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Abstract

In this thesis, we investigate the masses of the Higgs bosons at one-loop level in the Next-to-
Minimal Supersymmetric Standard Model (NMSSM) with the contribution from Inverse Seesaw
mechanism (ISS). With the newly discovered particle at 125 GeV in 2012, it is especially mean-
ingful to determine whether this is the particle proposed within the Standard Model (SM) or in
theories beyond that. Additionally, neutrino Physics is a hot experimental topic in recent years.

Chapter 2 is devoted to a description of supersymmetric theories in general. While chap-
ter 3 focuses on the Minimal and Next-to-Minimal version of the Standard Model. The mass
spectrum and the Higgs sector receives the most attention. The Higgs in NMSSM, while can
be a candidate for the experimentally detected Higgs boson, has some differences from the one
proposed in SM.

With the discovery of neutrino oscillation, mechanisms to explain neutrinos’ masses must be
proposed. We discuss the mechanism in chapter 4 with the focus on Inverse Seesaw to obtain
the unnatural smallness of neutrino mass so that newly appearing particles can be on TeV scale.
The inclusion of such heavy neutrinos surely affects the Higgs masses, and that influence shall
be studied.

However, calculation up to one-loop level is essential to investigate the contributions of
neutrinos to Higgs masses. Ultraviolet (UV) divergences arise in such computation; thus, a
regularization and a renormalization scheme are mandatory to obtain UV-finite result. This
will be explored generally in chapter 5 while the method is applied to our problem in chapter 6.

In chapter 7, the new contributions are implemented in the public code NMSSMCALC to perform
numerical analysis. We investigate the dependence of Higgs boson masses on the neutrino sector
with the experimental constrains on the active neutrinos taken into account. We have found
that the contribution of inverse seesaw mechanism to the SM-like Higgs boson can be as large
as 9%.
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Chapter 1

The Standard Model of Particle
Physics

1.1 Introduction

With the explosion of experimental achievement in particle physics in the last century, demand
was high for a theory that can explain those data. Quantum Electrodynamics (QED) was among
the earliest theories [1–7], yet it is among the most accurate ones [8, 9]. Further investigations
into the beta decay process lead to the proposal of weak force and Electroweak (EW) theory
[10–12]. Along the line, Quantum Chromodynamics (QCD) was also developed to describe the
strong nuclear force [13–16]. In the end, all of these theories are brought together to the Stan-
dard Model (SM). It is a very successful theory describing the elementary particles and their
interactions. It has so far provided predictions remarkably fit with experimental results. Nearly
50 years after its proposal, the last piece of the model, the Higgs boson, was experimentally
confirmed in 2012 [17, 18].

The Standard Model is a renormalizable Yang-Mills theory represented by the gauge group
SUC(3)⊗SUL(2)⊗UY (1). The group SUL(2)⊗UY (1) describes a unified theory of electromag-
netic and weak interactions, called the electroweak theory. While the group SUC(3) is the gauge
group representing the strong interaction. The particles that undergo these interactions build
up to the particle spectrum of the SM. It consists of leptons, quarks divided into three genera-
tions ordered by ascending mass (confront table 1.1), together with the gauge bosons mediating
the corresponding force and a scalar particle, called the Higgs boson, that is the result of the
Higgs mechanism giving mass to other particles [19–25]. Since weak interaction only couples
with left-handed fermions, these left-handed particles are arranged in doublet representation of
SUL(2) while their right-handed counterparts are singlet. Neutrino, however, is an exception
because only left-handed ones are experimentally confirmed, while right-handed neutrino is yet
to be found, thus not included in the SM. The gauge bosons are in the adjoint representations
of their gauge group. Unlike gluons, the gauge field of SUL(2) ⊗ UY (1) mixes to create the
observed W±, Z bosons and photon. The particle spectrum is described in table 1.2, where the
electric charge is computed through the Gell-Mann-Nishijima formula [26–28]

Q = I3 + Y. (1.1.1)

Although some are experimentally confirmed to be massive, gauge bosons have to be massless
to conserved gauge invariance. Thus, symmetry must be broken on a low energy scale. The
Higgs mechanism explain this through the couplings of every massive field with the Higgs field.
Since the W,Z bosons are massive, while the other gauge bosons are not, the Higgs field must
be in a representation of the SUL(2) group. Which means theories with one Higgs singlet is not
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Type 1st generation 2nd generation 3rd generation

Quarks
u (up) c (charm) t (top)

d (down) s (strange) b (bottom)

Leptons
e (electron) µ (muon) τ (tau)

νe (electron-neutrino) νµ (muon-neutrino) ντ (tau-neutrino)

Table 1.1: 3 generations of quarks and leptons

Particle content Field SUC(3)× SUL(2)× UY (1)

Quarks

QL = (uL dL)T (3,2, 1
6)

U †R = u†R (3̄,1,−2
3)

D†R = d†R (3̄,1, 1
3)

Leptons
L = (ν eL)T (1,2,−1

2)

E†R = e†R (1,1, 1)

Higgs φ = (φ+ φ0)T (1,2, 1
2)

Gluon g (8,1, 0)

W,Z boson, photon (γ)
W 1,W 2,W 3 (1,3, 0)

B (1,1, 0)

Table 1.2: The particle content of the Standard Model

allowed. In SM, a Higgs doublet is introduced.

The SM has a total of 18 free parameters that are fixed by experiment:

• gs, gauge coupling constant for strong nuclear force SUC(3),

• g, coupling constant for SUL(2),

• g′, coupling constant for UY (1),

• v, vacuum expectation value (VEV) of the Higgs field,

• mh, the Higgs mass,

• mf , f = u, d, c, s, t, b, e, µ, τ , the masses of fermions with the neutrino assumed to be
massless,

• The three angles and one phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

1.2 The SM Lagrangian

The entire particle spectrum and interaction can be summarized in a single Lagrangian

LSM = LYM + LF + LH + LY , (1.2.1)

where each term respectively is the kinetic term for gauge boson or Yang-Mills theory, the
fermionic term, the Higgs sector and the Yukawa interaction. Each sector will be treated indi-
vidually below.
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Firstly, gauge kinetic sector is given by

LYM = −1

4
GaµνGaµν −

1

4
W iµνW i

µν −
1

4
BµνBµν , (1.2.2)

where a = 1, . . . , 8, i = 1, . . . , 3. All repeated indices are implicitly summed over. This con-
vention will be used throughout this thesis whenever repeated indices are encountered, unless
otherwise stated. Field strength tensor are determined by

Gaµν = ∂µg
a
ν − ∂νgaµ + gsf

abcgbµg
c
ν , (1.2.3)

W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν , (1.2.4)

Bµν = ∂µBν − ∂νBµ. (1.2.5)

Here, gluon field ga corresponds to SUC(3) gauge group with structure constant fabc. W i is
the gauge field of SUL(2) and the structure constant is εijk. B belongs to the abelian group U(1).

The fermionic sector reads

LF = QiLi /DQiL + Lii /DLi + UiRi /DUiR +DiRi /DDiR + EiRi /DEiR, (1.2.6)

where the repeated i = 1, 2, 3 is the generation index determined in table 1.1 and table 1.2.
The covariant derivative containing the gauge interaction, written for the general case with all
interactions is

Dµ = ∂µ − igs
8∑

a=1

T aGaµ − ig
3∑
b=1

IbW b
µ − ig′Y Bµ (1.2.7)

= ∂µ − igs
8∑

a=1

T aGaµ −
ig√

2
(I+W+

µ + I−W−µ )− ig

cos θW

(
I3 −Q sin2 θW

)
Zµ − ieQAµ,

(1.2.8)

where T a and Ib is the generators of their corresponding groups and is respectively half the
Gell-Mann matrices and Pauli matrices; the rotated field Zµ and Aµ are defined as

Zµ = cos θWW
3
µ − sin θWBµ (1.2.9)

Aµ = sin θWW
3
µ + cos θWBµ (1.2.10)

With the convention that T a, Ib, I±, I3 yields 0 when acts upon the corresponding singlet and
Q is the charge operator, this covariant derivative is applicable to all cases of matters listed in
table 1.2.

The Lagrangian for the Higgs doublet is given by

LH = (Dµφ)†(Dµφ)− V (φ) (1.2.11)

with the scalar potential

V (φ) = −µ2(φ†φ) + λ(φ†φ)2 (1.2.12)

The Yukawa interaction sector reads

LY = −Y L
ij L

iφEjR − Y D
ij Q

i
LφD

j
R − Y U

ij Q
i
Lφ̃U

j
R + h.c. (1.2.13)

where YL, YD, YU are the Yukawa couplings whose indices are generation indices, and φ̃ = iσ2φ
is the charged conjugated Higgs doublet.
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1.3 Higgs mechanism and SM mass spectrum

The idea behind Higgs mechanism is that masses of gauge bosons violate gauge symmetry.
Thus, to obtain mass, symmetry must somehow be broken. Since the theory itself is gauge
invariance, it was proposed that the vacuum must break symmetry so that massive particles
may exist. This mechanism is manifest in the SM in its minimal form using only a Higgs doublet.

Since, the W,Z bosons have non-zero mass while gluon and photon are massless. Thus, the
electroweak symmetry SUL(2) ⊗ UY (1) must be broken to UQ(1) describing electromagnetic
interaction. For the Higgs potential in equation (1.2.12) to break symmetry at its vacuum,
its minimum must be degenerate, so that the lowest energy state must pick one among the
degenerate options, thus spontaneously breaking symmetry. More specifically, the parameters
must obey the conditions:

• The potential must have a minimum; thus, λ > 0.

• Its global minima must be degenerate; thus, µ2 > 0.

With these requirements, one can solve for the global minimum of the scalar potential. That is
Vmin = −µ4/(4λ) obtained at

|〈φ〉| = v√
2

, v =

√
µ2

λ
(1.3.1)

To preserve UQ(1) symmetry, the upper component of Higgs field must take a global non-
degenerate minimum at |〈φ+〉| = 0. Then, the only solution is

∣∣〈φ0
〉∣∣ = v/

√
2 corresponding to

a circle on the complex plane. According to Higgs mechanism, at the lowest energy state, the
vacuum is forced to pick one among this collection of states, thus breaking symmetry. At an
energy level not much higher than the vacuum, the generation of mass can be explained by first
expanding the Higgs field around the chosen minimum

φ(x) =

(
φ+(x)

φ0(x)

)
=

(
G+(x)

(v +H(x)− iG0(x))/
√

2

)
. (1.3.2)

Substituting the above expansion into the scalar potential and collect the bilinear terms for
H,G+ and G0, it can immediately be computed that only the neutral CP-even H has a mass of
mH =

√
2λv2. The charged G± and neutral CP-odd G0 are massless. They are the unphysical

Nambu-Goldstone bosons that are absorbed by the gauge bosons to generate the masses for
W± and Z.

To obtain the mass of gauge bosons, equation (1.3.2) is substituted into the kinetic part of
Lagrangian (1.2.11) and the mass is obtained from the bilinear term. The mass eigenstates of
the gauge bosons read 

W±µ =
W 1
µ ∓ iW 2

µ√
2

Zµ = cos θWW
3
µ − sin θWBµ

Aµ = sin θWW
3
µ + cos θWBµ

(1.3.3)

where θW is called the weak mixing angle, defined by

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

. (1.3.4)
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In this basis, the masses of the particles are given by

MW =
vg

2
, MZ =

v
√
g2 + g′2

2
, MA = 0. (1.3.5)

The photon remains massless because we demanded UQ(1) to be not broken by the vacuum.
The fermions’ masses are obtained through the Yukawa interaction sector of the Lagrangian.

