gχ̃,1,`

[
(γ.p4) +mχ̃0

]
.PR + CLHχ̃χ̃0

n,gχ̃,1 C
LHχ̃
gχ̃,1,`

[
(γ.p4) +mχ̃,gχ̃

]
PL

+ CLHχ̃χ̃0

n,gχ̃,1 C
RHχ̃
gχ̃,1,`mχ̃0,1PL + CRHχ̃χ̃0

n,gχ̃,1 C
RHχ̃
gχ̃,1,`mχ̃,gχ̃PR

}
.u (p1, h1)

+
2∑

gχ̃=1

1
u−m2

χ̃,gχ̃

v̄ (p2, h2) .
{
CRHχ̃χ̃0

n,gχ̃,1 C
LHχ̃
gχ̃,1,`

[
(γ.p3) +mχ̃0

]
.PL + CLHχ̃χ̃0

n,gχ̃,1 C
RHχ̃
gχ̃,1,`

[
(γ.p3) +mχ̃0

]
.PR

+ CLHχ̃χ̃0

n,gχ̃,1 C
LHχ̃
gχ̃,1,`mχ̃,gχ̃PL + CRHχ̃χ̃0

n,gχ̃,1 C
RHχ̃
gχ̃,1,`mχ̃,gχ̃PR

}
.u (p1, h1) (VI.2.20)
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Process χ̃0
1χ̃0

1 → hnh`: pair of neutral Higgs bosons final states
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Figure VI.7: Diagrams of processes χ̃0χ̃0 → H−n H
+
` . Figure VI.7a is the s-channel with Z-boson mediated

diagram; Fig. VI.7b is the s-channel with Higgs mediated diagram; Fig. VI.7c and Fig. VI.7d are diagrams for
t-channel and u-channel respectively, mediated by a chargino.

The analytic tree-level amplitude of neutralino annihilation with neutral Higgs as final states reads

Mχ̃0
1χ̃

0
1→hnh`

= 1
s−M2

Z + iMZΓZ
v̄ (p2, h2) .

{
iCLχ̃

0χ̃0Z
1,1 ChhZ

n,` (γ.p3) .PL − iCLχ̃
0χ̃0Z

1,1 ChhZ
n,` (γ.p4) .PL

+ iCRχ̃
0χ̃0Z

1,1 ChhZ
n,` (γ.p3) .PR − iCRχ̃

0χ̃0Z
1,1 ChhZ

n,` (γ.p4) .PR
}
.u (p1, h1)

+
5∑

gh=1

1
s−M2

h,gh
+ iMh,ghΓgh

v̄ (p2, h2) .
{
CLhχ̃0χ̃0

1,1,gh Chhh
n,`,gh

PL + CRhχ̃0χ̃0

1,1,gh Chhh
n,`,gh

PR

}
.u (p1, h1)

+
5∑

gχ̃0 =1

1
t−m2

χ̃0,gχ̃0

v̄ (p2, h2) .
{
CRhχ̃0χ̃0

1,gχ̃0,`
CLhχ̃0χ̃0

gχ̃0,1,n (γ.p4) .PL + CLhχ̃0χ̃0

1,gχ̃0,`
CRhχ̃0χ̃0

gχ̃0,1,n (γ.p4) .PR

+mχ̃0,1C
Rhχ̃0χ̃0

1,gχ̃0,`
CLhχ̃0χ̃0

gχ̃0,1,n PL +mχ̃0,1C
Lhχ̃0χ̃0

1,gχ̃0,`
CRhχ̃0χ̃0

gχ̃0,1,n PR

+mχ̃0,gχ̃0C
Lhχ̃0χ̃0

1,gχ̃0,`
CLhχ̃0χ̃0

gχ̃0,1,n PL +mχ̃0,gχ̃0C
Rhχ̃0χ̃0

1,gχ̃0,`
CRhχ̃0χ̃0

gχ̃0,1,n PR

}
.u (p1, h1)

+
5∑

gχ̃0 =1

1
u−m2

χ̃0,gχ̃0

v̄ (p2, h2) .
{
CRhχ̃0χ̃0

1,gχ̃0,n
CLhχ̃0χ̃0

gχ̃0,1,` (γ.p3) .PL + CLhχ̃0χ̃0

1,gχ̃0,n
CRhχ̃0χ̃0

gχ̃0,1,` (γ.p3) .PR

+mχ̃0,1C
Rhχ̃0χ̃0

1,gχ̃0,n
CLhχ̃0χ̃0

gχ̃0,1,` PL +mχ̃0,1C
Lhχ̃0χ̃0

1,gχ̃0,n
CRhχ̃0χ̃0

gχ̃0,1,` PR

+mχ̃0,gχ̃0C
Lhχ̃0χ̃0

1,gχ̃0,n
CLhχ̃0χ̃0

gχ̃0,1,` PL +mχ̃0,gχ̃0C
Rhχ̃0χ̃0

1,gχ̃0,n
CRhχ̃0χ̃0

gχ̃0,1,` PR

}
.u (p1, h1)

(VI.2.21)

VI.3 Cross section of neutralino annihilations at tree-level
Solving for the neutralino relic density requires performing calculations related to the total cross section

of all possible neutralino pair-annihilation processes. As mentioned in Section II.2.1, taking thermal average
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of cross section times Møller velocity using Eq. (II.2.25) helps us overcome the case of resonances (which is
a problem if one tries to expand the cross section as powers of energy), where we just need to modify the
propagators of the resonances as

1
s−m2

R

→ 1
s−m2

R + imRΓR
, (VI.3.1)

with the mass and total decay width of the corresponding resonance mR and ΓR. Within all processes listed in
the above section and the input parameters listed in Section VII.1, the s-channel diagrams are mediated by only
three most massive neutral Higgs h3, h4 and h5 which satisfies Mh5 > Mh4 > Mh3 > 2mχ̃0

1
. These resonances

result in the peaks as we can observe from the following figures, which shows the dependence of the cross section
×vlab of each annihilation process. The NMSSM parameters, together with the total decay width are imported
from the output SLHA file produced by the package NMSSMCALC.

For cross check purposes, as well as investigating the contribution of each processes to the total cross section
explicitly, we represent below the plot of cross section of each neutralino pair-annihilation process. The 2 to
2 total cross sections is calculated in the helicity amplitude framework via the integral formula we derive in
Appendix C, which reads

σχvlab = βf (s)
64π2

(
s− 2m2

χ

) ∑
X,X′

∫
dΩ 1

SX,X′
|M|2χ̃χ̃→XX′(s, θ)

= 1
32π

βf (s)
s− 2m2

χ

∫ π

0
dθ sin θ ×

∑
X,X′

1
SX,X′

|M|2χ̃χ̃→XX′(s, θ), (VI.3.2)

where the sum over all possible final states if they are kinematically allowed, i.e the energy s is larger than the
threshold energy

√
sthreshold = max (2mχ,mX +m′X) , (VI.3.3)

and SX,X′ is the symmetric factor of final states. For most of our processes SX,X′ = 1 except

(X,X ′) = (Z,Z), (hi, hi) ⇒ SX,X′ = 2, (i = 1, · · · , 5). (VI.3.4)

Thus, each process can be calculated independently and the total cross section is obtained by simply summing
over all possible processes. We start our calculations for each process from the opening threshold of a channel
and stop calculating when σχvlab is significantly small (but after consider all of the resonances). We choose to
calculate the quantity σvlab of all processes at four phase-space point 381.5 GeV, 600 GeV, 900 GeV and 2000
GeV. The numerical results are shown in the table below.
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(GeV−2)
σχ̃0

1χ̃
0
1→XX′vlab Center-of-mass energy

√
s

X,X ′
Final states 2mχ̃0

1
≈ 381.5 (GeV) 600(GeV) 900 (GeV) 2000 (GeV)

ν+
e ν
−
e ≈ 0 2.11010451× 10−13 1.28864336× 10−13 5.57444397× 10−14

ν+
µ ν
−
µ ≈ 0 2.11010451× 10−13 1.28864336× 10−13 5.57444397× 10−14

ν+
τ ν
−
τ ≈ 0 3.18479493× 10−13 2.53424563× 10−13 1.44305000× 10−13

e+e− ≈ 0 8.57761661× 10−14 4.10067766× 10−14 4.66799443× 10−15

µ+µ− ≈ 0 8.89453994× 10−14 1.63936669× 10−11 5.17109493× 10−15

τ+τ− ≈ 0 1.03548665× 10−12 4.61973989× 10−9 1.09119965× 10−13

uu ≈ 0 3.53116411× 10−13 2.06265905× 10−13 7.55337684× 10−14

cc ≈ 0 4.37561462× 10−13 1.86005264× 10−11 8.23452817× 10−14

tt 4.35772218× 10−10 1.75469915× 10−9 2.95655690× 10−7 1.46937733× 10−9

dd ≈ 0 3.61638649× 10−13 2.57283024× 10−13 9.95175353× 10−15

ss ≈ 0 3.69306668× 10−13 3.98208342× 10−11 1.11730742× 10−14

bb ≈ 0 1.73985630× 10−11 7.66315446× 10−8 1.56310218× 10−12

W+W− 1.16704447× 10−8 7.64536636× 10−9 3.97180627× 10−9 1.17115287× 10−9

ZZ 6.40521303× 10−9 4.66750518× 10−9 2.52648540× 10−9 7.11489855× 10−10

H+W− 0 0 0 1.75289523− 010
H−W+ 0 0 0 1.75289523− 010
h1Z ≈ 0 6.68526330× 10−12 9.15645916× 10−8 6.33933928× 10−12

h2Z 1.82969902× 10−10 1.18890481× 10−10 1.18720600× 10−10 2.43375784× 10−11

h3Z 0 0 1.60002279× 10−10 5.26495323× 10−13

h4Z 0 0 0 1.41821207× 10−11

h5Z 0 0 0 6.95994708× 10−11

H+H− 0 0 0 1.34570129× 10−11

h1h1 ≈ 0 3.85242205× 10−11 4.57024850× 10−10 1.10585636× 10−11

h1h2 ≈ 0 3.09662963× 10−11 1.04940541× 10−8 6.94762061× 10−12

h1h3 0 0 6.21700688× 10−11 3.45494760× 10−11

h1h4 0 0 0 7.63099749× 10−12

h1h5 0 0 0 1.53987293× 10−12

h2h2 ≈ 0 7.43744611× 10−10 6.64346737× 10−10 7.90431061× 10−11

h2h3 0 0 2.15822107× 10−9 1.77204704× 10−11

h2h4 0 0 0 1.93361338× 10−10

h2h5 0 0 0 2.70702730× 10−11

h3h3 0 0 0 7.11349342× 10−12

h3h4 0 0 0 1.20191466× 10−12

h3h5 0 0 0 4.19554348× 10−13

h4h4 0 0 0 1.19067674× 10−11

h4h5 0 0 0 9.56055545× 10−12

h5h5 0 0 0 1.10658358× 10−11

Total 1.90088510× 10−8 1.40884387× 10−8 3.83482579× 10−7 3.71799249× 10−9

Table VI.2: Numerical value of σvlab of each process at four energy point 381.5 GeV, 600 GeV, 900 GeV and
2000 GeV.
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To show the energy dependence of σvlab, we visualize the numerical results via the figures below. The
calculation of each processes start at the threshold energy.
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(a) Fermionic final states of 1st generation.
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(b) Fermionic final states of 2nd generation.
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(c) Fermionic final states of 3rd generation.

Figure VI.8: Cross section times laboratory velocity of neutralino pair annihilation with fermionic final states
including charged leptons, neutrinos and two types of quarks in each generation.

The annihilation of neutralino pair into SM fermion pair reveals several interesting features that we want
to mention. Firstly, in case of annihilation into a pair of light charged leptons in the first generation or a pair
of neutrinos, all of the σvlab have the same trend where they start from approximately 0, reach a maximum at
around 500 GeV and gradually decline after that. For these processes, the s-channel mediated by Z boson gives
the main contribution to the cross section; the effects of s-channel with Higgs exchanged is so small that can be
safely neglected due to the negligible couplings between these fermions with Higgs (neutrinos have no couplings
with Higgs at all). For the heavy fermionic final states, the couplings between SM fermions and Higgs bosons
become much larger, and s-channel of Higgs exchanged becomes the most significant influence. This fact shows
obviously through the sharp spikes near the resonances, especially the spikes appear in the range (800 GeV -
1000 GeV) which dominate the whole plot range.

Secondly, with the mass of lightest neutralino around 191 GeV (see Table VII.1), all of the fermionic final
states processes (including top quark-anti top quark) have the threshold energy being identical to the total
rest energy of χ̃0

1 pair. Although the fermionic final states are always open for the annihilations, at the limit
of zero relative velocity (i.e at the threshold

√
s → 2mχ̃0

1
) we observe that σvlab ≈ 0 (see the first column of

Table VI.2). This phenomenon has been considered in many context (e.g [50–52]). In short, the so-called s-
wave 1 helicity suppression is originated from the fact that two incoming particles are Majorana fermions (whose
charge conjugation yields itself). Since all of the quantum numbers of the incoming states are identical, the
Fermi statistics forces their helicities to be opposite, hence the helicities of final states are also opposite. This
results in a proportional coefficient of order mf/mχ̃0

1
, and thus σvlab adopt a helicy suppression factor of order

m2
f/m

2
χ̃0

1
. A general treatment of generic dark matter interaction structures including the s-wave suppression

can be found in [53].
1 According to [52], calculations such as neutralino relic abundance, the flux of energetic neutrinos from neutralino annihilation

in the sun and earth, and fluxes of anomalous cosmic rays produced by neutralino annihilation in the Galactic halo, it is generally
sufficient to consider the expansion of annihilation cross section times relative velocity as:

σχv = a+ bv2 +O(v4), (VI.3.5)

where a is the s-wave contribution at zero relative velocity and b contains contributions from both the s and p waves. The s-wave
contribution accounts for the value σχv when the incoming particles are at rest, which is useful for calculations of indirect-detection
rates.
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Figure VI.9: Cross section times laboratory velocity of neutralino pair annihilation with weak gauge boson final
states. Top figure: σχvlab of the process χ̃0

1χ̃
0
1 →W+W−; bottom figure: σχvlab of the process χ̃0

1χ̃
0
1 → ZZ.

Similar to the fermionic final states, the production ofW+W− and ZZ via neutralino pair annihilations are
open for a large range of the collision energy due to large mass of χ̃0

1. These processes have a large contribution
from velocity-independent part; while most of other tree-level amplitudes vanishes at the limit v → 0, the
annihilations into weak gauge boson pairs attain a value of order ∼ 10−8 GeV and deviate only several percent
from the global maximum value. The weak gauge bosons also couple with Higgs boson in s-channel, which
produces a visible small peaks at the resonances of h4 and h5. It is obviously to guess that (and indeed have
already been numerically checked) s-channel with Higgs exchanged can be ignored in the calculations of total
cross section.

With the value of σvlab ∼ 10−8 GeV and slowly decreasing after reaching its global maximum, these two
processes give the dominant contribution in almost all possible allowed energy. Exceptions are around the Higgs
resonances, some other reactions couple much stronger with Higgs bosons and thus receive a huge enhancement
from s-channel of exchanged Higgs. This enhancement is shown clearly in the plot of total σvlab, see Fig. VI.12.

At low energy, the s-channel mediated by Z boson of these processes gives small contribution compared to
t and u channels. For instance consider the cross section times relative velocity at threshold, the s-channel of
Z only gives a result of ∼ 2000 times smaller than when all channels are considered. At high energy limit, we
observe that while t and u channels seperately have much bigger value than s channel with Z exchanged, the t
and u channels partly cancels with each other to give a contribution of the same order with that of s channel.
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Figure VI.10: Cross section times laboratory velocity of neutralino pair annihilation with one weak gauge boson
and one Higgs boson final states, including χ̃0

1χ̃
0
1 → HW and χ̃0

1χ̃
0
1 → hZ.

Due to the distinctive mass spectrum of the neutral Higgs and charged Higgs bosons, the plot of each
process with one Higgs boson and one weak gauge boson is quite different from each other. Firstly, only
processes with final states contains h1 and h2 (two of the lightest neutral Higgs) are open at the limit v → 0. At
the threshold

√
s = 2mχ̃0

1
, the value σχ̃0

1χ̃
0
1→h1Zvlab is about 10−13 GeV−2, while σχ̃0

1χ̃
0
1→h2Zvlab ∼ 10−10 GeV−2;

other processes do not open at this point yet. Of all 6 cases shown in the figures, only those with sufficiently
light final state (meaning h1Z, h2Z and h3Z) have high peaks at resonances of h4 and h5; other cases contains
too heavy final states to produce these resonances and thus have the "typical" shape: σvlab starts from 0 when
these channels open, reaches a global maximum within the energy range 1100 GeV-1200 GeV, and slowly drops
thereafter.

We also notice in the process χ̃0
1χ̃

0
1 → h2Z, there is a destructive interference between s-channel mediated

by Higgs bosons with t and u channels: all of these channel alone give σvlab a value of order 10−10, but in
total the contribution from these channels cancel out and produce the result of order 10−11. This is the only
situation within the 6 cases that have such a destructive behaviour with the unique local maximum at energy
higher than all of Higgs resonances.

The typical value of σvlab in the final states of one Higgs and one weak gauge boson is about ∼ 10−10, 10−11

GeV, much smaller when compared with the contribution of e.g weak gauge bosons final states where the typical
value is in the range 10−8. In addition, reactions that produce heavy Higgs bosons open only at high energy value
and is not have negligible contribution to the total cross section at low energy limit. When taking the thermal
average at temperature below the freeze-out Tf , the high energy tail would not give much contribution, and thus
the neutralino annihilation to one Higgs boson and one weak gauge boson is not kinematically favourable. The
only exception is the annihilation into h1Z with the value of velocity-weighted cross section of order 10−7 GeV−2

within the range of total energy around 800 GeV-1000 GeV. This enhancement from resonances of h4 and h5
make the cross section of χ̃0

1χ̃
0
1 → h1Z become the dominant process around

√
s = 900 GeV, explaining the

blow up of total cross section as can be easily observed in Fig. VI.12.
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Figure VI.11: Cross section times laboratory velocity of neutralino pair annihilation with Higgs bosons final
states, including χ̃0

1χ̃
0
1 → H+H− and χ̃0

1χ̃
0
1 → hihj , i, j = 1, . . . , 5.

The final list of processes we consider are those with a pair of Higgs bosons in the final states. These
reactions have quite similar behaviour as the case of neutralino annihilation to one Higgs boson and one weak
gauge boson due to the mass spectrum of Higgs bosons results in the phenomenon that only reactions with
production not containing the heavy Higgs (namely H±, h3, h4 and h5) have large impact on the thermal
average 〈σχvlab〉. Furthermore, the processes with heavy final Higgs bosons have smaller value of cross section
compared to e.g χ̃0

1χ̃
0
1 →W+W−, even at large energy limit.

Another resemblance between the Higgs pair-production and one Higgs plus one weak gauge boson produc-
tion from colliding two neutralino is that these processes can be catagorized into three main types based on the
shape of line shown in figures, namely:

• Those with heavy final states (i.e total mass of final states larger than Mh,5) contain no Higgs resonance
from s-channel and thus having the "typical" shape of a bump concentrated on the low-energy limit with
the slowly decreasing trend at high energy tail.

• Those experience a spiky peak at the resonances and monotically drops when the difference between total
energy - mass of resonance is larger than the width of the resonance.

• The remains are processes with a destructive behaviour after experience a resonance, usually a resonance
of h4, h5 with energy around 900 GeV. These cases have not been fully analyzed and understood yet, which
hopefully would be explainable after we consider the analytic expression of these processes as proposed in
the outlook of Chapter VIII.
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Figure VI.12: The total cross section times laboratory velocity of all neutralino pair annihilation into SM-like
particles. The red points indicate the local maximum of σvlab.

Fig. VI.12 shows three peaks of the total velocity-weighted annihilation rate, with the final peak actually
being the combination of two resonances from h4 and h5. Since their masses are nearly degenerated, only a
high peak is observed at energy around 890 − 900 GeV. The second peak (from left to right) is due to the
resonance of s-channel mediated by h3, which is much shorter and narrower than the resonance of h3 and h4.
The numerical results reveal that t-channel and u-channel are the dominant channels at sufficiently low energy
in most processes (i.e near the threshold of opening a channel), results in the first bump at around 424 GeV. At
higher scattering energy, the s-channel mediated by either Z or Higgs bosons becomes the dominate channel.
This analysis shows that in calculating the integration over energy numerically (which we perform in calculating
thermal average of σχvlab), carefulness should be paid for treating the resonances caused by mediators of s-
channels. More details will be discussed in the next chapter which mainly about the numerical methods we
applied to produce our results.