LF mass = −
vY L

ij√
2
ēiLe

j
R −

vY D
ij√
2
d̄iLd

j
R −

vY U
ij√
2
ūiLu

j
R + h.c. (1.3.6)

with i, j = 1, 2, 3. Here, no bilinear term for neutrino is found. Thus, the SM predicts that
neutrinos are massless. This, however, contradicts with experiment and is discussed in chapter
4. As for the gauge bosons, we need to diagonalize the corresponding Yukawa matrices to obtain
their mass

mf =
vyf√

2
, f = e, µ, τ, u, d, c, s, t, b (1.3.7)

where yf is the respective eigenvalues of the corresponding Yukawa matrix. In reality, without
taking neutrino sector into account, no leptonic mixing has been experimentally confirmed, thus
their Yukawa matrix is automatically diagonalized. It is, however, not the case for the quark
sector. Quarks are observed to mixed among its flavour. The mixing is characterized by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [29, 30], defined by

UCKM = V u
L V

d†
L (1.3.8)

with i, j = 1, 2, 3. The matrix has three angle parameters and one CP-violating phase. Such
phenomenon is important because it is the only source of CP violations in the SM. Unlike
predicted in the SM, neutrinos are also observed to mix through neutrino oscillation experiments
[31–33]. This topic will be elaborated further in chapter 4

1.4 The issues of SM

Though being the best fit theory for experiment, the Standard Model is considered to be an
effective theory and also fails to explain some questions. These can be categorized into two
groups. The first consists of theoretical problems.

• The Quantum theory of Gravity: SM only explain electromagnetic, weak and strong,
excluding gravity, and has some unexplained issues. Thus it is expected to be only a low
energy approximation for a more general theory.

• The hierarchy problems: The typical scale of SM is about Mew ∼ 100 GeV, which is mul-
tiple of magnitudes smaller than the Planck scale Mpl ∼ 1019 GeV, where the quantum
theory of gravity lies. Many questions arises. Why the fundamental scales of the Universe
so different? But a more important question is that the quantum correction of Higgs mass
is quadratically sensitive to the cut-off mass scale, which is naturally of order Mpl. But
with the experimentally confirmed mass of Higgs of ∼ 125 GeV, the radiative correction
to Higgs mass is 34 orders of magnitude larger than the mass itself. This requires ex-
treme fine-tuning to the counterterms of the Higgs mass and is a hierarchy problem that
supersymmetric can solve easily.

• Gauge coupling unification: In the SM, the three couplings of tends to meet at the energy
scale around GUT scale, but they not actually coincide. However, in supersymmetric
Grand Unified Theory (SGUT), the three couplings exactly meet

7



The second group is suggested from experimental data.

• Neutrino mass: As shown above, the SM neutrinos are massless. However, experimental
data gathered from solar, atmospheric, reactor and accelerator neutrinos suggest other-
wise. Not only do those neutrinos have non-zero mass, its mass is unnaturally small, of
order 10−6 that of the lightest lepton, electron. The SM need to be extended to include
neutrino masses and to explain the their smallness

• Dark matter: Although observed to be abundant, dark matter has yet to reveal any
information about what it is made of. Experiments have shown that it must not have
electric or color charge and must be stable. However, SM cannot gives any candidate with
such property. Even if we account for massive neutrinos, the amount of them would not
be enough to cover all of dark matter. Therefore, a new theory that can give a reliable
candidate is attractive.

There are many theoretical ways to try solving the above problems. This thesis focuses on the
supersymmetric methods, especially the Minimal and Next-to-Minimal Supersymmetric version
of the Standard Model, and the seesaw mechanisms, particularly Inverse Seesaw Mechanism.
As shown in the upcoming chapters, these methods provide the solutions to some of the above
problems

8



Chapter 2

Supersymmetry

2.1 Introduction

One possible path to resolves to problems existing in SM is to extend its symmetry group to
a more general case. While one popular approach is to extend its internal symmetry such as
SO(10) or SU(5) [34], supersymmetry (SUSY) expands the external (or spacetime) symmetry.
Contrary to the endless choices available for internal symmetry, Coleman and Mandula [35]
together with Haag, Lopuszanski and Sohnius [36] have proven that there is a largest possible
spacetime symmetry group. This theorem is the mathematical foundation for the development
of SUSY. According to Coleman and Mandula’s paper, for a reasonably natural physical theory,
spacetime symmetry group contains the following properties:

• Lorentz invariance.

• There is a finite number of types of particle. Or more specifically, each mass multiplet
contains a finite number of types of particle.

• Elastic-scattering amplitudes are analytic functions of the center of mass energy
√
s and

momentum transfer in some neighbourhood of physical region.

The most general symmetry of nature is Poincaré × Internal symmetry. However, in that
theorem, only bosonic operators are considered. Later, Haag, Lopuszanski and Sohnius [36]
expanded the treatment to include both commuting and anti-commuting operators. In such
theories, the largest possible symmetry is

SuperPoincaré × Internal symmetry

where SuperPoincaré composes of the generators of Poincaré group and fermionic operators
QIα, Q̄

J
α̇ (I, J = 1, . . . , N ;α = 1, 2; α̇ = 1̇, 2̇). This operator act as

Q |Boson〉 = |Fermion〉 , Q |Fermion〉 = |Boson〉 . (2.1.1)

That means it changes between boson and fermion or changes the spin of a particles, which is
directly related to the generators of Lorentz group Mµν ; hence, this operators commutes with
translations Pµ but not with Lorentz group generators. For more details, see section 2.2.

Although no experimental evidence has yet been found to support supersymmetry, many
physicists still find it interesting to investigate deeper into this topic. Moreover, with the re-
cent and upcoming updates of the Large Hadron Collider (LHC) and the plans to build more
advanced colliders such as the Future Circular Collider (FCC), physicist may find evidence to
prove the validity of supersymmetry if it is the underlying theory of nature.

Next, we shall investigate the algebraic structure of supersymmetry before we move on to
construct a supersymmetric Lagrangian using the notion of superfield and superspace.
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2.2 Supersymmetric Algebra

According to the paper by Haag, Lopuszanski and Sohnius [36], the generators for the largest
symmetry group in nature obey the algebra

[Pµ, Pν ] = 0, (2.2.1)

[Mµν ,Mρσ] = i(gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ), (2.2.2)

[Mµν , Pρ] = i(gρνPµ − gρµPν) (2.2.3)[
Pµ, Q

I
α

]
= 0, (2.2.4)[

Pµ, Q̄
I
α̇

]
= 0, (2.2.5)[

QIα,Mµν

]
= (σµν) β

α Q
I
β, (2.2.6)[

Q̄Iα̇,Mµν

]
= (σ̄µν)α̇

β̇
Q̄Iβ̇, (2.2.7){

QIα, Q̄
J
β̇

}
= 2σµ

αβ̇
Pµδ

IJ , (2.2.8){
QIα, Q

J
β

}
= εαβZ

IJ , (2.2.9){
Q̄Iα̇, Q̄

J
β̇

}
= εα̇β̇(ZIJ)∗, (2.2.10)

with I, J = 1, . . . , N ; µ, ν, ρ = 0, · · · , 3; α, β = 1, 2; α̇, β̇ = 1̇, 2̇. ZIJ , which has the anti-
symmetric property ZIJ = −ZJI , are called central charges, are Lorentz scalar, and commute
with the whole supersymmetry algebra and the internal symmetry. QIα, Q̄

I
α̇ are written in two-

component-spinor notation. A brief description of σµν , σ̄µν , εαβ, εα̇β̇ and spinor algebra can be
found in appendix A.2. In some texts, an extra i are added in equation (2.2.6) and (2.2.7).
But that is only a matter of convention. From the algebra, we can observe that Pµ,Mµν are
bosonic operators due to their commutation relations, while QIα, Q̄

I
α̇ are fermionic operators due

to anticommutation relations.

If we expand our consideration to internal symmetry, whose generators are Al, to get the full
symmetry acting on a system, we will have these additional commutators added to our algebra

[Al, Am] = ifnlmAn, (2.2.11)

[Pµ, Al] = 0, (2.2.12)

[Mµν , Al] = 0, (2.2.13)[
QIα, Al

]
= (al)

I
JQ

J
α, (2.2.14)[

Q̄Iα̇, Al
]

= −Q̄Jα̇(al)
J
I . (2.2.15)

For simplicity and relevant phenomenologies, we only consider the case where N = 1.

2.3 Superfield and superspace

Using the generators of supersymmetry algebra, we can, in principle, write the supersymmetric
field representations in 4-dimensional spacetime, thus build the Lagrangian as normally do
in SM. However, such approach is so complicated because in the SM one has to make sure
each term satisfying intenal symmetry separately while in SUSY one has to ensure that the
sum of all terms to be invariant. The simpler way to accomplish this task is through the
introduction of superspace and superfield. Therefore, this section is devoted to describing
these two concepts. In the following one, we will use those definitions to construct a general
Lagrangian for supersymmetric Lagrangian
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2.3.1 Superspace

To construct the Lagrangian for supersymmetric field theory, we need to be able write down the
representation of multiplet of fields. Although this is possible, it poses a problem. To construct
a supersymmetric theory, the action should be invariant under a supersymmetric transforma-
tion. Checking this using regular Minkowski space is very cumbersome. One way to solve this
problem is to introduce a new space called superspace which is an extension of Minkowski space.
In this formalism, the supersymmetric invariance is realized naturally.

First of all, the Minkowski space can be defined as followed: Minkowski = Poincaré / Lorentz.
Since the Poincaré group consists of translation, boost and rotation while the Lorentz group has
boost and rotation, the Minkowski space is constructed from only translational transformation.
This can be easily understood since the whole Minkowski space is made purely from translating
the origin using all arbitrary 4-vectors.

The same idea can be used to extend the regular Minkowski space to superspace. We can
extend the set of generators for Poincaré group {Mµν , Pµ} to also contain the spinor generators
QAα , Q̄

A
α̇ , which becomes the generators for super Poincaré group. The new superspace can now

be defined as

Superspace = SuperPoincaré / Lorentz.

For convenience, we need to rewrite the whole supersymmetry algebra in term of Lie al-
gebra. To do that we need to introduce the Grassmann parameters θα, θ̄β̇ to reduce the anti-
commutators in the supersymmetry algebra to commutator. This works as follow[

θαQα, θ̄
β̇Q̄β̇

]
= θαθ̄β̇QαQ̄β̇ + θαθ̄β̇Q̄β̇Qα = θαθ̄β̇

{
Qα, Q̄β̇

}
= 2θα(σµ)αβ̇ θ̄

β̇Pµ, (2.3.1)[
θαQα, θ

βQβ

]
= θαθβQαQβ + θαθβQβQα = θαθβ{Qα, Qβ} = 0, (2.3.2)[

θ̄α̇Q̄α̇, θ̄
β̇Q̄β̇

]
= θ̄α̇θ̄β̇Q̄α̇Q̄β̇ + θ̄α̇θ̄β̇Q̄β̇Q̄α̇ = θ̄α̇θ̄β̇

{
Q̄α̇, Q̄β̇

}
= 0. (2.3.3)

Exponentiating this Lie algebra, we get the SuperPoincaré group whose element can be written
as

G(x, θ, θ̄, ω) = exp

(
ixµPµ + iθαQα + iθ̄β̇Q̄β̇ +

i

2
ωµνMµν

)
. (2.3.4)

A “point” in superspace can now be identified through a one-to-one map with the corresponding
“super-translation” by omitting the generator of Lorentz group from the above expression

(xµ, θα, θ̄α̇)↔ eix
µPµei(θQ+θ̄Q̄). (2.3.5)

The 2+2 anti-commuting Grassmann numbers θα, θ̄α̇ can be thought of as coordinates in super-
space. More details on the algebra of Grassmann numbers are presented in appendix A.2 while
its calculus can be found in appendix A.3

2.3.2 General superfield

To define a superfield, which is a field in superspace, we can start from the definition of field.
A field, in Minkowski space, is

• a function of spacetime coordinate xµ, and

• transform under translation as, for example, φ(xµ) = exp(−iaµPµ)φ(0) exp(iaµP
µ).