At the minimum energy
√
s = 4m2

χ̃0
1
where the neutralinos are at rest, the value of σχvlab ≈ 1.9 × 10−8

(GeV) mainly due to the s-wave contribution from t- and u-channel of annihilations into W+W− (∼ 61.4%)
and ZZ (∼ 33.7%). The annihilation into a pair of top quark-anti top quark plays the crucial role at higher
energy, even the main contribution at some phase-space point.
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Numerical Results for the Dark Matter Relics

Outline
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VII.2.2 Solving the freeze-out equation. . . . . . . . . . . . . . . . . . . . . . .104

VII.2.3 Numerical solution of the comoving number density . . . . . . . . . . . . . . .107

VII.1 Input parameters
The SM parameters are chosen as follows

α−1
em = 127.955 GF = 1.16637× 10−5 (GeV)−2

αs = 0.1181 MZ = 91.1876 (GeV)
mMS
b = 4.18 (GeV) mt = 172.74 (GeV)

mτ = 1.77682 (GeV) MW = 80.379 (GeV)
me = 510.99891 (keV) mµ = 105.658367 (MeV)
md = 4.7 (MeV) mu = 2.2 (MeV)
ms = 95 (MeV) mc = 1.274 (GeV)

Since we have a short time to prepare the numerical analysis, we picked up an already available parameter
point in the package NMSSMCALC to generate the spectrum used in this thesis. We have not investigated in
details the phenomenologies of this point, to see whether it gives any interesting phenomenon. We leave these
investigations in future works. The other parameters arising from NMSSM are given below
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M1 = 644.4699 (GeV) M2 = 585.2285 (GeV)
M3 = 1850 (GeV) At = −1921.717 (GeV)
Ab = −1884.847 (GeV) Aτ = 1170.264 (GeV)
Ac = −1921.717 GeV As = −1884.847 GeV
Aµ = 1170.264 GeV Au = −1921.717 GeV
Ad = −1884.847 GeV µeff = 208.7278 (GeV)
tan β = 4.442242 MH± = 897.8267 (GeV)
λ = 0.301175 κ = 0.299105
ReAκ = −791.4436 (GeV) ReAλ = 627.2 GeV
ML̃1

= ML̃2
= 3000 (GeV) ML̃3

= 1368.968 (GeV)
MẼ1

= MẼ2
= 3000 (GeV) MẼ3

= 2967.018 (GeV)
MQ̃1

= MQ̃2
= 3000 (GeV) MQ̃3

= 1226.038 (GeV)
MŨ1

= MŨ2
= 3000 (GeV) MŨ3

= 880.8624 (GeV)
MD̃1

= MD̃2
= 3000 (GeV) MD̃3

= 2765.234 (GeV)

The calculations of the NMSSM mass spectrum is performed by the package NMSSMCALC, given in the table
below

Higgs bosons
Mh1 = 87.2381 (GeV) Mh2 = 125.0445 (GeV)
Mh3 = 700.044 (GeV) Mh4 = 895.9974 (GeV)
Mh5 = 897.8033 (GeV) MH± = 897.8267 (GeV)

Sfermions
md̃1

= 3000.0930 (GeV) md̃2
= 3000.5330 (GeV)

mũ1 = 2999.560 (GeV) mũ2 = 2999.8138 (GeV)
ms̃1 = 3000.0886 (GeV) ms̃2 = 3000.5373 (GeV)
mc̃1 = 2999.2502 (GeV) mc̃2 = 3000.1241 (GeV)
mb̃1

= 1226.0458 (GeV) mb̃2
= 2765.3443 (GeV)

mt̃1 = 810.9920 (GeV) mt̃2 = 1275.6929 (GeV)
mẽ1 = 3000.2792 (GeV) mẽ2 = 3000.3468 (GeV)
mµ̃1 = 3000.2789 (GeV) mµ̃2 = 3000.3471 (GeV)
mτ̃1 = 1369.729 (GeV) mτ̃2 = 2967.3009 (GeV)
mν̃e = 2999.3738 (GeV) mν̃µ = 2999.3738 (GeV)
mν̃τ = 1367.5953 (GeV)

Mixing of gauginos and higgsinos
mχ̃±1

= 199.1646 (GeV) mχ̃±2
= 599.4287 (GeV)

mχ̃0
1

= 190.7491 (GeV) mχ̃0
2

= 214.6911 (GeV)
mχ̃0

3
= 420.9749 (GeV) mχ̃0

4
= 598.2518 (GeV)

mχ̃0
5

= 649.0002 (GeV) mg̃ = 1850.0000 (GeV)

Table VII.1: Mass spectrum of new particles arise from NMSSM with the listed input parameters.

With the lighest neutralino mass ∼ 199 (GeV) > MZ , no resonance can occurs in the s-channel mediated by
Z boson. Similarly for the s-channel with Higgs exchanged, from the mass spectrum of Higgs bosons it is clear
that only processes mediated by h3, h4 and h5 can have resonances. The total decay width of these resonances
are

Γh3 = 1.9096 (GeV), Γh4 = 7.3494 (GeV), Γh5 = 7.1793 (GeV), (VII.1.1)

given in the output file slha.out of NMSSMCALC.

VII.2 Numerical Results

VII.2.1 Thermal average 〈σχvMøl〉
Performing the single-integral in (II.2.25), one can calculate 〈σχvMøl〉 numerically. For efficient purposes,

let us manipulate the integral by changing integration variable.
Firstly, note that we must calculate one integration in over kinetic energgy per unit mass ε, which ranges from 0
to∞. There are a variety of methods to deal with this kind of integrals. One possible solution is by considering
the asymptotic behaviour of the thermal kernel K (x, ε), which is constructed using modified Bessel functions
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of the first and second kind. Recall formula (II.2.29) for expansion of σχvMøl with respect to ε

〈σχvMøl〉 ' 2
√
x3

π

∫ ∞
0

dε
√
ε

1 + 2ε
(1 + ε)1/4 e

−2x(√1+ε−1)P1
(
2x
√

1 + ε
)

P 2
2 (x) σχvlab. (VII.2.1)

By changing the integration variable from ε → y = 2x (1 + ε) − 1 with y ranges from 0 to ∞, Eq. (II.2.29) is
transformed into the form

〈σχvMøl〉 '
∫ ∞

0
dy e−yF (x, y). (VII.2.2)

Such integral can be evaluated using Gauss-Laguerre quadrature method∫ ∞
0

e−xf(x)dx ≈
n∑
i=1

wif(xi), wi = xi

(n+ 1)2 [Ln+1(xi)]2
, (VII.2.3)

where xi is the i-th root of the Laguerre polynomial Ln(x).

A closer look at the integrand of (II.2.25) shows that the cross section experiences sharp peaks at the
resonances, and a numerical integration method with arbitrary step size may not produce a good result. One
can however applying an importance sampling method to reduce the numerical error, i.e to map the integration
variable space to another space where the integrand behaves to be more "equally distributed". The difficulty
with importance sampling is that one do not know what is a suitable mapping to use. In fact, from Fig. VI.12
we see that each peak contributes differently to σχvMøl, therefore it should be extremely hard to construct such
mapping. From these realizations, we should consider taking the given 2D integral using an adaptive step size
method to reduce the integration variance. In practice, we use the VEGAS algorithm (Ref. [54; 55]), a variance
reduction of Monte-Carlo method with an adaptive sampling scheme, into numerical integration. This algorithm
is available in a library called CUBA. This library offers several choice to deal with multidimensional numerical
integration, with C/C++, Fortran and Mathematica interfaces. For more information about this library, we
reference to the paper [56].

Let us manipulate the integral (II.2.25) into a more useful and practical form for using Monte-Carlo-like
integral evaluation. First consider integral of the form

I =
∫ ∞
x0

f(x)dx, (VII.2.4)

by changing from x→ y = x− x0

1 + (x− x0) ⇒ x = x0 + y

1− y , the given integral I becomes

I =
∫ 1

0
f

(
y

1− y

)
dy

(1− y)2 , (VII.2.5)

which is the typical form of calculating numerical integration. Let us apply the above tricks to calculate the
thermal average of cross-section times Møller velocity

〈σχvMøl〉 = 1
32π

∫ ∞
0

dε
∫ π

0
dθ sin θ ×K (x, ε)× βf (s)

s− 2m2
χ

|M(s, θ)|2, (VII.2.6)

where the Mandelstam variable s = 4m2
χ(1 + ε), and the invariant factor

βf =
[

1− (m3 +m4)2

s

]1/2 [
1− (m3 −m4)2

s

]1/2

. (VII.2.7)

Note that when m3 = m4, βf coincides with the velocity of the final particles in the center of mass frame. We
apply the following change of integration variables

θ = πr1

ε→ r2

1− r2
⇒ s = 4m2

χ

(
1 + r2

1− r2

)
=

4m2
χ

1− r2

(VII.2.8)

(VII.2.9)

Finally we obtain

〈σχvMøl〉 (x)
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= 1
32π

∫ 1

0

dr2

(1− r2)2

∫ 1

0
dr1π sin(πr1)×

K

(
x,

r2

1− r2

)
2m2

χ(1 + r2)/(1− r2) ×
∑βf

(
4m2

χ

1− r2

)
×

∣∣∣∣∣M
(

4m2
χ

1− r2
, πr1

)∣∣∣∣∣
2


= 1
64m2

χ

∫ 1

0
dr2

∫ 1

0
dr1

sin(πr1)
1− r2

2
×K

(
x,

r2

1− r2

)
×
∑βf

(
4m2

χ

1− r2

)
×

∣∣∣∣∣M
(

4m2
χ

1− r2
, πr1

)∣∣∣∣∣
2
 .

(VII.2.10)

The summation is taken over all processes of neutralino pair-annihilation to SM-like particles. The numerical
result for thermal averaging is shown in Fig. VII.1.
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Figure VII.1: The thermal average of velocity-weighted total cross section in the range x ∈ (0, 200).

VII.2.2 Solving the freeze-out equation
Recall that the freeze-out point xf is the solution of the freeze-out equation (II.2.42)

f(x) ≡ −
( π

45G

)1/2 g
1/2
∗ m

x2 〈σχvMøl〉Y eq δ(δ + 2) + d lnY eq

dx = 0. (VII.2.11)

This is a typical nonlinear equation, which can be solved by various numerical methods.
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Figure VII.2: Behaviour of equation for freeze-out condition (VII.2.11). The parameter δ is set to 1.5, which is
the suggested value in Ref. [21, p. 163]. The upper figure shows the contribution of each term in Eq. (VII.2.11),
which adds up to f(x) in the lower figure.

As we can see from Fig. VII.2, before freezing-out the function f(x) drops substantially due to the factor
1/x2 (the derivative term d lnY eq/dx decreases logarithmically, thus its contribution to the trend of f(x) can be

neglected compared to the contribution of the term ∼ g
1/2
∗ m

x2 〈σχvMøl〉Y eq. After freezing-out, the equilibrium
yield decreases exponentially to 0 due to the Boltzmann factor e−x, and the main contribution to f(x) comes
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from the derivative term.

Let us analyze this equation before choosing a appropriate method. We will investigate two class of numerical
root-finding methods. The first class is so-called bracketing methods, for which the most well-known examples
are bisection method, false position method and Brent’s method [57] (which is a combination of the bisection
method, the secant method and inverse quadratic interpolation). The second class, namely open methods,
contains root-finding algorithm such as simple fixed point iteration, Newton-Raphson method, secant method.
Especially when the cost of computing 〈σχvMøl〉 is significantly considerable, the questions of which method
should be implemented to solve the freeze-out point becomes important.

Tolerance
Number of iterations

Bisection method Brent method Secant method

10−1 7 8 13

10−2 10 12 14

10−3 14 12 15

10−4 17 12 16

10−5 20 12 16

Table VII.2: Solutions to freeze-out point xf with different methods. Both of the bisection and Brent methods
belongs to the class of bracketing method, here we set the initial range [xmin, xmax] = [20, 30]. The secant
method is an open method which requires two initial points, here chosen to be x(1)

0 = 20 and x(2)
0 = 21.

With the typical value of WIMP freeze-out xf ∼ 25, we can seek for the solution within a specific range
by bracketing method easily. From the number of iterations of each methods, the Brent method shows its
advantages of rapid convergence rate only at extremely high precision requirement. The tolerance ∼ 0.1 is good
enough for the calculation of relic density using freeze-out approximation, thus both methods give nearly the
same convergence rate. Similar to the Brent method, the scant method shows its advantages when we need
high precision result of xf . It should be noted that due to the stiffness behaviour of the freeze-out equation
with x < xf and the slowly varying trend with x > xf , the secant method depends significantly on the chosen
initial points. In our calculations, an attempt of choosing [x(1)

0 , x
(2)
0 ] = [20, 30] or [29, 30] fails to converge to

the correct solution.

For comparison and completeness, let us represent the non-relativistic limit of the freeze-out condition√
π

45G
45g
8π4

√
πxe−x

heff(T )
√
geff(T )m 〈σχvMøl〉 δ(δ + 2) = 1. (VII.2.12)

Solving this equation requires approximately the same computational resources compared to its relativistic
version, and the same arguments on the suitable numerical-solving method can also be applied here. We
represent below the solution of freeze-out equation in both relativistic and non-relativistic limit with varying δ.
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Figure VII.3: Solution of freeze-out point xf . The red dots represent the numerical solution of relativistic
freeze-out condition (VII.2.11). The blue dots represent the numerical solution of the non-relativistic version.
The calculation range of δ is chosen from ∼ 0 to 20.

The solution for freeze-out criterion thus being insensitive with respect to parameter δ. As we can see in the
figure above, with increasing δ the freeze-out point logarithmically rises. This behaviour has been mentioned
in [58, Section 5.2]. In our calculation, we use the value of δ = 1.5 which results in xf ≈ 26.8.

VII.2.3 Numerical solution of the comoving number density
The simplest approximation we apply to solve the current comoving density is the freeze-out approximation,

which has been represented in Subsection II.2.2. Basically, performing the last integration over temperature
yields the desired result of Y0

1
Y0
≡ 1
Y (T0) = 1

Yf
+
( π

45G

)1/2 ∫ Tf

T0

g
1/2
∗ 〈σχvMøl〉 dT. (VII.2.13)

For visualization purposes, let us show the dependence of the integrand
√
π/45Gg1/2

∗ 〈σχvMøl〉 over temperature
in the figure below.
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Figure VII.4: Integrand of integration over temperature to determine the current comoving density Y0. The
upper plot shows the integrand in a broad range of temperature while the lower one represents the integrand
in the integration region (T0, Tf ). To see the contribution of each process separately, see Appendix F.

The integrand increases stiffly near T = 0 (GeV) and remains nearly constant in the integration range,
showing the s-wave of σχvlab is the dominant term. As the temperature rises, the integrand experiences some
fluctuation in the range T ∼ 0→ 200 (GeV) before gradually decline at higher temperature.

To a quite good precision, the value 1/Yf can be ignored and the lower bound of integration T0 ≈ 2.726K ≈
2.35× 10−13GeV is safely set to 0 compared to the upper bound Tf , which in our case ≈ 7 GeV.

At this point, we have two ways to obtain the relic density:

• The first way is by performing a 3-dimensional integration (over scattering angle θ, kinetic energy in a
unit mass ε and temperature T ). It is fully expressed as the equations below

Y0 ≈
1

1
Yf

+
( π

45G

)1/2 ∫ Tf

T0

g
1/2
∗ 〈σχvMøl〉 dT

, (VII.2.14)

where the integral is performed similar to Eq. (VII.2.10), i.e by changing the integration variables∫ Tf

T0

g
1/2
∗ (T ) 〈σχvMøl〉 (mχ/T )dT = (Tf − T0)

64m2
χ

∫ 1

0
dr3

∫ 1

0
dr2

∫ 1

0
dr1

{
sin(πr1)
1− r2

2
×K

(
x,

r2

1− r2

)

× g1/2
∗ (mχ/ [T0 + (Tf − T0)r3])×

∑βf ( 4m2
χ

1− r2

)
×

∣∣∣∣∣M
(

4m2
χ

1− r2
, πr1

)∣∣∣∣∣
2
}. (VII.2.15)

Taking the above integral numerically using VEGAS yields the desired result.

• The second method gives us a rough result of Y0, and works well in our case. The idea is that in cases the
integrand g

1/2
∗ 〈σχvMøl〉 does not rapidly change (especially does not have sharp peaks), the integration

made use of equally spaced grid could be applied. In our code, we implement the composite trapezoidal
rule as a default method for calculating the integral from the input data table. We first calculate the
thermally averaged cross section times Møller velocity with parameter T in the range (Tmin, Tmax) with
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Tmin ≤ T0 and Tmax ≥ Tf , and save these results in the tabular output file. That data can be later loaded
to calculate the yield at whatever value of temperature in the range (Tmin, Tmax).

The first method has an advantage that we can control the integration error via the number of sampled
points, but in case we need the numerical values of 〈σχvMøl〉, we have to perform the integration (VII.2.10) sep-
arately. With the second approach, we can obtain both 〈σχvMøl〉 and Y in the interested region of temperature.
However, the precision of Y depends on the precision of 〈σχvMøl〉 at the first place, and also the error of the
composite trapezoidal rule. The latter can be control by increasing the number of points at which we calculate
〈σχvMøl〉, i.e by expanding the tabular data. With a fixed calculation range (Tmin, Tmax), we can perform such
extension by simply sample more points between two neighbor points in the old tabular data. The following
figure illustrate such idea:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

iter=0 iter=1 iter=2 iter=3 iter=4

Figure VII.5: Illustration of "gradually denser sampling method". We start (at iter=0) by dividing the given
range into nsample equal subregions. After each iteration, a fixed number of new points ngrid will be added into
each subregion of the old iteration. In this figure we set nsample = 3 and ngrid = 2.

Whenever we need to increase the number of points at which 〈σχvMøl〉 is calculated, we can keep the
old tabular data and proceed the calculation for new data at points in the next iteration. This is a small
improvement introduced to the tabular approach we represented above.
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Figure VII.6: Solution of the yield Y with respect to temperature T (the top figure) and to dimensionless
parameter x using freeze-out approximation.

For the given set of input parameters, the obtained value of relic density of the lighest neutralino in the
NMSSM is

Ωχ̃0
1
h2 ≈ 2.8282× 108 ×mχ̃0

1
× Y (x = x0) ≈ 2.8282× 108 × 190.74914× 2.334× 10−13

≈ 0.01259, (VII.2.16)

compared to the allowed range for the DM relic density from cosmological data [59; 60]

0.094 < ΩDMh
2 < 0.136, (VII.2.17)

our result is smaller than the lower bound of the total relic density of DM. Given our tree-level approximation
for the calculation of the annihilation processes and neglecting coannihilation ones, this parameter point does
not satisfy the DM relics constraint.
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VIII.1 Summary
This thesis has focused on discussing two main parts: the dark matter relic density, and the Next-to-Minimal

Supersymmetric Standard Model (NMSSM). What we have done so far is to assume the lightest neutralino in
NMSSM to be a component of the dark matter, and by using the freeze-out approximation we are able to
calculate the relic density of this particle species. While the results are merely a number of the neutralino
abundance at current time, this is important to investigate the DM nature from theoretical point of view since
it tells the contribution of the neutralino to the total amount of DM. This part is meant to be a brief summary
of what we have represented in this thesis so far:

• Chapter I and III are two short and instructive introduction which aims to answer the two set of questions:
Why does “Dark Matter” matters, and under which mechanism can dark matter be generated?, and What
is the Standard Model of Physics, and why we need to consider its extension?. These types of questions
are what motivate the construction of appropriate frameworks to describe the calculations involving the
density of DM or an supersymmetric extension of the SM.

• Chapter II describes a standard formulation of the Boltzmann equation, with various arguments and
approximations have been made in order to simplify the equation that governs the evolution of density of
a given species. Some special cases (e.g the asymptotic behaviour of the solution, or techniques for taking
the thermal average of a physical quantity) are also investigated.

• Chapter IV and V discussed about the construction of a supersymmetric theory, with two successive
applications on extending the SM has been made, namely the MSSM and NMSSM. While the simplest
supersymmetric extension MSSM expresses several advantages over the SM, a hierarchy problem so-called
µ-problem arises from MSSM. NMSSM is thus proposed to overcome this short-coming of the MSSM by
introducing one Higgs singlet into the particle content, thus generate the µ parameter dynamically from
electroweak symmetry breaking process. We also cover the detailed derivation of the Lagrangian, as well
as analyzing the mass spectrum of both MSSM and NMSSM within these two chapters.

• Finally, the calculation techniques together with the numerical results are represented in the two chapters
VI and VII. Careful analysis on each processes of neutralino annihilations at tree-level has been done in
Chapter VI, whereas the thermal average of velocity-weighted cross section, the freeze-out point solution
and the final integral for calculating the comoving number density have been represented in Chapter VII.
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VIII.2 Outlooks
Our private code have been built based on the helicity amplitude method from the basic standpoint instead

of taking the advantages of the already built and optimized public packages such as HELAS (Ref. [61]). While
this gives us a great opportunity to practice on this method as well as to approach modern improvements which
boost the calculation speed, the consequence is the cost of slow computation speed since only a few optimization
efforts have been made while studying this subject. Most of them have been implemented into our computer
code, that mainly related to the decomposition of complicated spinor structure into a sum of simpler ones.
Several more complex spinor structures arising in the gauge bosons final states have not been simplified and the
Dirac matrix multiplication is applied to produce the data. As a consequence, these two processes requires a
longer computation running time in comparison to other processes. Reviewing the spinor chains and optimizing
the helicity amplitude method in the code are in the highest priority tasks we want to consider.

More efforts should be put into increasing the precision of the relic density. As being mentioned when
deriving the freeze-out approximation with the final DM relic density is calculated via formula (II.2.45); this
integral ignores the contribution of equilibrium comoving number density after the DM particle decoupling
from thermal bath. Various more modern methods (e.g implicit ODE solving method) have been discussed and
succesfully implemented in the public code such as DarkSUSY, micrOMEGAs or MadDM, which we should employ
to have more accurate results. Furthermore, the coannihilations (e.g reactions between lightest neutralino and
other neutralinos, charginos or sneutrinos) have not been included in the calculations of the relic density in
the thesis scope, which can potentially have great impact on the relic density of neutralino annihilation alone.
In addition, the sneutrinos in the NMSSM can be a viable DM candidate if it is the lightest supersymmetric
particle. We leave the study about this possibility in the future.