11



This very definition can be naturally extended to superfield by replacing ordinary spacetime
with superspace and translation with super-translation.

Firstly, a superfield is a function of coordinate in superspace (xµ, θα, θ̄α̇). As consequence
of Grassman number properties A.3, the Taylor expansion of a general scalar superfield Y =
Y (x, θ, θ̄) is

Y (x, θ, θ̄) = f(x) + θψ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x) + θσµθ̄vµ(x) + θθθ̄λ̄(x)

+ θ̄θ̄θρ(x) + θθθ̄θ̄d(x) (2.3.6)

where f, ψ, χ̄,m, n, vµ, λ̄, ρ, d are fields. Since each term in the expansion is automatically
Lorentz invariant by definition, the superfield itself is also Lorentz invariance. For the last
property, a superfield is a field in superspace that transforms under a super-translation accord-
ing to the following rule with parameters ε, ε̄. Here, we exclude translational parameters coming
from Poincaré group because all component fields, thus the general field, have already satisfied
such transformation.

Y (x+ δx, θ + δθ, θ̄ + δθ̄) = exp
(
−i(εQ+ ε̄Q̄)

)
Y (x, θ, θ̄) exp

(
i(εQ+ ε̄Q̄)

)
. (2.3.7)

Using this definition, we can now find the appropriate variation property of a superfield so that
the suitable transformation relation is realized, which will also be handy in our later discussion
about the invariance of the Lagrangian. The variation is defined as

δε,ε̄Y (x, θ, θ̄) := Y (x+ δx, θ + δθ, θ̄ + δθ̄)− Y (x, θ, θ̄) (2.3.8)

where the variation δx, δθ, δθ̄ is resulted from the translation (2.3.7) above and depends on the
parameter ε, ε̄. The explicit expression can be found as followed

Y (x+ δx, θ + δθ, θ̄ + δθ̄) = exp
{
−i(εQ+ ε̄Q̄)

}
Y (x, θ, θ̄) exp

{
i(εQ+ ε̄Q̄)

}
= e−i(εQ+ε̄Q̄)e−i(xP+θQ+θ̄Q̄)Y (0, 0, 0)ei(xP+θQ+θ̄Q̄)ei(εQ+ε̄Q̄).

While the left-hand-side equates

Y (x+ δx, θ + δθ, θ̄ + δθ̄) = e−i(x+δx)P−i(θ+δθ)Q−i(θ̄+δθ̄)Q̄Y (0, 0, 0)ei(x+δx)P+i(θ+δθ)Q+i(θ̄+δθ̄)Q̄,

which means

exp
{
i(xP + θQ+ θ̄Q̄)

}
exp
{
i(εQ+ ε̄Q̄)

}
= exp

{
i(x+ δx)P + i(θ + δθ)Q+ i(θ̄ + δθ̄)Q̄

}
.

(2.3.9)

Using the Baker-Campbell-Hausdorff formula to the second order (approximating higher terms
as zero) for the left-hand-side

1 ≈ exp

{
i(xP + θQ+ θ̄Q̄) + i(εQ+ ε̄Q̄) +

1

2

[
i(xP + θQ+ θ̄Q̄), i(εQ+ ε̄Q̄)

]}
= exp

{
ixP + i(θ + ε)Q+ i(θ̄ + ε̄)Q̄− 1

2

[
θQ, ε̄Q̄

]
+

1

2

[
θ̄Q̄, εQ

]}
= exp

{
ixP + i(θ + ε)Q+ i(θ̄ + ε̄)Q̄− θσµε̄Pµ + εσµθ̄Pµ

}
= exp

{
i(x+ iθσµε̄− iεσµθ̄)P + i(θ + ε)Q+ i(θ̄ + ε̄)Q̄

}
.

Equating two sides of equation (2.3.9), we obtain
δxµ = iθσµε̄− iεσµθ̄
δθα = εα

δθ̄α̇ = ε̄α̇
. (2.3.10)
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Although we only consider the generator Q, Q̄, due to the supersymmetry algebra
{
Qα, Q̄α̇

}
∼

Pµ, two subsequent supersymmetric transformation produce spacetime translation. Because
there are two ways to express the variation of a superfield. One way is to treat Y (x, θ, θ̄) as a
field operator using the definition (2.3.7)

δε,ε̄Y (x, θ, θ̄) ≈ (1− iεQ− iε̄Q̄)Y (x, θ, θ̄)(1 + iεQ+ iε̄Q̄)− Y (x, θ, θ̄)

≈ −iεα
[
Qα, Y (x, θ, θ̄)

]
− iε̄α̇

[
Q̄α̇, Y (x, θ, θ̄)

]
.

The other is to consider it as a vector in some vector space

Y (x+ δx, θ + δθ, θ̄ + δθ̄) = exp
{
i(εQ+ ε̄Q̄)

}
Y (x, θ, θ̄) ≈ (1 + i(εQ+ ε̄Q̄))Y (x, θ, θ̄)

=⇒ δε,ε̄Y (x, θ, θ̄) ≈ i(εQ+ ε̄Q̄)Y.

Therefore, we can equate the above two expressions to get [Y,Qα] ≡ QαY,
[
Y, Q̄α̇

]
≡ Q̄α̇Y and

obtain

δε,ε̄Y = i(εQ+ ε̄Q̄)Y = i
[
Y, (εQ+ ε̄Q̄)

]
. (2.3.11)

This formula comes directly from the third property of a superfields and completes the definition.
It is often used to check whether a field is a superfield. One problem arises, however, is that
in order to use that relation, we need to know the differential representations of the operators.
To obtain this, we re-express the variation of Y in (2.3.11) using Taylor expansion and equates
the two sides

δε,ε̄Y (x, θ, θ̄) ≈ Y (x, θ, θ̄) + δxµ∂µY (x, θ, θ̄) + δθα∂αY (x, θ, θ̄) + δθ̄α̇∂̄α̇Y (x, θ, θ̄)− Y (x, θ, θ̄)

=
[
εα∂α + ε̄α̇∂̄α̇ + i(θσµε̄− εσµθ̄)∂µ

]
Y (x, θ, θ̄)

=
[
iεα(−i∂α − σµαβ̇ θ̄

β̇∂µ) + iε̄α̇(−i∂̄α̇ − θβσµβα̇∂µ)
]
Y (x, θ, θ̄).

We obtain the differential representations for the operators Qα, Q̄α̇{
Qα = −i∂α − σµαβ̇ θ̄

β̇∂µ

Q̄α̇ = i∂̄α̇ + θβσµβα̇∂µ
. (2.3.12)

Using the above results, we can prove the following properties:

• A product of superfields is a superfield.

• Linear combination of superfields is a superfield.

• If S is a superfield, then ∂µS,DαS, D̄α̇S are also superfields, where Dα and D̄α̇ are co-
variant derivatives

Dα := ∂α + iσµ
αβ̇
θ̄β̇∂µ , D̄α̇ := ∂̄α̇ + iθβσµβα̇∂µ. (2.3.13)

Using these properties, we can see that any combination of addition, multiplication or deriva-
tions of superfields is a superfield.

Before we continue, we shall find the variation of the components fields of the general
superfield under supersymmetric transformation.

δε,ε̄Y = i(εQ+ ε̄Q̄)Y

=
(
εα∂α − iεασµαβ̇ θ̄

β̇∂µ + ε̄α̇∂̄α̇ − iε̄α̇θβσµβα̇∂µ
)
Y
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= εψ + 2εθm(x) + (εσµθ̄)vµ(x) + 2(εθ)θ̄λ̄(x) + (θ̄θ̄)ερ(x) + 2εθ(θ̄θ̄)d(x)

− i(εσµθ̄)
(
∂µf + θ∂µψ(x) + θ̄∂µχ̄(x) + (θθ)∂µm(x) + (θσν θ̄)∂µvν(x) + (θθ)θ̄∂µλ̄(x)

)
+ ε̄χ̄+ 2ε̄θ̄n(x) + (θσµε̄)vµ(x) + (θθ)ε̄λ̄(x) + 2(ε̄θ̄)θρ(x) + 2(θθ)(ε̄θ̄)d(x)

+ i(θσµε̄)
(
∂µf(x) + θ∂µψ(x) + θ̄∂µχ̄(x) + (θ̄θ̄)∂µn(x) + (θσν θ̄)∂µvν(x) + (θ̄θ̄)θ∂µρ(x)

)
= (εψ + ε̄χ̄) + θ[2εm+ σµε̄(i∂µf + vµ)] + θ̄[2ε̄n− εσµ(i∂µf − vµ)] + (θθ)

(
ε̄λ̄− i

2
∂µψσ

µε̄

)
+ (θ̄θ̄)

(
ερ+

i

2
εσµ∂µχ̄

)
+ (θσµθ̄)

[
εσµλ̄+ ρσµε̄+

i

2
(∂νψσµσ̄νε− ε̄σ̄νσµ∂νχ̄)

]
+ (θθ)θ̄

(
2ε̄d+ iσ̄µε∂µm+

i

2
σ̄νσµε̄∂µvν

)
+ (θ̄θ̄)θ

(
2εd+ iσµε̄∂µn−

i

2
σν σ̄µε∂µvν

)
+ (θθ)(θ̄θ̄)

i

2
∂µ(εσµ∂µλ̄− εσ̄µ∂µρ)

≡ δf + θ(δψ) + θ̄(δχ̄) + (θθ)δm+ (θ̄θ̄)δn+ (θσµθ̄)δvµ + (θθ)θ̄δλ̄+ (θ̄θ̄)θδρ+ (θθ)(θ̄θ̄)δd.

Therefore, we obtain the variation of the component fields. These variations will come in handy
when we build the Lagrangian for the supersymmetric theory.

δf = εψ + ε̄χ̄

δψ = 2εm+ σµε̄(i∂µf + vµ)

δχ̄ = 2ε̄n− εσµ(i∂µf − vµ)

δm = ε̄λ̄− i

2
∂µψσ

µε̄

δn = ερ+
i

2
εσµ∂µχ̄

δvµ = εσµλ̄+ ρσµε̄+
i

2
(∂νψσµσ̄νε− ε̄σ̄νσµ∂νχ̄)

δλ̄ = 2ε̄d+
i

2
(σ̄νσµε̄)∂µvν + iσ̄µε∂µm

δρ = 2εd− i

2
(σν σ̄µε)∂µvν + iσµε̄∂µn

δd =
i

2
∂µ(εσµλ̄− ρσµε̄).

Among all the component fields, only the variation of D-term is a total derivative under su-
persymmetric transformation. Which means, if we construct the 4-dimensional Lagrangian by
integrating the superfield

L =

∫
d2θd2θ̄Y (x, θ, θ̄) = d(x), (2.3.14)

it is guaranteed to be supersymmetric invariant up to a total derivative. However, the super-
field contains so many component fields, this general superfield is reducible representation of
supersymmetry. That is, we can eliminate some of its component using some restrictions and
it can still be a superfield. Here, we only consider the kinds of irreducible superfields that we
will use in our theory

2.3.3 Chiral superfield

The definition of a chiral superfield Φ is

D̄α̇Φ = 0. (2.3.15)
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Since the above expression is a superfield, the definition is supersymmetric invariance. A anti-
chiral superfield Ψ is defined similarly

DαΨ = 0. (2.3.16)

We shall solve only chiral superfield. The result for the anti-chiral can be obtained similarly.
To easily handle chiral superfield, we need to define new coordinates

yµ = xµ + iθσµθ̄ , ȳµ = xµ − iθσµθ̄ (2.3.17)

which gives

D̄α̇Φ = ∂̄α̇Φ +
∂Φ

∂yµ
∂yµ

∂θ̄α̇
+ iθβσµβα̇∂µΦ

= ∂̄α̇Φ + ∂µΦ(−iθσµ)α̇ + iθβσµβα̇∂µΦ

= ∂̄α̇Φ = 0.