Finally, the parameter constraints within the NMSSM context has been studied by many authors. We
have not covered the parameter scan using these constraints yet in this thesis. This can be a subject for our
future studies. We also plan to perform a comparison of our calculated results with the results obtained from
micrOMEGAs. This is the only published code which allows us to compute the DM relics in the NMSSM.
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A
Notations, Conventions & Miscellaneous Identities

A.1 Metric conventions and Dirac matrices
We will use mostly the notations from the paper [62, section 1,2], and we summarize them here for ease

of reference.

σµ = (σ0,σ) =
{(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
(A.1.1)

σµ = (σ0,−σ), σµν ≡ i

4 (σµσν − σνσµ) , σµν ≡ i

4 (σµσν − σνσµ) (A.1.2)

Notations in Weyl basis:

γµ =
(
O σµ

σµ O

)
, γ5 =

(
−1 O

O 1

)
, Σµν ≡ i

4 [γµ, γν ] =
(
σµν O

O σµν

)
(A.1.3)

C ≡ iγ2γ0 =
(
iσ2 O

O −iσ2

)
=
(
εαβ 0
0 εα̇β̇

)
, with ε12 = ε1̇2̇ = −ε12 = −ε1̇2̇ = 1. (A.1.4)

The metric we choose to work on is mostly minus

gµν = diag(+,−,−,−), (A.1.5)

and the Levi-Civita tensor is defined as

ε0123 = ε123 = −ε0123 = 1. (A.1.6)

A.2 Identities on two-component spinors
This Appendix is a list of useful spinor identities that will be used frequently in the computation above.

Fore more detailed information and discussion, see e.g [62]

Two-component spinors product

ψαψβ = −1
2ε

αβψψ, ψαψβ = 1
2εαβψψ, (A.2.1)

ψ
α̇
ψ
β̇ = 1

2ε
α̇β̇ψψ, ψα̇ψβ̇ = −1

2εα̇β̇ψψ, (A.2.2)

ψχ = χψ, ψχ = χψ, (ψχ)† = ψχ, (A.2.3)

(θφ)(θψ) = −1
2(θθ)(φψ) (A.2.4)

Identities involving Pauli matrices

χσµψ = −ψσµχ, χσµσνψ = ψσνσµ, (A.2.5)
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(χσµψ)† = ψσµχ, (χσµσνψ)† = ψσνσµχ, (A.2.6)
1
2(φσµχ)(ψσµ)α̇ = (φψ)χα̇,

1
2(φσµχ)(ησµψ) = −(φψ)(χη), (A.2.7)

(θσµθ)(θσνθ) = 1
2g

µν(θθ)(θθ). (A.2.8)

A.3 SuperPoincaré Algebra
The algebra of supersymmetry contains the Poincaré algebra, which we have already familiar with

[Pµ, P ν ] = 0, (A.3.1)
[Mµν , Pσ] = i (ηνσPµ − ηµσP ν) , (A.3.2)
[Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ − ηνσMµρ − ηµρMνσ) , (A.3.3)

and the identities related to fermionic generators QIα, QJα̇ and internal symmetries Bl. Below we will list the
(anti) commutation relations one by one, with the proof or clarification follows.

•
[
Mµν , QIα

]
.

Since QIα is a spinor in (1/2, 0) representation, it transforms as

QIα → exp
(
i

2ωµνσ
µν

) β

α

QIβ ≈ QIα + i

2ωµν (σµν) βα QIβ . (A.3.4)

Note that QIα now is also an operator, and thus transform under unitary representation of Lorentz group

QIα → U(Λ)QIαU(Λ)−1 ≈
(
1− i

2ωµνM
µν

)
QIα

(
1+ i

2ωµνM
µν

)
≈ QIα −

i

2ωµν
[
Mµν , QIα

]
. (A.3.5)

Equating the matrix corresponding to parameter ωµν gives

[
Mµν , QIα

]
= − (σµν) βα QIβ . (A.3.6)

•
[
Mµν , Q

Iα̇
]
.

The analysis is totally similar to that of Qα, with the replacement of Q̄ instead of Q, σ instead of σ and
replace the undotted components by doted ones.

[
Mµν , Q

Iα̇
]

= (σµν)α̇β̇ Q
Iβ̇
. (A.3.7)

We can obtain this result by simply taking the Hermitian conjugate of
[
Mµν , QIγ

]
[
Mµν , QIγ

]† = −(σµνQI) †γ ⇒
[
Mµν , Q

I

γ̇

]
= (QIσµν)γ̇ = Q

I

δ̇(σµν)δ̇γ̇

⇒ εα̇γ̇
[
Mµν , Q

I

γ̇

]
= εα̇γ̇εδ̇β̇(σµν)δ̇γ̇Q

Iβ̇ ⇒
[
Mµν , Q

Iα̇
]

= −(σµν)α̇
β̇
Q
Iβ̇
. (A.3.8)

•
{
QIα, Q

J

β̇

}
For later use, we will prove this anticommutator before turning to

[
Pµ, QIα

]
. The anticommutator{

QIα, Q
J

β̇

}
must transform under the tensor product representation of left and right spinor(

1
2 , 0
)
⊗
(

0, 1
2

)
=
(

1
2 ,

1
2

)
, (A.3.9)

which is the four-vector representation of Lorentz group. The only generator that belongs to the same
vector representation is generators of translations Pµ. Do to the indices structure, we claim that{

QIα, Q
J

β̇

}
= AIJ(σµ)αβ̇Pµ. (A.3.10)

116



SuperPoincaré Algebra

Raising the indices of both sides by multiplying with εβα and εα̇β̇ , we have{
QIβ , Q

Jα̇
}

= AIJεβαεα̇β̇(σµ)αβ̇Pµ = AIJ(σ̄µ)α̇β (A.3.11)

Note that both the commutator and anticommutator respect the unitary transformation, which allows
us to diagonalize AIJ = AδIJ . For now, we could not fix A using any mathematical constraint, and by
convention A is set by 2

{
QIα, Q

J

β̇

}
= 2δIJ(σµ)αβ̇Pµ. (A.3.12)

•
[
Pµ, QIα

]
and

[
Pµ, Q

Iα̇
]
.

First note that Pµ is an operator working in the vector representation (1/2, 1/2) and QIα belongs to
(1/2, 0). We analyze the tensor product of those two representations(

1
2 ,

1
2

)
⊗
(

1
2 , 0
)

=
(

0, 1
2

)
⊕
(

1, 1
2

)
. (A.3.13)

Due to a theorem stated by Haag, Lopuszanski and Sohnius, the only allowed fermionic generators in the
superalgebra are supersymmetry generators with spin 1/2, and the representation (1, 1/2) is not justified.
The first representation in the direct product tells that

[
Pµ, QIα

]
must be build out of QIα. One of the

most general expression for this commutator is[
Pµ, QIα

]
= CIJσ

µ

αβ̇
Q
Jβ̇ = CIJ

(
σµQ

J
)
α

(A.3.14)

Taking the Hermitian conjugation at both sides of Eq. (A.3.14)

−
[
Pµ†, (QIα)†

]
=
(
CIJ

(
σµQ

J
)
α

)†
⇒ −

[
Pµ, Q

I

α̇

]
= (C∗)IJ

(
σµQ

J
)†
α̇

⇒ −
[
Pµ, Q

I

α̇

]
= (C∗)IJ

(
QJσµ

)
α̇

= (C∗)IJQJασ
µ
αα̇ = C∗)IJεαβσ

µ
αα̇Q

J
β

⇒ −
[
Pµ, εβ̇α̇Q

I

α̇

]
= −(C∗)IJ

(
εβαεβ̇,α̇σµαα̇

)
QJβ = −(C∗)IJ σ̄β̇βQJβ

⇒
[
Pµ, Q

Iβ̇
]

= (C∗)IJ σ̄β̇βQJβ . (A.3.15)

Determining the matrix C requires the use of generalized Jacobi identities for (Q,P, P ) and (Q,Q,P )
systems. The first one states[[

QIα, P
µ
]
, P ν

]
+
[
[Pµ, P ν ] , QIα

]
+
[[
P ν , QIα

]
, Pµ

]
= 0

⇒ −CIJσ
µ

αβ̇

[
Q
Jβ̇
, P ν

]
+ 0 + CIJσ

ν
αβ̇

[
Q
Jβ̇
, Pµ

]
= 0

⇒ CIJ(C∗)JKσ
µ

αβ̇
σνβ̇βQKβ − CIJ(C∗)JKσναβ̇ σ̄

µβ̇βQKβ

⇒ CIJ(C∗)JK
(
σµ
αβ̇
σνβ̇β − σν

αβ̇
σ̄µβ̇β

)
QKβ = 0

⇒ CIJ(C∗)JK(σµν) βα QKβ = 0. (A.3.16)

In general (σµν) βα 6= 0, and we obviously do not want to consider the trivial case where QKβ = 0 (which
make no differences between Poincaré and SuperPoincaré group), thus implies the constraint

CIJ(C∗)JK = 0. (A.3.17)

To continue, we need to use the anticommutator {QIα, QJβ}. This product belongs to the representation(
1
2 , 0
)
⊗
(

1
2 , 0
)

= (0, 0)⊕ (1, 0), (A.3.18)

which means this anticommutator can be build from the sum of a Lorentz scalar and a tensor of rank 2:

{QIα, QJβ} = εαβZ
IJ + εβγ(σµν) γα MµνY

IJ . (A.3.19)
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We note that since εαβ is antisymmetric under exchanging the indices, ZIJ can be chosen to be antisym-
metric under I ↔ J . On the contrary, εβγ(σµν) γα is symmetric under β ↔ α (to see that, first exchange
α↔ γ, next γ ↔ β; each exchanging contribute a minus sign, and two minus sign cancel), implying that
Y IJ can be chosen to be symmetric under I ↔ J . The generalized Jacobi identity can be written as[{

QIα, Q
J
β

}
, Pµ

]
=
{
QIα,

[
QJβ , P

µ
]}

+
{
QJβ ,

[
QIα, P

µ
]}

⇒ εαβ
[{
QIα, Q

J
β

}
, Pµ

]
= εαβ

{
QIα,

[
QJβ , P

µ
]}

+ εαβ
{
QJβ ,

[
QIα, P

µ
]}

⇒ εαβ
[
εαβZ

IJ + εβγ(σµν) γα MµνY
IJ , Pµ

]
= −εαβCJKσ

µ

ββ̇

{
QIα, Q̄

Kβ̇
}
− εαβCIKσ

µ
αα̇

{
QJβ , Q

Kα̇
}

⇒ 2
[
ZIJ , Pµ

]
= CJKσ

µ

ββ̇

{
QIβ , Q̄Kβ̇

}
− CIKσ

µ
αα̇

{
QJα, Q

Kα̇
}

⇒ 2
[
ZIJ , Pµ

]
= CJKσ

µ
αα̇2δIK σ̄να̇αPν − CIKσ

µ
αα̇2δJK σ̄να̇αPν

⇒
[
ZIJ , Pµ

]
=
(
CJI − CIJ

)
σµαα̇σ̄

να̇αPν . (A.3.20)