Therefore the terms depending on θ̄ in Φ(y, θ, θ̄) vanishes. Conventionally, it is written as follow

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y). (2.3.18)

To obtain the original Φ(x, θ, θ̄), we just need to Taylor-expanding this expression around x

Φ(x, θ, θ̄) = Φ(y, θ) = Φ(x+ iθσµθ̄)

= Φ(x, θ) + ∂µΦ(x, θ)(iθσµθ̄) +
1

2
∂µ∂νΦ(x, θ)(iθσµθ̄)(iθσν θ̄)

= φ(x) +
√

2θψ(x) + iθσµθ̄∂µφ(x) + θθF (x) +
i√
2

(θθ)(θ̄σ̄µ∂µψ)− 1

4
θθθ̄θ̄�φ(x).

(2.3.19)

Similarly for anti-chiral superfield

Φ̄(x, θ, θ̄) = φ̄(ȳ) +
√

2θ̄ψ̄(ȳ) + θ̄θ̄F̄ (ȳ) (2.3.20)

= φ̄(x) +
√

2θ̄ψ̄(x)− iθσµθ̄∂µφ̄(x) + θ̄θ̄F̄ (x) +
i√
2
θ̄θ̄θσµ∂µψ̄(x)− 1

4
θθθ̄θ̄�φ̄(x).

(2.3.21)

A note can be made here that the F-term is the same in both coordinate system. Although
chiral superfields have 3 component fields, only two of them have physical meaning. The F field
is called an auxiliary field and is not physical. This will become clearer in the section 2.4. Next,
we need to find the variation of chiral superfield under supersymmetric transformation. Using
the new coordinate system (y, θ, θ̄), the differential representation of Qα, Q̄α̇ is

Q(y)
α = −i∂α − i

∂yµ

∂θα
∂µ − σµαβ̇ θ̄

β̇∂µ = −i∂α − i(iσµθ̄)α∂µ − (σµθ̄)α∂µ = −i∂α, (2.3.22)

Q̄
(y)
α̇ = i∂̄α̇ + i

∂yµ

∂θ̄α̇
∂µ + θβσµβα̇∂µ = −i∂α + i(−iθσµ)α̇∂µ + (θσµ)α̇∂µ = i∂̄α̇ + 2θασµαα̇

∂

∂yµ
.

(2.3.23)

Plugging these expressions into δε,ε̄Φ(y, θ) = i(εQ+ ε̄Q̄)Φ(y, θ) we obtain

δε,ε̄Φ(y, θ) =

(
εα∂α − ε̄α̇∂̄α̇ + 2iε̄α̇(θσµ)α̇

∂

∂yµ

)
Φ(y, θ)

=

(
εα∂α − ε̄α̇∂̄α̇ + 2i(θσµ)α̇ε̄

α̇ ∂

∂yµ

)(
φ(y) +

√
2θψ(y) + θθF (y)

)
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=
√

2εψ + 2εθF + 2iθσµε̄

(
∂

∂yµ
φ+
√

2θ
∂

∂yµ
ψ + θθ

∂

∂yµ
F

)
=
√

2εψ +
√

2θ

(√
2εF +

√
2iσµε̄

∂

∂yµ
φ

)
+ 2
√

2i(θσµε̄)

(
θ
∂ψ

∂yµ

)
=
√

2εψ +
√

2θ

(√
2εF +

√
2iσµε̄

∂

∂yµ
φ

)
+ 2
√

2i

(
−1

2

)
(θθ)(∂µψσ

µε̄)

=
√

2εψ +
√

2θ

(√
2εF +

√
2iσµε̄

∂

∂yµ
φ

)
− θθ(

√
2i∂µψσ

µε̄)

≡ δφ+
√

2θδψ + θθδF.

Therefore the variation of the different field components of the chiral superfields Φ and Φ̄ are
δφ =

√
2εψ

δψα =
√

2i(σµε̄)α∂µφ+
√

2εαF

δF = −i
√

2∂µψσ
µε̄

,


δφ̄ =

√
2ε̄ψ̄

δψ̄α̇ =
√

2i(σ̄µε)α̇∂µφ̄+
√

2ε̄α̇F

δF̄ = −i
√

2∂µψ̄σ̄
µε

. (2.3.24)

It can be observed that upon the three fields, only the F-term is a total derivative.

2.3.4 Vector superfields

The definition for a vector (or real) superfield V is

V = V̄ . (2.3.25)

Plug this definition into the general expression for a superfield, we get

f = f̄ , ψ = χ , m = n̄ , vµ = v∗µ , λ = ρ , d = d∗. (2.3.26)

However, it is conventional and more convenient to express V (x, θ, θ̄) in the following way, which
is equivalent to the above result

V (x, θ, θ̄) = C(x) + θχ(x) + θ̄χ̄(x) + θσµσ̄vµ +
1

2
θθ(M(x) + iN(x)) +

1

2
θ̄θ̄(M(x) + iN(x))

+ θθθ̄

(
λ̄(x) +

i

2
σ̄µ∂µχ(x)

)
+ θ̄θ̄θ

(
λ(x) +

i

2
σµ∂µχ̄(x)

)
+

1

2
θθθ̄θ̄

(
D(x)− 1

2
∂2C(x)

)
. (2.3.27)

In this convention, there are 8 bosonic components C,M,N,D, Vµ and 4 + 4 fermionic ones, 4
for each of χα, λα. We shall not consider the variation of this superfield because all terms of the
general superfield survives; thus, the variation should be similar to that of the general superfield.
That is only the D-term transforms like a total derivative under supersymmetric transformation.

In considering the Lagrangian for the Standard Model, we shall also encounter gauge trans-
formation; therefore, it is appropriate here to introduce such formalism in supersymmetric
theory. Since Φ + Φ̄ is a vector superfield if Φ is a chiral superfield, under

V → V + Φ + Φ̄, (2.3.28)

the vector component in V transforms as

vµ → vµ − ∂µ(2=φ). (2.3.29)
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This is how an ordinary (abelian) gauge transformation is in non-supersymmetric theory. There-
fore, equation (2.3.28) is a natural definition for the supersymmetric gauge transformation.
Under such transformation, the component of V transform as

C → C + 2Reφ

χ → χ− i
√

2ψ

M →M − 2=F
N → N + 2ReF

D → D

λ → λ

vµ → vµ − 2∂µ=φ

. (2.3.30)

Since the theory should be and can be proven to be invariant under gauge transformation, we
can choose the component of Φ so that under such gauge, V is suitably simplified. One such
choice is the Wess-Zumino gauge, which, although the above argument starts from abelian gauge
theory, applies to non-abelian case as well:

Reφ = −C
2

, ψ = − i√
2
χ , ReF = −N

2
, =F =

M

2
, (2.3.31)

and the vector superfield reduces to

VWZ(x, θ, θ̄) = (θσµθ̄)vµ(x) + (θθ)
(
θ̄λ̄(x)

)
+ (θ̄θ̄)(θλ(x)) +

1

2
(θθ)(θ̄θ̄)D(x). (2.3.32)

One important property of this field is that V 2
WZ =

1

2
(θθ)(θ̄θ̄)vµv

µ and V n
WZ = 0, n ≥ 3 because

all products involving more than 2 θ or 2 θ̄ vanish. These identities will be useful later when
we construct the Lagrangian.

Before we move on, there are several important properties of chiral, anti-chiral and vector
superfields that are needed in our future treatment of the Lagrangian:

• The sums and products of chiral superfields are chiral superfields. Similarly for anti-chiral
superfields and vector superfields.

• The sum of a chiral superfield and an anti-chiral superfield is a vector superfield.

• The product of a chiral and an anti-chiral superfield is also a vector superfield.

2.4 Supersymmetric Lagrangian

Now, we have enough tools to construct a Lagrangian for supersymmetric theory composing of
chiral, anti-chiral and vector superfields. To start, we can use the observations of the variations
of the component fields. Only the D-term of vector superfield and F-term of chiral superfield
are invariant under supersymmetric transformation. Thus one illuminating approach would be
construct the superfields, and include its invariant component field to the Lagrangian. In this
way, we do not need to worry about supersymmetric invariant again. The general Lagrangian
one would be

LSUSY = L1|D + (L2|F + h.c.) =

∫
d2θd2θ̄L1 +

(∫
d2θL2 +

∫
d2θ̄L̄2

)
(2.4.1)

with L1 being vector superfield, while L2 being chiral superfield. The notation |D means taking
the D-term of the superfield. Similarly for the F-term.

We shall divides the total Lagrangian into different sectors depending on the fields that
participates and investigates them individually before amalgamates them in a complete theory.
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2.4.1 Chiral sector

This sector involves only chiral and anti-chiral superfields. Using what we stated above, the
only possible combination for Lagrangian in chiral sector is

Lchiral = K(Φi, Φ̄i)
∣∣
D

+
(
W (Φi)

∣∣
F

+ h.c.
)

(2.4.2)

where K is a general superfield known as Kähler potential which contributes to the kinetic part
of the Lagrangian. W (Φ) is known as the superpotential and is a chiral superfield as required
since addition and multiplication of chiral superfields are themselves chiral superfields. This is
the interaction part. The index i is to be summed over all possible superfields appearing in the
theory. Such implicit sum over repeated indices is assumed throughout this paper.

For the theory to be renormalizable, the Kähler potential and superpotential must have
some restriction. We know that the general expression for a chiral superfield is

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y). (2.4.3)

Since φ is a scalar field, while ψ is a spinor, the dimensionality of its component can be found

[Φ] = [φ] = 1 , [ψ] =
3

2
=⇒ [θ] = −1

2
, [F ] = 2. (2.4.4)

Because we want [L] = 4, for the theory to be renormalizable, we must have the dimensionality
of the potentials to be at most 4, meaning [K|D] ≤ 4 and [W |F ] ≤ 4. That puts a constraint in
the dimensionality of K = ...+ (θθ)(θ̄θ̄)K|D and W = ...+ (θθ)W |F (since [θ] = −1

2)

[K] ≤ 2 , [W ] ≤ 3. (2.4.5)

Using this dimensional analysis, the only possible term for K is

K(Φi, Φ̄i) = Φ̄iΦ
i. (2.4.6)

Any other terms either produce a higher dimension than allowed or give a chiral superfield (which
we are considering separately) instead of a vector superfield. For W , the highest possible order
is 3 and the lowest is 1 because an additive constant does not contribute to the Lagrangian

W (Φi) = λiΦ
i +

1

2
mijΦ

iΦj +
1

3
gijkΦ

iΦjΦk. (2.4.7)

The general Lagrangian is then

L = Φ̄iΦ
i|D +

((
λiΦ

i +
1

2
mijΦ

iΦj +
1

3
gijkΦ

iΦjΦk

)∣∣∣∣
F

+ h.c.