The fact that ZIJ belongs to (0, 0)implies ZIJ are generators an internal symmetry group (and possibly
a linear combination of generators Bl of some internal symmetry groups). This means[

ZIJ , Pµ
]

= 0. (A.3.21)

Plugging into Eq. (A.3.20) gives

0 =
(
CJI − CIJ

)
σµαα̇σ̄

να̇αPν . (A.3.22)

Once again σµαα̇σ̄να̇αPν in generally not vanishes, which requires

CJI = CIJ ⇒ CT = C. (A.3.23)

Eq. (A.3.17) together with (A.3.23) imply

CC† = 0. (A.3.24)

Obviously CC† is Hermitian, thus diagonalizable. A matrix have diagonal form equals zero can only be a
zero matrix. Plugging back into Eq. (A.3.14) and (A.3.15), we conclude

CIJ = 0,∀I, J ∈ {0, 1, . . . , N} ⇒
[
Pµ, QIα

]
= 0, (A.3.25)

and similarly for the bar conjugation part

[
Pµ, Q

Iα̇
]

= 0. (A.3.26)

• {QIα, QJβ} and {Q
I

α̇, Q
J

β̇}.
Let us turn back to the formula (A.3.19),

{QIα, QJβ} = εαβZ
IJ + εβγ(σµν) γα MµνY

IJ ,

which is quite general but we can do more with the symmetric part. Consider the generalized Jacobi
identity for the system (Q,Q,P ) in Eq. (A.3.20). The RHS vanishes due to the commutation of Q and
P , and we are left with [

{QIα, QJβ}, Pµ
]

=
[
εαβZ

IJ + εβγ(σρσ) γα MρσY
IJ , Pµ

]
= 0

⇒ εβγ(σρσ) γα Y IJ [Mρσ, P
µ] = 0. (A.3.27)

Since Pµ does not commute with Mρσ, the matrix elements Y IJ is required to be zero for all I, J , thus
gives

{QIα, QJβ} = εαβZ
IJ . (A.3.28)
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Taking the Hermitian conjugate automatically yields

{QIα̇, Q
J

β̇} = εα̇β̇(ZIJ)∗. (A.3.29)

• Identities related to internal symmetry generators Bl.
Assuming we have the internal symmetry groups, which is generated by Bl and

[Bl, Bm] = ifnlmBn. (A.3.30)

By definition, the internal symmetries are independent of spacetime and thus commute with the Poincaré
generators

[Bl, Pµ] = 0, (A.3.31)
[Bl,Mµν ] = 0. (A.3.32)

We have seen that the central charge is related by the anticommutator of two Q′s, and that it should
be built out of internal symmetries generators. This implies the commutator between Q′s and Bl is not
trivial. We expect [

QIα, Bl
]

= (bl)IJQJα, (A.3.33)

⇒
[
Q
I

α̇, Bl

]
= −(b∗l )IJQ

J

α̇ = −(bl)JIQ
J

α̇, (A.3.34)

where the second equality of Eq. (A.3.34) is because Bl are all Hermitian, and the set bl belongs to the N
dimensional representation of the corresponding internal symmetry group, implying each bl is Hermitian.
The largest possible internal symmetries group can act on fermionic generators is thus U(N), generated
by N × N Hermitian matrices bl. The proof is straightforward by using generalized Jacobi identity for
(Q,B,B) [[

QIα, Bl
]
, Bm

]
+
[
[Bl, Bm] , QIα

]
+
[[
Bm, Q

I
α

]
, Bl
]

= 0
⇒ bIlJ

[
QJα, Bm

]
+ ifnlm

[
Bn, Q

I
α

]
− bImJ

[
QJα, Bl

]
= 0

⇒ bIlJb
J
mK + ifnlmb

I
nK − bImJbJlK = 0⇒ [bl, bm]IK = ifnlmb

I
nK

⇒ [bl, bm] = ifnlmbn, (A.3.35)

i.e the matrices bl has the same Lie algebraic structure as Bl does.

In conclusion, we have derived the following

SuperPoincaré algebra for arbitrary N

[Pµ, P ν ] = 0,
[Mµν , Pσ] = i (ηνσPµ − ηµσP ν) ,
[Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ − ηνσMµρ − ηµρMνσ) ,[
Pµ, QIα

]
= 0,[

Pµ, Q
Iα̇
]

= 0,[
Mµν , QIα

]
= − (σµν) βα QIβ ,[

Mµν , Q
Iα̇
]

= − (σµν)α̇β̇ Q
Iβ̇
,{

QIα, Q
J

β̇

}
= 2δIJ(σµ)αβ̇Pµ,{

QIα, Q
J
β

}
= εαβZ

IJ ,{
Q
I

α̇, Q
J

β̇

}
= εα̇β̇(ZIJ)∗,

[Bl, Bm] = ifnlmBn,[
QIα, Bl

]
= (bl)IJQJα,[

Q
I

α̇, Bl

]
= −(bl)JIQ

J

α̇.

(A.3.36a)
(A.3.36b)
(A.3.36c)
(A.3.36d)

(A.3.36e)

(A.3.36f)

(A.3.36g)

(A.3.36h)

(A.3.36i)

(A.3.36j)

(A.3.36k)
(A.3.36l)

(A.3.36m)
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SuperPoincaré Algebra

Here and afterward, the uppercase Latin indices is the index of fermionic generators and ranges from 1 to
N . Those letters at the beginning of Greek alphabet (α, β, γ, . . . ) is the spinor indices, whose values are either
1 or 2. Other Greek symbols will be used to denote the spacetime indices.

ZIJ as Central Charge

Of all generators of SuperPoincaré group we have introduced at the beginning, there is one more operator arises
when considering the anticommutator of Q′s, which is the central charge operator ZIJ . As shown above, this
operator belongs to the (0, 0) representation of Poincaré group. We also claimed that the central charge should
be built out of generators of internal symmetry groups G, i.e

ZIJ = al|IJBl. (A.3.37)

The reason for the name is because Z commute with all of the generators. Obviously Z commute with all
Poincaré group generators [

ZIJ , Pµ
]

= 0, (A.3.38)[
ZIJ ,Mµν

]
= 0, (A.3.39)

due to the fact that Z is composed of internal generators and these are invariant under boosts, rotations and
translations. Our tasks now is to prove that Z commute with Bl, Q, Q and with elements of itself. First
consider the generalized Jacobi identity for (Q,Q,B) 1[{

QIα, Q
J
β

}
, Bl
]

=
{[
QJβ , Bl

]
, QIα

}
+
{[
Bl, Q

I
α

]
, QJβ

}
⇒ εαβ

[
ZIJ , Bl

]
= bJlK

{
QKβ , Q

I
α

}
− bIlK

{
QKα , Q

J
β

}
= bJlKεβαZ

KI − bIlKεαβZKJ

⇒
[
ZIJ , Bl

]
= bJlKZ

IK − bIlKZKJ . (A.3.40)

And it is realized that ZIJ form a subalgebra of the bosonic symmetry group generated by Bl (which, as we
are going to confirm, is an Abelian subalgebra). By contracting both sides with al|KL, we have[

ZIJ , ZKL
]

= al|KL
(
bJlKZ

IK − bIlKZKJ
)
. (A.3.41)

Next we consider the Jacobi identity for the trio (Q,Q,Q)[{
QIα, Q

J
β

}
, QKγ

]
+
[{
QJβ , Q

K
γ

}
, QIα

]
+
[{
QKγ , Q

I
α

}
, QJβ

]
= 0

⇒ εαβ
[
ZIJ , QKγ

]
+ εβγ

[
ZJK , QIα

]
+ εγα

[
ZKI , QJβ

]
= 0

⇒ al|IJbKlLQ
L
γ + εβγa

l|JKbIlLQ
L
α + εγαa

l|KIbJlLQ
L
β = 0. (A.3.42)

This identity hold for arbitrary (α, β, γ). We consider two following cases

• (α, β, γ) = (1, 2, 1).

−al|IJbKlLQL1 + al|JKbIlLQ
L
1 = 0. (A.3.43)

• (α, β, γ) = (2, 1, 2).

al|IJbKlLQ
L
2 − al|JKbIlLQL2 = 0. (A.3.44)

Writing in a more compact form

al|IJbKlLQ
L
α = al|JKbIlLQ

L
α ⇒ al|IJbKlL = al|JKbIlL. (A.3.45)

From Eq. (A.3.41), simultaneously exchanging (I, J)↔ (K,L) gives[
ZIJ , ZKL

]
= −al|IJ

(
bKlMZ

ML + blMZ
KM

)
= −al|JKbIlMZML − al|LIbJlMZKM . (A.3.46)

1 From now on, for simple notation we will denote (bl)IJ as bIlJ .
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Equating the coefficients of bIlM and bLlM in Eq. (A.3.41) and (A.3.46), we obtain

{
al|KLZMJ = −al|JKZML

al|KLZIM = −al|LIZKM
(A.3.47a)
(A.3.47b)

We have shown the effect of exchanging indices between a, b and a, Z as in Eq. (A.3.45) and (A.3.47). To prove
(A.3.40), we need to find the value of product b, Z. The scheme is as follows

al|KLbIlMZ
MJ = al|LIbKlMZ

MJ = −al|JLbKlMZMI = −al|KLbJlMZIM

⇒ bIlMZ
MJ = −bJlMZIM = bJlMZ

MI . (A.3.48)

Plugging this identity back to Eq. (A.3.40), we can easily see that this commutator vanishes[
ZIJ , Bl

]
= bJlKZ

IK − bIlKZKJ = bJlKZ
IK − bJlKZKI = 0, (A.3.49)

and thus implying commutator of matrix elements of Z yields 0, since Z is a linear combination of Bl

[
ZIJ , ZLK

]
= 0. (A.3.50)

Consider the generalized Jacobi identity for (Q,Q,Q)[{
QIα, Q

J
β

}
, Q

K

γ̇

]
+
[{
QJβ , Q

K

γ̇

}
, QIα

]
+
[{
Q
K

γ̇ , Q
I
α

}
, QJβ

]
= 0

⇒ εαβ

[
ZIJ , Q

K

γ

]
+ 2δIJσµβγ̇

[
Pµ, Q

I
α

]
+ 2δKIσµαγ̇

[
Pµ, Q

J
β

]
= 0

⇒ εαβ

[
ZIJ , Q

K

γ

]
+ 0 + 0 = 0⇒

[
ZIJ , Q

K

γ

]
= 0, (A.3.51)

where the second and the third term in Jacobi identity vanishes due to the fact Q commute with P . We cannot
obtain the same relation for Q by directly taking Hermitian conjugate since Z is a complex matrix in general.
Consider the Jacobi identity involving (Z,Q,Q):{[

ZIJ , QKα
]
, Q

L

β̇

}
+
{[
Q
L

β̇ , Z
IJ
]
, QKα

}
=
[{
QKα , Q

L

β̇

}
, ZIJ

]
⇒
{[
ZIJ , QKα

]
, Q

L

β̇

}
+ 0 = 2δKLσµ

αβ̇

[
Pµ, Z

IJ
]

⇒
{[
ZIJ , QKα

]
, Q

L

β̇

}
= 0. (A.3.52)

Since Z is made of anticommutator of Qs, the
[
ZIJ , QKα

]
also belongs to (0, 1/2) representation, and can be

expanded as a linear combination of the Qs[
ZIJ , QKα

]
= M IJK

N QNα ,

⇒
{[
ZIJ , QKα

]
, Q

L

β̇

}
= 0 = M IJK

N

{
QNα , Q

L

β̇

}
⇒M IJK

L σµ
αβ̇
Pµ = 0. (A.3.53)

Again, the operator σµ
αβ̇
Pµ is generally non-vanished, which require M IJK

L = 0. Plugging back in the expansion
of
[
ZIJ , QKα

]
gives

[
ZIJ , QKα

]
= 0. (A.3.54)
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A.4 Grassmann numbers
Grassmann numbers play an essential role in building the supersymmetric Lagrangian. Let us introduce a

set of Grassmann numbers θα, θα̇ that anticommute with itself.