)
. (2.4.8)

The next task is to express this in term of component fields. For the superpotential, although
direct substitution would yield the same result, the more convenient way is through Taylor
expansion use coordinate yµ to utilize the fact that superpotential is a chiral superfield. Due to
being cubic, the superpotential can only be expanded to third order. For conciseness, we will

use the notation
∂W

∂φi
≡ ∂W

∂Φi

∣∣∣∣
Φi=φi

and similarly for higher derivatives

W (Φi) = W (φi) +
∑
i

(Φi − φi)∂W
∂φi

+
1

2

∑
i,j

(Φi − φi)(Φj − φj) ∂2W

∂φi∂φj

+
1

6

∑
i,j,k

(Φi − φi)(Φj − φj)(Φk − φk) ∂3W

∂φi∂φj∂φk

18



= W (φi) +
∑
i

(
√

2θψi + θθF i)
∂W

∂φi
+

1

2

∑
i,j

(
√

2θψi + θθF i)(
√

2θψj + θθF j)
∂2W

∂φi∂φj

+
1

6

∑
i,j,k

(
√

2θψi + θθF i)(
√

2θψj + θθF j)(
√

2θψk + θθF k)
∂3W

∂φi∂φj∂φk

= W (φi) +
√

2θ
∑
i

ψi
∂W

∂φi
+ (θθ)

∑
i

F i
∂W

∂φi
− 1

2

∑
i,j

ψiψj
∂2W

∂φi∂φj

.
Therefore, the F-term, utilizing the repeated index as summation notation, is

LW = W (Φi)
∣∣
F

= F i
∂W

∂φi
− 1

2
ψiψj

∂2W

∂φi∂φj
. (2.4.9)

Because the F-term of chiral superfield is the same in both xµ and yµ coordinate, although the
expression here is derived in yµ, it is also valid in xµ. For the Kähler potential, the computation
is more complicated. Here, we only focus on the terms that contribute to D-term; other terms
are suppressed in ”. . . ”

K(Φi, Φ̄i) = Φ̄iΦ
i

=

[
φ̄i +

√
2θ̄ψ̄i − iθσµθ̄∂µφ̄i + θ̄θ̄F̄i +

i√
2
θ̄θ̄θσµ∂µψ̄i −

1

4
θθθ̄θ̄�φ̄i

]
×
[
φi +

√
2θψi + iθσµθ̄∂µφ

i + θθF i +
i√
2

(θθ)(θ̄σ̄µ∂µψ
i)− 1

4
θθθ̄θ̄�φi

]
= · · · − 1

4
(θθ)(θ̄θ̄)φ̄i�φ

i +
√

2θ̄ψ̄i ×
i√
2

(θθ)(θ̄σ̄µ∂µψ
i)−

(
iθσµθ̄∂µφ̄i

)(
iθσν θ̄∂νφ

i
)

+ (θθ)(θ̄θ̄)F̄iF
i +

i√
2
θ̄θ̄θσµ∂µψ̄i

√
2θψi − 1

4
θθθ̄θ̄(�φ̄i)φ

i

= · · · − 1

4
(θθ)(θ̄θ̄)φ̄i�φ

i − i

2
(θθ)(θ̄θ̄)(ψ̄iσ̄

µ∂µψ
i) +

1

2
(θθ)(θ̄θ̄)gµν∂µφ̄i∂νφ

i

+ (θθ)(θ̄θ̄)F̄iF
i − i

2
(θ̄θ̄)(θθ)(ψiσµ∂µψ̄i)−

1

4
θθθ̄θ̄(�φ̄i)φ

i

= · · · − 1

4
(θθ)(θ̄θ̄)∂µ∂µ(φ̄iφ

i) + (θθ)(θ̄θ̄)

[
∂µφ̄i∂

µφi +
i

2

(
∂µψ

iσµψ̄i − ψiσµ∂µψ̄i
)

+ F̄iF
i

]
.

The first term is a total derivative; thus, it can be excluded. The F-term of Kähler potential is
then

K(Φi, Φ̄i)
∣∣
D

= ∂µφ̄i∂
µφi +

i

2

(
∂µψ

iσµψ̄i − ψiσµ∂µψ̄i
)

+ F̄iF
i. (2.4.10)

Thus

Lchiral = ∂µφ̄i∂
µφi +

i

2

(
∂µψ

iσµψ̄i − ψiσµ∂µψ̄i
)

+ F̄iF
i +

(
F i
∂W

∂φi
− 1

2
ψiψj

∂2W

∂φi∂φj
+ h.c.

)
.

(2.4.11)

From the Lagrangian of the chiral sector, we can see that only φ, corresponding to a scalar field,
and ψ, which is a Dirac field, have kinetic terms. The field F has no such term, thus is not a
physical field. Moreover, we can solve the Euler-Lagrange equation for the auxiliary field F

F̄i = −∂W
∂φi

, F i = −∂W̄
∂φ̄i

. (2.4.12)
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Substitute this back will eliminate the auxiliary field and give us the on-shell Lagrangian

Lchiral OS = ∂µφ̄i∂
µφi +

i

2

(
∂µψ

iσµψ̄i − ψiσµ∂µψ̄i
)
−
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 − 1

2
ψiψj

∂2W

∂φi∂φj
− 1

2
ψ̄iψ̄j

∂2W̄

∂φ̄i∂φ̄j
.

(2.4.13)

From this Lagrangian, we can read the scalar potential

V (φ, φ̄) =
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 = F̄iF

i. (2.4.14)

2.4.2 Super Yang-Mills theory

In this section, we will Find the kinetic term for supersymmetric vector field. For a general
SU(N) gauge group (this includes the case of abelian gauge group) whose Lie algebra is spanned
by hermitian generators T a

Λ = ΛaT
a , V = VaT

a ,
[
T a, T b

]
= ifabcTc , Tr

{
T aT b

}
=

1

2
δab. (2.4.15)

This definition will be used throughout this section. A general gauge transformation can be
defined as

eV 7→ eiΛ̄eV e−iΛ (2.4.16)

with Λa being chiral superfields as demonstrated in section 2.3.4 for abelian case. Our theory
must be gauge invariant. Therefore, we can work in Wess-Zumino gauge, where exponentials of
V higher than 2 will vanish. Therefore, we can have a simple expression

eV = 1 + V +
1

2
V 2. (2.4.17)

The gauge superfield strengths can be defined as

Wα = −1

4
D̄D̄

(
e−VDαe

V
)

, W̄α̇ = −1

4
DD

(
eV D̄α̇e

−V ). (2.4.18)

Under gauge transformation, they transform as

Wα → eiΛWαe
−iΛ , W̄α̇ → eiΛ̄W̄α̇e

−iΛ̄. (2.4.19)

By construction, D3 = 0 and D̄3 = 0 because they involves at least 3 Grassmann variables.
Therefore, these superfield strength are chiral and anti-chiral superfields. Thus, we can work
in coordinate yµ without changing the Lagrangian, which is its F-term. To obtain an explicit
expression for field strength, we need to rewrite the superfield strength using equation (2.4.17)

Wα = −1

4
D̄D̄

[(
1− V +

1

2
V 2

)
Dα

(
1 + V +

1

2
V 2

)]
= −1

4
D̄D̄

[
DαV +

1

2
DαV

2 − V DαV

]
= −1

4
D̄D̄

[
DαV +

1

2
(DαV )V +

1

2
V (DαV )− V DαV

]
= −1

4
D̄D̄DαV +

1

8
D̄D̄[V,DαV ].

Using yµ, the vector superfield is

V (x, θ, θ̄) = V (y − iθσθ̄, θ, θ̄) = V (y, θ, θ̄)− iθσµθ̄∂µV (y, θ, θ̄)
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= (θσµθ̄)vµ(y) + (θθ)
(
θ̄λ̄(y)

)
+ (θ̄θ̄)(θλ(y)) +

1

2
(θθ)(θ̄θ̄)D(y)− iθσµθ̄∂µ

[
(θσν θ̄)vν(y)

]
= (θσµθ̄)vµ(y) + (θθ)

(
θ̄λ̄(y)

)
+ (θ̄θ̄)(θλ(y)) +

1

2
(θθ)(θ̄θ̄)[D(y)− i∂µvµ(y)].

Although in the yµ basis, D̄β̇ = ∂̄β̇, the case for Dα is different. Specifically,

Dα = ∂α +
∂yµ

∂θα
∂

∂yµ
+ iσµ

αβ̇
θ̄β̇∂µ = ∂α + 2iσµ

αβ̇
θ̄β̇∂µ. (2.4.20)

The superfield strength can be obtained

Wα = −λα − θαD + θβ(σµν)βαFµν − i(θθ)
(
σµDµλ̄

)
α
. (2.4.21)

with

Fµν = ∂µvν − ∂νvµ +
i

2
[vµ, vν ] (2.4.22)

Dµ = ∂µ −
i

2
[vµ,]. (2.4.23)

If we redefine the vector superfield to take out the coupling constant explicitly V → 2gV , then
we need to redefine Wα → 2gWα and

Fµν = ∂µvν − ∂νvµ + ig[vµ, vν ] (2.4.24)

Dµ = ∂µ − ig[vµ, ] (2.4.25)

to keep the analytical expression of Wα. In the case of abelian gauge theory, all component
fields commute; thus

Fµν = ∂µvν − ∂νvµ (2.4.26)

Dµ = ∂µ (2.4.27)

A reasonable guess for the kinetic term of gauge sector, similar to SM, is

WαWα =
[
−λα − θαD + θβ(σµν)αβFµν − i(θθ)

(
σµDµλ̄

)α]
×
[
−λα − θαD + θβ(σµν)βαFµν − i(θθ)

(
σµDµλ̄

)
α

]
.

Since a product of chiral superfields is itself chiral, we only need to find the F-term while
suppressing other terms

WαWα = · · ·+ 2i(θθ)(λσµDµλ̄) + (θθ)D2 + (σµν)αβθ
β(σρτ )γαθγFµνFρτ .

The term θσµνθ = 0 because of the identity χσµσ̄νψ = ψσν σ̄µχ. Directly obtaining the F-
term from this chiral superfield is not trivial because of the last term. Thus, we resort to the
integration of the fermionic coordinate

WαWα|F =

∫
d2θWαWα =

1

4
∂ρ∂ρW

αWα

= −2i(λσµDµλ̄) +D2 +
1

4
(σµν)αβ(σρτ )γα∂

ρ∂ρ

(
θβθγ

)
FµνFρτ .

Since ∂ρ∂ρ(θ
βθγ) = ∂ρ(δβρ θγ+θβεργ) = δβρ δ

ρ
γ−ερβεργ = 2δβγ , and use equation (A.2.5), the above

becomes

WαWα|F = −2i(λσµDµλ̄) +D2 +
1

2
Tr{(σµν)(σρτ )}FµνFρτ
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= −2i(λσµDµλ̄) +D2 +
1

4
(gµρgντ − gµτgνρ + iεµνρτ )FµνFρτ

= −2i(λσµDµλ̄) +D2 +
1

2
FµνFµν +

1

4
iεµνρτFµνFρτ .

The hermitian conjugate of the first term is 2i(λσµDµλ̄)∗ = 2i
(
(Dµλ)σµλ̄

)
= 2iDµ

(
λσµλ̄

)
−

2i(λσµDµλ̄). Eliminating the total derivative, the Lagrangian of this sector is obtained, up to
a normalization factor,

WαWα|F + h.c. = −4i(λσµDµλ̄) + 2D2 + FµνFµν .

Unfortunately, the CP-violating is cancelled in the final Lagrangian. However, this term, while
proposed by hand in SM to give an extra source of CP-violation, appears naturally in this
context. To make the derivation general, that is to keep this term from being cancelled, an

appropriate normalization factor τ must be introduced. Let τ = −1

2
− i

Θg2

8π2
. Then, the

Lagrangian for this sector can be written down

LSYM = Tr

{
τ

∫
d2θWαWα + h.c.

}
= Tr

{
2i(λσµDµλ̄)−D2 − 1

2
FµνFµν +

Θg2

16π2
εµνρτFµνFρτ

}
= i(λaσµDµλ̄

a)− 1

2
DaDa − 1

4
FµνFµν +

Θg2

32π2
εµνρτFµνFρτ .

Using the normalization Tr
{
T aT b

}
=

1

2
δab, we obtain the full expression for Super-Yang-Mills

Lagrangian

LSYM = −1

4
F aµνF aµν + i(λaσµDµλ̄

a)− 1

2
DaDa +

Θg2

32π2
εµνρτF aµνF

a
ρτ . (2.4.28)

2.4.3 Gauge-matter actions

To incorporate gauge transformation into the matter sector, we first need to redefine the Kähler
potential

Φ̄iΦ
i 7→ Φ̄e2gnVnΦ (2.4.29)

where n = 1, . . . , N with N is the number of gauge field participating in the interaction.
Therefore, the complete Lagrangian reads

Lmatter =

∫
d2θd2θ̄Φ̄e2gnVnΦ +

∫
d2θW (Φ) +

∫
d2θ̄W̄ (Φ̄). (2.4.30)

Although the Kähler potential is gauge invariant, the superpotential, built by hand depending
on the theory, must be constructed so that it respects gauge symmetry. Thus, it is safe to use
the Wess-Zumino gauge to simplify the Kähler potential

Φ̄e2gnVnΦ = Φ̄Φ + Φ̄2gnVnΦ +
1

2
Φ̄(2gnVn)2Φ. (2.4.31)

To get the explicit form of the Kähler potential, we need to compute the following (note that
all terms not contributing to the D-term is hidden away)∫

d2θd2θ̄Φ̄Φ = ∂µφ̄i∂
µφi +

i

2

(
∂µψ

iσµψ̄i − ψiσµ∂µψ̄i
)

+ F̄iF
i

(computed in section 2.4.1)

Φ̄i2gnVnΦi =

[
φ̄i +

√
2θ̄ψ̄i − iθσµθ̄∂µφ̄i + θ̄θ̄F̄i +

i√
2
θ̄θ̄θσµ∂µψ̄i −

1

4
θθθ̄θ̄�φ̄i

]
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× 2gn

[
(θσµθ̄)vnµ + (θθ)

(
θ̄λ̄n

)
+ (θ̄θ̄)(θλn) +

1

2
(θθ)(θ̄θ̄)Dn

]
×
[
φi +

√
2θψi + iθσµθ̄∂µφ

i + θθF i +
i√
2

(θθ)(θ̄σ̄µ∂µψ
i)− 1

4
θθθ̄θ̄�φi

]
= · · ·+ (θθ)(θ̄θ̄)φ̄ignDnφ

i + φ̄i2gn(θ̄θ̄)(θλn)
√

2θψi + φ̄i2gn(θσµθ̄)vnµiθσ
ν θ̄∂νφ

i

+ 4gnθ̄ψ̄i(θσ
µθ̄)vnµθψ

i +
√

2θ̄ψ̄i2gn(θθ)
(
θ̄λ̄n

)
φi − iθσµθ̄∂µφ̄i2gn(θσν θ̄)vnνφ

i

= · · ·+ gn(θθ)(θ̄θ̄)φ̄iDnφ
i −
√

2gnφ̄i(θ̄θ̄)(θθ)λnψ
i + i(θθ)(θ̄θ̄)gnφ̄ig

µνvnµ∂νφ
i

− 2gnθ̄ψ̄ivnµ(θθ)(ψiσµθ̄)−
√

2gn(θθ)(θ̄θ̄)(ψ̄iλ̄n)φi − ign(θθ)(θ̄θ̄)gµν∂µφ̄ivnνφ
i

= · · ·+ gn(θθ)(θ̄θ̄)
[
φ̄iDnφ

i −
√

2φ̄iλnψ
i + iφ̄iv

µ
n∂µφ

i − ψ̄iσ̄µvnµψi

−
√

2(ψ̄iλ̄n)φi − i∂µφ̄ivµnφi
]

Φ̄i(2gnVn)2Φi = · · ·+ φ̄i(2gn(θσµθ̄)vnµ)2φi = · · ·+ φ̄i4gngm(θσµθ̄)(θσν θ̄)vnµvmνφ
i

= · · ·+ 2gngm(θθ)(θ̄θ̄)φ̄iv
µ
nvmµφ

i.

Therefore the Kähler potential Lagrangian is

LKähler =

∫
d2θd2θ̄Φ̄Φ +

∫
d2θd2θ̄Φ̄i2gnVnΦi +

1

2

∫
d2θd2θ̄Φ̄i(2gnVn)2Φi

= ∂µφ̄i∂
µφi +

i

2

(
∂µψ

iσµψ̄i − ψiσµ∂µψ̄i
)

+ F̄iF
i + gn

[
φ̄iDnφ

i −
√

2φ̄iλnψ
i

+ iφ̄iv
µ
n∂µφ

i − ψ̄iσ̄µvnµψi −
√

2(ψ̄iλ̄n)φi − i∂µφ̄ivµnφi
]

+ gngmφ̄iv
µ
nvmµφ

i

=
i

2

[
∂µ(ψiσµψ̄i)− 2ψiσµ∂µψ̄i

]
+ gnψ

iσµvnµψ̄i + F̄iF
i + gnφ̄iDnφ

i −
√

2gnφ̄iλnψ
i

−
√

2gn(ψ̄iλ̄n)φi + ∂µφ̄i
(
∂µφi − ignvµnφi

)
+ igmvmµφ̄i

(
∂µφi − ignvµnφi

)
= −iψiσµ

(
∂µψ̄i + ivnµψ̄i

)
+ F̄iF

i + gnφ̄iDnφ
i −
√

2gnφ̄iλnψ
i

−
√

2gn(ψ̄iλ̄n)φi +
(
∂µφ̄i + igmvmµφ̄i

)(
∂µφi − ignvµnφi

)
.

Using the covariant derivative

Dµ = ∂µ − ignvnµ = ∂µ − ignvanµT a (2.4.32)

Combine with the Lagrangian for superpotential , equation (2.4.9), we have the explicit form
of the matter Lagrangian

Lmatter = DµφiD
µφi − iψiσµDµψi + F̄iF

i + gnφ̄iDnφ
i −
√

2gnφ̄iλnψ
i −
√

2gn(ψ̄iλ̄n)φi

+

(
F i
∂W

∂φi
− 1

2
ψiψj

∂2W

∂φi∂φj
+ h.c.

)
. (2.4.33)

Compare to the Lagrangian without gauge theory (2.4.11), we can see the interaction terms be-
tween the matter fields φ, ψ and gauge field vµ, which looks exactly like that of non-supersymmetric
theories, and gauginos λ.

2.4.4 The completed Lagrangian of supersymmetric theories

Combine all of the above terms provides us with the most general N = 1 supersymmetric
Lagrangian with M chiral superfields and N gauge interactions, among which there are n U(1)
factors, is

L = LSYM + Lmatter (2.4.34)
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= Tr

{
τn

∫
d2θWα

nWnα + h.c.

}
+

∫
d2θd2θ̄Φ̄ie

2gnVnΦi +

(∫
d2θW (Φi) + h.c.

)
(2.4.35)

= −1

4
F aµνn F anµν + i(λanσ

µDµλ̄
a
n) +

1

2
Da
nD

a
n +

Θng
2
n

32π2
εµνρτF anµνF

a
nρτ

+DµφiD
µφi − iψiσµDµψi + F̄iF

i + gnφ̄iDnφ
i −
√

2gnφ̄iλnψ
i −
√

2gn(ψ̄iλ̄n)φi

+

(
F i
∂W

∂φi
− 1

2
ψiψj

∂2W

∂φi∂φj
+ h.c.

)
. (2.4.36)

From this Lagrangian, we can see that both F i and Dn have no kinetic terms. Just like before,
we can immediately solve for these auxiliary fields

∂L
∂F̄i

= ∂µ

(
∂L

∂
(
∂µF̄i

)) = 0 =⇒ F i = −∂W
∂φ̄i

(2.4.37)

∂L
∂Da

n

= ∂µ

(
∂L

∂(∂µDa
n)

)
= 0 =⇒ Da

n = −gnφ̄iT anφi. (2.4.38)

Then, we get the on-shell Lagrangian

L = −1

4
F aµνn F anµν + i(λanσ

µDµλ̄
a
n) +

Θng
2
n

32π2
εµνρτF anµνF

a
nρτ

+DµφiD
µφi − iψiσµDµψi + gnφ̄iDnφ

i −
√

2gnφ̄iλnψ
i −
√

2gn(ψ̄iλ̄n)φi

− 1

2
ψiψj

∂2W

∂φi∂φj
− 1

2
ψ̄iψ̄j

∂W̄

∂φ̄iφ̄j
− V (φi, φ̄i) (2.4.39)

with

V (φi, φ̄i) =
∂W

∂φi
∂W̄

∂φ̄i
+
g2
n

2

∣∣φ̄iT anφi∣∣2 (2.4.40)

is the potential. It can be seen that V (φi, φ̄i) ≥ 0; thus, the potential is automatically bounded
from below, avoiding the existence of infinitely negative energy
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Chapter 3

Next-to-minimal Supersymmetric
Standard Model

3.1 Minimal Supersymmetric Standard Model

3.1.1 Field content and the Lagrangian

Before we construct such Lagrangian, we must have the content of the Standard Model extended
to include their supersymmetric partner. The minimal way to extend the SM is keep as much
of its properties as possible. Thus, the Minimal Supersymmetric Standard Model (MSSM) will
be based on the gauge group SUC(3) × SUL(2) × UY (1) just like SM. Since the matter fields
described in table 1.2 all belongs to different representations of this gauge group, no particles in
the SM can be the superpartners of each other, and we must introduce one superfield for each
particle. Except for the gauge bosons, which will be described by the vector superfield as in table
3.1, the other particles of the Standard Model belong to their corresponding chiral superfield
as in table 3.2. Unlike the Standard Model, there must be at least 2 Higgs supermultiplets in
the smallest supersymmetric version of SM because because chiral and its anti-chiral cannot
appear simultaneously in the superpotential to conserve its holomorphy. While in the Standard
Model, to achieve the interaction for up-type quarks, we used charge conjugated Higgs, the
corresponding trick would introduce anti-chiral superfield in superpotential which is not allowed.
Since in the Standard Model, matter particles are divided into left-handed and right-handed
multiplets, each interact differently with the gauge boson, we have to implement the same idea
here. However, the chiral superfield in our theory is purely left-handed. To produce a right-
handed superfield, we must use charge conjugation ψcα ≡ i(σ2)αα̇ψ̄

α̇ to produce a right-handed
superfield from left-handed one.