{θα, θβ} = 0, { θα̇, θβ̇} = 0, {θα, θβ̇} = 0. (A.4.1)

The anticommutation relations in SuperPoincaré algebra reads{
Qα, Qβ̇

}
= 2σαβ̇Pµ, {Qα, Qβ} =

{
Qα̇, Qβ̇

}
= 0. (A.4.2)

The Grassmann variables allow us to transform these anticommutation relations into commutation relations.
Specifically[

θQ, θQ
]

=
[
θαQα, θα̇Q

α̇
]

= θα
{
Qα, θα̇

}
Q
α̇ − θαθα̇

{
Qα, Q

α̇
}
− θα̇

{
Q
α̇
, θα
}
Qα +

{
θα̇, θ

α
}
Q
α̇
Qα

= −θαθα̇(2εα̇β̇σµ
αβ̇
Pµ) = 2θασµ

αβ̇
θ
β̇
Pµ = 2θσµθPµ. (A.4.3)

Similarly, we can expand the commutation relations [θQ, θQ] and
[
θQ, θ,Q

]
in terms of sum of anticommutation

relations of each pair of operators, and noting that these operators are pairwise anticommute, thus vanishes
identically

[Qθ,Qθ] =
[
Qθ,Qθ

]
= 0. (A.4.4)

Let us list some properties of the Grassmann variables, which will becomes extremely useful when dealing with
superspace and superfields. Firstly, the derivatives work in analogy to the Minkowski coordinates:

∂αθ
β = ∂θβ

∂θα
= δαβ , ∂α̇θ

β̇ = ∂θ
β̇

∂θ
α̇ = δβ̇α̇. (A.4.5)

We can further derive the raising-lowering mechanism on the Grassmann derivatives, and the independent of θ
and θ

∂α = −εαβ∂β , ∂
α̇ = −εα̇β̇∂β̇ , (A.4.6)

∂αθβ̇ = 0, ∂
α̇
θβ = 0. (A.4.7)

The integration over Grassmann variables is defined as follows∫
dθ = 0,

∫
dθ θ = 1, (A.4.8)

⇒
∫
dθ (f0 + θf1) = f1 = ∂f1

∂θ
−→

∫
= ∂, θ = δ(θ). (A.4.9)

The multiple integration can be defined similarly∫
d2θ θθ =

∫
d2θ θθ = 1. (A.4.10)

One notes that 1 = 1
4δ
α
α = 1

4ε
αβ∂α∂β(θθ), thus again identifies the integration and differentiation∫

d2θ = 1
4ε
αβ∂α∂β , d2θ = −1

4ε
α̇β̇∂α̇∂β̇ (A.4.11)
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B
Transformation of Parameters in the NMSSM

The electromagnetic coupling constant, the mixing angle β and the masses of W- and Z-bosons are defined
as usual:

e = g′cw = gsw,

tan β = vu/vd,

M2
Z =

(
g2 + g′2

) (
v2
u + v2

d

)
4 ,

M2
W =

g
(
v2
u + v2

d

)
4 .

(B.0.1)
(B.0.2)

(B.0.3)

(B.0.4)

The transformation laws for each set of new parameters read{
vu, vd, g, g

′,M2
Hu
,M2

Hd
, b, ξ

}
−→ {MZ ,MW , e,mA, tan β, Th, TH , TA}

vd = 2 cosβswcwMZ

e
, (B.0.5)

vu = 2 sin βswcwMZ

e
, (B.0.6)

g = e/sw, (B.0.7)

g′ = e/cw, (B.0.8)

b sin ξ = − eTA
2cwswMZ cos(β − βn) , (B.0.9)

b cos ξ =m2
A cosβ sin β

cos2(β − βn)

+ The

4cwswMZ cos2(β − βn) [cos(α− β) + cos(α+ β) cos(2βn)]

− THe

4cwswMZ cos2(β − βn) [sin(α− β) + sin(α+ β) cos(2βn)] , (B.0.10)

M2
Hd

= − 1
2M

2
Z cos(2β) + m2

A sin2 β

cos2(β − βn)

− The

2cwswMZ cos2(β − βn)
[
sin(α− β) cos2 βn + sinα sin β sin(2βn)

]
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− THe

2cwswMZ cos2(β − βn)
[
cos(α− β) cos2 βn + cosα sin β sin(2βn)

]
, (B.0.11)

M2
Hu = M2

Z(1− cos 2β) cos 2β
4 sin2 β

+ m2
A cos2 β

cos2(β − βn)

+ The sin βn
4cwswMZ cos2(β − βn) [cos(α+ β − βn) + 2 cos(α− β + βn) + cos(α+ β + βn)]

+ THe sin βn
4cwswMZ cos2(β − βn) [sin(α+ β − βn) + 2 sin(α− β + βn) + sin(α+ β + βn)] . (B.0.12)

Instead of using m2
A as a parameter, we choose mH± . The transformation laws read

vu, vd, g, g
′,M2

Hu
,M2

Hd
, b, ξ −→MZ ,MW , e,mH± , tan β, Th, TH , TA

vd = 2 cosβswcwMZ

e
, (B.0.13)

vu = 2 sin βswcwMZ

e
, (B.0.14)

g = e/sw, (B.0.15)

g′ = e/cw, (B.0.16)

b sin ξ = − eTA
2cwswMZ cos(β − βn) , (B.0.17)

b cos ξ =− c2wM2
Z sin β cosβ +

m2
H± sin β cosβ
cos2(β − βc)

+ The

4cwswMZ cos2(β − βc)
[cos(α− β) + cos(α+ β) cos 2βc]

− THe

4cwswMZ cos2(β − βc)
[sin(α− β) + sin(α+ β) cos 2βc] , (B.0.18)

M2
Hd

= 1
2M

2
Z

(
−c2w − s2

w cos 2β
)

+
m2
H± sin2 β

cos2(β − βc)

− The cosβc
2cwswMZ cos2(β − βc)

[cosβc sin(α− β) + 2 sinα sin β sin βc]

− THe cosβc
2cwswMZ cos2(β − βc)

[cosβc cos(α− β) + 2 cosα sin β sin βc] , (B.0.19)

M2
Hu = 1

2M
2
Z

(
−c2w + s2

w cos 2β
)

+
m2
H± cos2 β

cos2(β − βc)

− The sin βc
4cwswMZ cos2(β − βc)

[cos(α+ β − βc) + 2 cos(α− β + βc) + cos(α+ β + βc)]

+ THe sin βc
4cwswMZ cos2(β − βc)

[sin(α+ β − βc) + 2 sin(α− β + βc) + sin(α+ β + βc)] . (B.0.20)
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C
2→ 2 scattering cross section

C.1 σvlab in neutralino pair-annihilation
We first need to calculate the velocity of one of the incoming particle in the lab frame based on the energy

and its mass in the laboratory frame. Let us consider the two incoming particles with masses m1 and m2, as in
the below figure, with the z-direction along the velocity of particle 1.

Figure C.1: 2→ 2 scattering. Source: http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node52.html

The velocity of particle 2 in CMS frame is

vz = − p
∗
z

E∗2
= −

√
E∗22 −m2

2
E∗2

, (C.1.1)

thus the boost parameters are calculated as usual

γ = 1√
1− v2

z

= 1√
1− E∗22 −m2

2
E2

2

= E∗2
m2

, (C.1.2)

γβ = E∗2
m2

(
−|p

∗|
E2

)
= −|p

∗|
m2

. (C.1.3)

In the rest frame of particle 2 (p2 lab = 0), the momentum of particle 1 is obtained by a boost along z direction

plab = p1 lab =
(

γ −γβ
−γβ γ

)(
E∗1
|p∗|

)
= 1
m2

(
E∗2 |p∗|
|p∗| E∗2

)(
E∗1
|p∗|

)
= 1
m2

(
E∗1E

∗
2 + |p∗|2

|p∗| (E∗1 + E∗2 )

)
(C.1.4)

⇒ vlab = |p
∗| (E∗1 + E∗2 )

E∗1E
∗
2 + |p∗|2 . (C.1.5)
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σvlab in neutralino pair-annihilation

Using the formula of cross section in the center of mass frame, the concerning quantity is calculated as

σvlab =
∫

dΩ 1
64π2

|p∗′ |
|p∗| |M|

2 |p∗| (E∗1 + E∗2 )
E∗1E

∗
2 + |p∗|2 . =

∫
dΩ |M|

2

64π2s

|p∗′ |
E∗1E

∗
2 + |p∗|2 . (C.1.6)

Recall that

E∗1 + E∗2 = s, (C.1.7)

|p∗
′
| = 1

2
√
s

√
λ (s,m2

3,m
2
4) = 1

2βf , (C.1.8)

E∗1E
∗
2 + |p∗|2 = E∗1 (E∗1 + E∗2 )−m2

1 = s+m2
1 −m2

2
2 −m2

1 = s−m2
1 −m2

2
2 . (C.1.9)

Plugging all the expression into Eq. (C.1.6) gives

σvlab =
∫

dΩ βf |M|
2

64π2 (s−m2
1 −m2

2) , (C.1.10)

where

βf =
√
λ(s,m2

3,m
2
4)

s
=
[
1− (m3 +m4)2

s

]1/2 [
1− (m3 −m4)2

s

]1/2

. (C.1.11)

In case of neutralino pair-annihilation, the two incoming states is of the same species, thus Eq. (C.1.10) reduces
to [21, Eq. (3.23)]

σvlab = βf
64π2 (s− 2m2)

∫
dΩ|M|2. (C.1.12)
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D
The Friedmann, Robertson-Walker (FRW) Models in

Cosmology

D.1 The Friedmann–Lemaître–Robertson–Walker (FLRW) metric
Consider a homogeneous, isotropic, expanding (or otherwise, contracting) Universe; this can be described

using the FLRW metric

(ds)2 = (dt)2 −R(t)2dΣ2, (D.1.1)

with the time-dependent spatial coefficient R(t) is so-called the scale factor. In reduced-circumference polar
coordinates the spatial metric has the form

dΣ = dr2

1− kr2 + r2 (dθ2 + sin2 θdφ2) , (D.1.2)

with parameter k represent the curvature of space.