Superfield spin 1/2 spin 1 SUC(3)× SUL(2)× UY (1) Name (gaugino,
gauge boson)

Coupling
constant

Ĝ G̃ G (8,1, 0) gluinos, gluons gs

Ŵ W̃ W (1,3, 0) winos, W-bosons g

B̂ B̃ B (1,1, 0) binos, B-bosons g′

Table 3.1: The gauge particle content of the supersymmetric Standard Model. The superfields
are denoted with a hat, the superpartner of SM particles have a tilde to distinguish. The
numbers in the fourth column denote the dimensions of the corresponding representation of the
gauge group.
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Supermultiplets spin 0 spin 1/2 Representation Name

Q̂ = (ûL d̂L)T Q̃ = (ũL d̃L)T Q = (uL dL)T (3,2, 1
6)

squarks, quarksÛ c = ûc Ũ = ũ∗R U = u†R (3̄,1,−2
3)

D̂d = dc D̃ = d̃∗R D = d†R (3̄,1, 1
3)

L̂ = (ν̂ êL)T L̃ = (ν̃ ẽL)T L = (ν eL)T (1,2,−1
2)

sleptons, leptons
Êc = êc Ẽ = ẽ∗R E = e†R (1,1, 1)

Ĥu = (Ĥ+
u Ĥ0

u)T Hu = (H+
u H0

u)T H̃u = (H̃+
u H̃0

u)T (1,2,+1
2)

Higgs, Higgsinos
Ĥd = (Ĥ0

d Ĥ
−
d )T Hd = (H0

d H
−
d )T H̃d = (H̃0

d H̃
−
d )T (1,2,−1

2)

Table 3.2: The chiral particle content of the supersymmetric Standard Model. The superfields
are denoted with a hat, the superpartner of SM particles have a tilde to distinguish. The
generation and color indices are suppressed. The numbers in the fourth column denote the
dimensions of the corresponding representation of the gauge group, with the bar denote complex
conjugate representation.

The components of the Lagrangian includes the superpotential, Kähler potential, gauge
kinetic (or Super Yang-Mill) term and the Fayet-Iliopulos term. In this situation, the super po-
tential for the MSSM, constructed so that the Lagrangian of the non-supersymmetric Standard
Model is contained, is

WMSSM = Ĥd · L̂YeÊ
c + Ĥd · Q̂YdD̂

c − Ĥu ·QYuÛ
c − µĤu · Ĥd (3.1.1)

= ûcYuûLĤ
0
u − ûcYud̂LĤ+

u − d̂cYdûLĤ−d + d̂cYdd̂LĤ
0
d − êcYeν̂Ĥ−d + êcYeêLĤ

0
d

+ µ(Ĥ+
u Ĥ

−
d − Ĥ0

uĤ
0
d), (3.1.2)

where · denotes SU(2) product of spinors, that is Hu ·Hd = εαβH
α
uH

β
d . Yf , f = e, d, u are 3× 3

matrices in flavour space. This superpotential is gauge invariance, with the first three terms
produce mass for matter fields since it describes the interaction between them and the Higgs
field. The last term yields the mass for the Higgs boson itself. For the vector superfield

Ĝ = T aĜa , Ŵ = IbŴ b, (3.1.3)

with a = 1, .., 9, b = 1, 2, 3, so that we can have the kinetic term for gauge sector, excluding
CP-violating term

LSYM = −1

2
Tr

{∫
d2θWα(Ĝ)Wα(Ĝ) +

∫
d2θWα(Ŵ )Wα(Ŵ ) +

∫
d2θWα(B̂)Wα(B̂) + h.c.

}
(3.1.4)

where

Wα(Ĝ) = −1

4
D̄D̄

(
e−ĜDαe

Ĝ
)
, (3.1.5)

Wα(Ŵ ) = −1

4
D̄D̄

(
e−ŴDαe

Ŵ
)
, (3.1.6)

Wα(B̂) = −1

4
D̄D̄

(
e−B̂Dαe

B̂
)
. (3.1.7)

The Kähler potential is

KMSSM =
¯̂
Q exp

(
2gsĜ+ 2gŴ + 2g′B̂ × 1/6

)
Q̂
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+
¯̂
U c exp

(
−2gsĜ+ 2g′B̂ × (−2/3)

)
Û c

+
¯̂
Dc exp

(
−2gsĜ+ 2g′B̂ × (1/3)

)
D̂c

+
¯̂
L exp

(
2gsŴ

)
exp
(

2g′B̂ × (−1/2)
)
L̂

+
¯̂
Ec exp

(
2g′B̂

)
Êc

+
¯̂
Hu exp

(
2gŴ

)
exp
(

2g′B̂ × (1/2)
)
Ĥu

+
¯̂
Hd exp

(
2gŴ

)
exp
(

2g′B̂ × (−1/2)
)
Ĥd (3.1.8)

In principle, the combination of the above sectors is enough to construct the Lagrangian. It
worth noting that compared to the 18 parameters in SM, the MSSM introduced only one new
parameter µ.

Written in terms of component fields, the Super Yang-Mills Lagrangian is

LMSSM
OS SYM = −1

4
GaµνGaµν + iG̃aσµDG

µ
¯̃Ga − 1

4
W bµνW b

µν + iW̃ aσµDW
µ

¯̃W a

− 1

4
BµνBµν + iB̃aσµDB

µ
¯̃Ba, (3.1.9)

with Gµ = T aGaµ , Wµ = IbW b
µ , G̃ = T aG̃a , W̃ = IbW̃ b and

Gµν = ∂µGν − ∂νGµ − igs[Gµ, Gν ] , DG
µ = ∂µ − igs[Gµ, ],

Wµν = ∂µWν − ∂νWµ − ig[Wµ,Wν ] , DW
µ = ∂µ − ig[Wµ, ],

Bµν = ∂µBν − ∂νBµ , DB
µ = ∂µ.

Here and in the following on-shell parts of the MSSM Lagrangian, the terms involving auxiliary
fields will be written separately in the potential. The on-shell Kähler potential part is

LMSSM
OS Kähler = DQ

µ Q̃D
QµQ̃+ iQσµDQ

µQ−
√

2

(
gs

¯̃QG̃Q+ g ¯̃QW̃Q+ g′ ¯̃Q
1

6
B̃Q+ h.c.

)
+ DU

µ ŨD
UµŨ + iUσµDU

µ U −
√

2

(
−gs ¯̃UG̃U + g′ ¯̃U

(
−2

3
B̃

)
U + h.c.

)
+ DD

µ D̃D
DµD̃ + iDσµDD

µ D −
√

2

(
−gs ¯̃DG̃D + g′ ¯̃D

1

3
B̃D + h.c.

)
+ DL

µ L̃D
LµL̃+ iLσµDL

µL−
√

2

(
g ¯̃LW̃L+ g′ ¯̃L

(
−1

2
B̃

)
L+ h.c.

)
+ DE

µ ẼD
EµẼ + iEσµDE

µE −
√

2
(
g′ ¯̃EB̃E + h.c.

)
+ DHu

µ HuD
HuµHu + iH̃uσ

µDHu
µ H̃u −

√
2

(
gH̄uW̃ H̃u + g′H̄u

1

2
B̃H̃u + h.c.

)
+ DHd

µ HdD
HdµHd + iH̃dσ

µDHd
µ H̃d −

√
2

(
gH̄dW̃ H̃d + g′H̄d

(
−1

2
B̃

)
H̃d + h.c.

)
,

(3.1.10)

where the covariant derivatives are

DQ
µ = ∂µ − igsT aGaµ − igIbW b

µ − ig′
1

6
Bµ, (3.1.11)

DU
µ = ∂µ + igsT

aGaµ − ig′
(
−2

3

)
Bµ, (3.1.12)
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DD
µ = ∂µ + igsT

aGaµ − ig′
1

3
Bµ, (3.1.13)

DL
µ = ∂µ − igIbW b

µ − ig′
(
−1

2

)
Bµ, (3.1.14)

DE
µ = ∂µ − ig′Bµ, (3.1.15)

DHu
µ = ∂µ − igIbW b

µ − ig′
1

2
Bµ, (3.1.16)

DHd
µ = ∂µ − igIbW b

µ − ig′
(
−1

2

)
Bµ. (3.1.17)

The on-shell superpotential Lagrangian is

LMSSM
OS W = −

[
u†RYuuLH

0
u + u†RYuũLH̃

0
u + ũ∗RYuuLH̃

0
u

− u†RYudLH+
u − u†RYud̃LH̃+

u − ũ∗RYudLH̃+
u

− d†RYduLH−d − d
†
RYdũLH̃

−
d − d̃∗RYduLH̃−d

+ d†RYddLH
0
d + d†RYdd̃LH̃

0
d + d̃∗RYddLH̃

0
d

− e†RYeνH−d − e
†
RYeν̃H̃

−
d − ẽ∗RYeνH̃−d

+ e†RYeeLH
0
d + e†RYeẽLH̃

0
d + ẽ∗RYeeLH̃

0
d

+µ
(
H̃+
u H̃

−
d − H̃0

uH̃
0
d

)]
+ h.c. (3.1.18)

The final part is the potential

LMSSM
V = −

[(
H̄0
u

¯̃uL − H̄+
u

¯̃
dL

)
Y †uYu

(
ũLH

0
u − d̃LH+

u

)
+
(
−H̄−d ¯̃uL + H̄0

d
¯̃
dL

)
Y †d Yd

(
−ũLH−d − d̃LH0

d

)
+
(
−H̄−d ¯̃ν + H̄0

d
¯̃eL
)
Y †e Ye

(
−ν̃H−d − ẽLH0

d

)
+
(
H0
uũ
∗
RYu −H−d d̃∗RYd

)(
Y †u ¯̃u∗RH̄

0
u − Y †d

¯̃
d∗RH̄

−
d

)
+
(
−H+

u ũ
∗
RYu +H0

d d̃
∗
RYd

)(
−Y †u ¯̃u∗RH̄

+
u + Y †d

¯̃
d∗RH̄

0
d

)
+
(
−H+

u ẽ
∗
RYe

)(
−Y †e ¯̃e∗RH̄

−
d

)
+
(
H0
d ẽ
∗
RYe

)(
Y †e ¯̃e∗RH̄

0
d

)
+
(
ũ∗RYuũL − µH0

d

)(
¯̃uLY

†
u

¯̃u∗R − µ∗H̄0
d

)
+
(
−ũ∗RYud̃L + µH−d

)(
− ¯̃
dLY

†
u

¯̃u∗R + µ∗H̄−d

)
+
(
d̃∗RYdd̃L + ẽ∗R − µH0

u

)(
¯̃
dLY

†
d

¯̃
d∗R + ¯̃eLY

†
e

¯̃e∗R − µ∗H̄0
u

)
+
(
−d̃∗RYdũL − ẽ∗RYeν̃ + µH+

u

)(
−¯̃uLY

†
d

¯̃
d∗R − ¯̃νY †e ¯̃e∗R + µ∗H̄+

u

)
+
g2
s

2

8∑
a=1

∣∣∣ ¯̃QT aQ̃− ¯̃UT aŨ − ¯̃DT aD̃
∣∣∣2

+
g2

2

3∑
b=1

∣∣∣ ¯̃QIbQ̃+ ¯̃LIbL̃+ H̄uI
bHu + H̄dI

bHd

∣∣∣2
+
g′2

2

∣∣∣∣16 ¯̃QQ̃− 2

3
¯̃UŨ +

1

3
¯̃DD̃ − 1

2
¯̃LL̃+ ¯̃EẼ +

1

2
H̄uHu −

1

2
H̄dHd

∣∣∣∣2
]

(3.1.19)

where the last three lines come from the D-terms and the remaining lines come from the F-terms.
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However, experiments have yet to found any superpartner of SM particles. Thus, supersym-
metry must be broken. Many mechanism of spontaneous SUSY breaking has been proposed,
yet no agreement is settled. Fortunately, the terms appearing in the low energy Lagrangian
to break SUSY is independent of its mechanism [37], thus, this matter is not discussed in this
thesis. To prevent the appearance of quadratic divergence in quantum corrections, which is one
of the attractive advantage of SUSY, the newly introduced terms must be soft. Also, though
violating supersymmetry, they must obey the other symmetries that are realized in the SM.
The possible and suitable terms that violates supersymmetry, followed from [37], is

LMSSM
soft = −1

2

(
M3G̃

aG̃a +M2W̃
bW̃ b +M1B̃B̃ + h.c.