D.2 The Friedmann equations
The Friedmann equations are a set of differential equations deduced from the Einstein’s field equations for

the FLRW metric above. This set of equations describe the expansion of homogeneous and isotropic Universe
in the context of general relativity. They are

Ṙ2 + k

R2 = 8πGρ+ Λ
3 ,

R̈

R
= −4πG

3 (ρ+ 3P ) + Λ
3 ,

(D.2.1a)

(D.2.1b)

where G is the Newtons gravitational constant, Λ is the cosmological constant. ρ and P are the density and
pressure. A simplified form of the second equation is obtained by using the first one, which reads

ρ̇ = −3H(ρ+ p), (D.2.2)

which expresses the conservation of energy-momentum ternsor: Tµν;ν = 0

Related conservation laws

Below we sketch a proof of the conservation of entropy by considering the Friedmann equations the first law
of thermal dynamics, which reads 2

dU = TdS − PdV
2 In this proof, we shall assume the vanishing of the chemical potential.
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The Friedmann equations

⇒ dS = dU
T

+ P

T
dV = d(ρV )

T
+ P

T
dV = V

T
dρ+ ρ+ P

T
dV

⇒ dS
dt = V

T

dρ
dt + ρ+ P

T

dV
dt = −3HV

(
ρ+ P

T

)
+ ρ+ P

T

dV
dt . (D.2.3)

In a cosmological volume V ∝ R3 ⇒ dV/dt = 3HV , the two terms in (D.2.3) cancels and thus yields the
conservation of total entropy

dS
dt = 0. (D.2.4)

Define the entropy density s ≡ S/V where V is the comoving volume, the first law of thermal dynamics is
rewritten as

Td(sV ) = d(ρV ) + PdV ⇒ dρ− Tds = (Ts− ρ− P ) dV
V
. (D.2.5)

In equilibrium, the intensive variables such as ρ, P and s is a function of temperature only. Hence the above
equation with LHS contains differential dT and RHS has differential dV must vanish separately. The RHS thus
implies the formula for calculating entropy density

s = ρ+ P

T
. (D.2.6)
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E
Modified Bessel Function of the Second Kind

E.1 Relevant Properties
Bessel functions and the related special functions have been known since the 18th century and play an

important role in solving various type of differential equations. As in this thesis, the modified Bessel functions
of the second kind are the solution to integrals involving Boltzmann distribution. The modified Bessel functions
were first introduced by A. B. Basset and H. M. MacDonald as a solution to the modified Bessel differential
equation

z2w′′(z) + zw′(z)− (z2 + ν2)w(z) = 0⇒ w(z) = c1Iν(z) + c2Kν(z). (E.1.1)
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Figure E.1: Plot of modified Bessel functions of the second kind, with parameter n ranges from 0 to 3.

There are tons of properties of these special functions, we shall here mention only the necessary properties
that will be used in the scope of the thesis.
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Relevant Properties

• The first one is the integral representation of modified Bessel function of the second kind Kν(z), which
helps us in calculating a specific class of integrals

Kν(z) = π1/2(z/2)ν

Γ
(
ν + 1

2

) ∫ ∞
1

e−zy
(
y2 − 1

)ν−1
2 dy, (E.1.2)

Kν(z) = π1/2(z/2)ν

Γ
(
ν + 1

2

) ∫ ∞
0

e−z cosh y(sinh y)2ν dy, (E.1.3)

Kν(z) = π1/2(z/2)ν

Γ
(
ν + 1

2

) ∫ ∞
0

e−zye−z cosh y cosh(νy)dy. (E.1.4)

• The second thing we want to mention is the recurrence relation of Kν(z); these identities would be handful
in simplifying expressions containing several modified Bessel functions (e.g in the calculation of equilibrium
density neq)

Kν(z) = z

2ν [Kν+1(z)−Kν−1(z)] . (E.1.5)

This relation can be directly proved by integrating Eq. (E.1.4) by parts

Kν(z) = sinh(νy)
ν

e−z cosh y
∣∣∣∣∞
0

+ z

ν

∫ ∞
0

dy e−z cosh y sinh(νy) sinh(y)

= z

2ν

∫ ∞
0

dy e−z cosh y
(

cosh[(ν + 1)y]− cosh[(ν − 1)y]
)

= z

2ν [Kν+1(z)−Kν−1(z)] . (E.1.6)

• In practice, we prefer to use the exponential scaled modified Bessel functions. Let us show first the
asymptotic behaviour when z →� 1

Kν(z) '
√

π

2z e
−zPν(z), (E.1.7)

where Pν(z) is an asymptotic series given by (see Ref. [63, Eq. (9.7.2)])

Pν(z) = 1 + 4ν2 − 12

1!(8z) +
(
4ν2 − 12) (4ν2 − 32)

2!(8z)2 + . . . . (E.1.8)

This asymptotic expansion can be obtain as follows: we consider the integrand of (E.1.4)

cosh(νy)e−z cosh y = e−ze

−zy2

2 cosh(νy)e
−z

(
cosh y−1−

y2

2

)

= e−ze

−zy2

2
[
1 + m

2 y
2 + ν2 − z

24 y4 +O(y6)
]
. (E.1.9)

Performing a sequence of integration of the type
∫∞

0 e−zy
2/2y2n dy (which results in an expression of

Gamma function), one can obtain the desired asymptotic series. For instance, up to the 4th order of y in
(E.1.9) gives

Kν(z) =
√

π

2z e
−z
[
1 + 4m2 − 1

8z +O
(

1
z2

)]
. (E.1.10)

A sketch of the exponential property of Kν(z) is given below.
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Related applications
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Figure E.2: asymptotic behaviour of modified Bessel functions of the second kind.

In practice, we prefer to use the exponentially scaled modified Bessel function ezKν(z). Especially when
performing calculations with large value of argument, applying the scaled modified Bessel functions give
better performance. For instance when performing the integration where the integrand containing the
thermal kernel Eq. (II.2.26), the exponential terms on the numerator and denominator partially cancel
out. Keeping these terms can cause the error of dividing by zero error.

E.2 Related applications
This section aims to show some applications of the modified Bessel function of the second kind, mainly using

the integral representation in calculating some physical quantities. Let us recall that a relativistic, homogeneous
and isotropic macroscopic system of particles (bosons or fermions) in thermal equilibrium can be described using
the corresponding statistics:

fη(x, p;T ) = fη(T,E) = g

(2π)3
1

eE/T + η
=⇒


Bose-Einstein distribution: η = −1→ bosons
Fermi-Dirac distribution: η = +1→ fermions
Boltzmann distribution: η = 0

,

(E.2.1)

where g counts the number of internal degrees of freedom. Macroscopic quantities such as number, momentum
and energy densities can be constructed from the given distribution by taking integration over momentum space,
specifically

• Number density

n = g

(2π)3

∫
d3p fη(x, p;T ). (E.2.2)

• Energy density

ρ = g

(2π)3

∫
d3pEfη(x, p;T ). (E.2.3)
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Related applications

• Pressure

P = 1
3

g

(2π)3

∫
d3p

p2

E
fη(x, p;T ). (E.2.4)

Due to the isotropic property: d3p = 4πp2dp. To work with the dimensionless quantities, we make the following
change of variables

x = m

T
, ξ = p

T
, (E.2.5)

and rewrite (E.2.2), (E.2.3) and (E.2.4) as

neq = gT 3

2π2

∫ ∞
0

dξ ξ2

e
√
ξ2+x2 + η

= gT 3

2π2 Aη, (E.2.6)

ρeq = gT 4

2π2

∫ ∞
0

dξ ξ
2
√
ξ2 + x2

e
√
ξ2+x2 + η

= gT 4

2π2 Bη, (E.2.7)

P eq = gT 4

6π2

∫ ∞
0

dξ ξ4√
ξ2 + x2

(
e
√
ξ2+x2 + η

) = gT 4

6π2 Cη. (E.2.8)

Let us consider the case η = 0, i.e the equilibrium system follows the Boltzmann distribution, and cal-
culate the integrals A0, B0, C0. We make another change of variables to bring these integrals into one of the
representation (E.1.2), (E.1.3), (E.1.4):

cosh y =
√
ξ1/x2 + 1, sinh y = ξ/x ⇒ dξ = x cosh ydy. (E.2.9)

The first integral is

A0 =
∫ ∞

0
dξ ξ2

e
√
ξ2+x2

= x3
∫ ∞

0
dy e−x cosh y sinh2 y cosh y

= x3

4

∫ ∞
0

dy e−x cosh y[cosh(3y)− cosh y
]

= x3

4
[
K3(x)−K1(x)

]
= x2K2(x), (E.2.10)

where we used the integral representation (E.1.4) and the recurrence relation [K3(x)−K1(x)]x/4 = K2(x),
derived directly from (E.1.6). The next integral to calculate is that of energy density

B0 =
∫ ∞

0
dy ξ

2
√
ξ2 + x2

e
√
ξ2+x2

= x4
∫ ∞

0
dy e−x cosh y sinh2 y cosh2 y

= x4

8

∫ ∞
0

dy e−x cosh y[cosh(4y)− 1
]

= x4

8 [K4(x)−K0(x)] . (E.2.11)

Applying repeatedly the recurrence relation (E.1.6), we can rewrite the above result as

B0 = x2[3K2(x) + xK1(x)
]
. (E.2.12)

Finally, the calculation on the integral C0 proceed similarly as follows

C0 =
∫ ∞

0
dξ ξ4√

ξ2 + x2
(
e
√
ξ2+x2

) = x4
∫ ∞

0
dy e−x cosh y sinh4(y)

= 3x2K2(x). (E.2.13)

where Eq. (E.1.3) with ν = 2 is used in the final equality. Substitute the expression A0, B0 and C0 back to
Eq. (E.2.6), (E.2.7) and (E.2.8) respectively gives

neq = gT 3

2π2 x
2K2(x), (E.2.14)
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ρeq = gT 4

2π2 x
2[3K2(x) + xK1(x)

]
, (E.2.15)

P eq = gT 4

2π2 x
2K2(x). (E.2.16)

(E.2.17)
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F
Thermal average of velocity-weighted cross section

In the present appendix we attempt to show the plot of velocity-weighted cross section of each tree-level
neutralino annihilation process.
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(a) Fermionic final states of 1st generation.
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Thermal average of velocity-weighted cross section
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Figure F.1: 〈σvlab〉 of neutralino pair annihilation with weak fermionic final states.
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Figure F.2: 〈σvlab〉 of neutralino pair annihilation with weak gauge bosons final states.
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Figure F.3: 〈σvlab〉 of neutralino pair annihilation with one Higgs boson and one weak gauge boson final states.
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Figure F.4: 〈σvlab〉 of neutralino pair annihilation with Higgs bosons final states.
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