)
−m2

HuH
†
uHu −m2

Hd
H†dHd − (bHu ·Hd + h.c.)

− Q̃†M2
Q̃
Q̃− L̃†M2

L̃
L̃− Ũ †M2

Ũ
Ũ − D̃†M2

D̃
D̃ − Ẽ†M2

Ẽ
Ẽ (3.1.20)

− (Ũ †YuAuQ̃ ·Hu − D̃†YdAdQ̃ ·Hd − Ẽ†YeAeL̃ ·Hd + h.c.) (3.1.21)

with Mk, k = 1, 2, 3 are the gaugino mass breaking parameter, M2
F̃
, F = Q,U,D,L,E and

Af , f = u, d, e are 3× 3 matrices in flavour space. Without further constrains, these soft SUSY
breaking terms introduces an additional 105 free parameters to MSSM.

The complete Lagrangian for MSSM reads

LMSSM = LMSSM
OS SYM + LMSSM

OS Kähler + LMSSM
OS W + LMSSM

V + LMSSM
soft . (3.1.22)

3.1.2 The Higgs sector of MSSM

To demonstrate the differences between the two supersymmetric version of the SM in this thesis,
some analysis on the Higgs sector is done. The Higgs potential can be read off the Lagrangian
with some algebra

VH = (|µ|2 +m2
Hu)(

∣∣H+
u

∣∣2 +
∣∣H0

u

∣∣2) + (|µ|2 +m2
Hd

)(
∣∣H0

d

∣∣2 +
∣∣H−d ∣∣2)

+
g2

2

∣∣H+
u H̄

0
d +H0

uH̄
−
d

∣∣2 +
g2 + g′2

8

(∣∣H+
u

∣∣2 +
∣∣H0

u

∣∣2 − ∣∣H0
d

∣∣2 − ∣∣H−d ∣∣2)2

+
[
b(H+

u H
−
d −H0

uH
0
d) + h.c.

]
(3.1.23)

where, by a redefinition of field, b can be set to real. Following the same procedure as the
Higgs mechanism in SM, experimental data confirm that the symmetry group SUL(2)× UY (1)
is broken into UQ(1) of electromagnetic symmetry. That is:

• The potential must have a stable, global, and non-degenerate minimum for charged Higgs
to conserve UQ(1) symmetry.

• It must have a stable, global but degenerate minimum for neutral Higgs to break the
remaining symmetries.

Meaning that the charged Higgs must have vanishing vacuum expectation value (VEV) while
the neutral Higgs must have non-vanishing vacuum expectation value

Hd =

(
H0
d

H−d

)
= eiξ

(
(vd + φ0

d + iχ0
d)/
√

2

φ−d

)
, (3.1.24)

Hu =

(
H+
u

H0
d

)
=

(
φ+
u

(vu + φ0
u + iχ0

u)/
√

2

)
, (3.1.25)
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with ξ is a possible phase difference between the two Higgs doublets. This complex phase is
also a source of possible CP-violation. By absorbing the phases into the Higgs field, vu and vd
can be made real and positive. The condition for charged Higgs then translates to

∂VH

∂φ+
u

=
∂VH

∂φ−d
= 0 at

〈
φ+
u

〉
=
〈
φ−d
〉

= 0. (3.1.26)

The second one is

∂VH
∂φ0

u

=
∂VH
∂φ0

d

=
∂VH
∂χ0

u

=
∂VH
∂χ0

d

= 0 at
〈
φ0
u

〉
=
〈
φ0
d

〉
=
〈
χ0
u

〉
=
〈
χ0
d

〉
= 0. (3.1.27)

While the first condition (3.1.26) is easily checked to automatically satisfied. The second one
(3.1.27) is not so obvious. This condition leads to a set of tadpole equations

∂VH
∂φ0

u

= m̃2
Huvu +

g2 + g′2

8

(
v2
u − v2

d

)
vu − bvd cos ξ = 0, (3.1.28)

∂VH
∂φ0

d

= m̃2
Hd
vd +

g2 + g′2

8

(
v2
d − v2

u

)
vd − bvu cos ξ = 0, (3.1.29)

∂VH
∂χ0

u

= bvd sin ξ = 0, (3.1.30)

∂VH
∂χ0

d

= bvu sin ξ = 0, (3.1.31)

where

m̃2
Hu = |µ|2 +m2

Hu , m̃2
Hd

= |µ|2 +m2
Hd
. (3.1.32)

Equations (3.1.30) and (3.1.31) insists ξ = 0, conserving CP symmetry in the Higgs sector at
tree-level. This set of equation can have several remarks. Firstly, without the supersymmetry
breaking parameters m2

Hu
,m2

Hd
, b, these equations yield vu = vd = 0, making a non-degenerate

minimum. Thus, electroweak symmetry breaking is impossible without supersymmetry break-
ing. Second, the vacuum expectation values of the Higgs field vu, vd are introduced only after
supersymmetry breaking; thus, they are not a SUSY-conserving MSSM parameter. Moreover,
using these equations, we can compute and replace the mass breaking parameters

m̃2
Hu = b

vd
vu
− g2 + g′2

8

(
v2
u − v2

d

)
, m̃2

Hd
= b

vu
vd
− g2 + g′2

8

(
v2
d − v2

u

)
. (3.1.33)

It should be noted that the only new SUSY-conserving parameters of MSSM µ is contained
within both m2

Hu
and m̃2

Hd
. Thus, it is reasonable to guess that this parameters is on the SUSY

scale. However, it also participates in breaking electroweak symmetry. The right side of this
equations only contain parameters on the symmetry breaking scale, which is much lower. This
requires very extreme fine-tuning for µ. This hierarchy problem is called the µ-problem [38]. A
solution to this is proposed in section 3.2

The gauge boson mass is also considered here. Applying the decomposition of the Higgs
doublets (3.1.24) and (3.1.25) to the kinetic term of the Higgs field, the masses of the gauge
bosons can be obtained

mW =
g

2

√
v2
u + v2

d, (3.1.34)

MZ =
1

2

√
g2 + g′2

√
v2
u + v2

d, (3.1.35)

mγ = mG = 0. (3.1.36)
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with v =
√
v2
u + v2

d, these masses are exactly identical to that of the SM. As usual, we also

defines the angles θW and β as

tan θW =
g

g′
, tanβ =

vu
vd
. (3.1.37)

The mass of the Higgs bosons can be obtained from the bilinear terms of the potential

VH = · · ·+
(
φ−d φ−u

)
Mc

(
φ+
d

φ+
u

)
+
(
φ0
d φ0

u χ0
d χ0

u

)
Mn


φ0
d

φ0
u

χ0
d

χ0
u

 (3.1.38)

where the mass matrices are

Mc =

(
M2
W sin2 β + b tanβ b+M2

W cosβ sinβ

b+M2
W cosβ sinβ M2

W cos2 β + b cotβ

)
, (3.1.39)

Mn =

(
Mφφ 0

0 Mχχ

)
, (3.1.40)

Mφφ =

(
M2
Z cos2 β + b tanβ −b−M2

Z cosβ sinβ

−b−M2
Z cosβ sinβ b cotβ +M2

Z sin2 β

)
, (3.1.41)

Mχχ =

(
b tanβ b

b b cotβ

)
. (3.1.42)

To find the masses of these bosons, the eigenvalues of their mass matrices must be obtained. For
the neutral Higgs, the CP-even and CP-odd Higgs decouples at tree-level, hence CP-conserving.
Thus, they can be treated separately. The eigenvalues are derived from diagonalizing the mass
matrices by the orthogonal transformation(

h

H

)
= Uφ

(
φ0
d

φ0
u

)
,

(
G

A

)
= Uχ

(
χ0
d

χ0
u

)
,

(
G±

H±

)
= Uc

(
φ±d
φ±u

)
(3.1.43)

which satisfy

diag
(
m2
G,m

2
A

)
= UχMχχU

T
χ , diag

(
m2
h,m

2
H

)
= UφMφφU

T
φ , diag

(
m2
G± ,m

2
H±
)

= UcMcU
T
c ,

(3.1.44)

with the mixing matrices

Uc = Uχ =

(
− cosβ sinβ

sinβ cosβ

)
, Uφ =

(
− cosα sinα

sinα cosα

)
, (3.1.45)

and the masses

m2
G = m2

G± = 0, (3.1.46)

m2
A =

2b

sin 2β
, (3.1.47)

m2
H± = m2

W +m2
A, (3.1.48)

m2
h =

1

2

[
m2
A +m2

Z −
√

(m2
A −M2

Z)2 + 4M2
Zm

2
A sin2 2β

]
, (3.1.49)
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m2
H =

1

2

[
m2
A +m2

Z +
√

(m2
A −M2

Z)2 + 4M2
Zm

2
A sin2 2β

]
, (3.1.50)

and the mixing angle α is

tanα = − (m2
A +M2

Z) sinβ cosβ

M2
Z cos2 β +m2

A sin2 β −m2
h

. (3.1.51)

Conventionally, α is chosen so that α ∈ (−π/2, 0). Just like in the SM, there are three Nambu-
Goldstone bosons: two charged and one CP-odd neutral boson. If m2

A ≥ M2
Z cos 4β which is a

natural requirement, since m2
A depends on b, a SUSY-breaking parameter, it can be arbitrarily

large, especially when no superpartner has been detected yet, a slight transformation can be
made

m2
h =

1

2

[
m2
A +m2

Z −
√
m4
A +M4

Z − 2m2
AM

2
Z(1− 2 sin2 2β)

]
≤ 1

2

[
m2
A +m2

Z −
√
m4
A +M4

Z cos2 4β − 2m2
AM

2
Z cos 4β

]
=

1

2

[
m2
A +m2

Z − |m2
A −M2

Z cos 4β|
]

= M2
Z cos2 2β. (3.1.52)

Similarly,

m2
H ≥ m2

A +M2
Z sin2 2β.

This results worth some remarks. Firstly, from these inequality, a neutral Higgs mass hierarchy
can be seen

m2
h < m2

A < m2
H . (3.1.53)

If m2
A � M2

Z , the mass of the three heavy Higgs are similar m2
A ≈ m2

H ≈ m2
H± but is much

heavier than the light Higgs. Since only one Higgs boson has been experimentally confirmed,
if MSSM is to be realized, the lightest Higgs would be a very good candidate, because all the
other Higgs are very heavy. Also, in this limit, the couplings of lightest Higgs with fermions and
gauge bosons are identical to those of the SM. Thus, h is commonly considered to be the SM-like
Higgs boson. Another important point is that, the Higgs mass in the SM is an unbound free
parameter, and no prediction can be made regarding at which energy scale a Higgs boson can
be found. In contrary, m2

h is upper-bounded by M2
Z cos2 2β. Although the quantum corrections

may raise the mass above this threshold, the bound suggests that the lightest Higgs boson h
can be found on the scale of Z-boson mass 91.1876 ± 0.0021 GeV [39]. This prediction was
confirmed by experiment with the discovery of a Higgs boson at 125.18 ± 0.16 GeV, not far
from the bound. This is a plus to this model since it has correctly predicted something the
SM cannot. On the other hand, the experimental value of a Higgs boson mass can be used as
a constrains on the supersymmetric parameters. However, for that to be feasible, high order
calculation must be made due to the large quantum corrections of the Higgs mass.

3.2 Next-to-minimal Supersymmetric Standard Model

Although having some advantages, the MSSM has one issue mentioned in the previous section.
The µ-problem involves extreme fine-tuning of the only SUSY-conserving µ so that a parameter
on SUSY scale can participate in electroweak symmetry breaking. This problem is resolved
in the Next-to-minimal Supersymmetric Standard Model (NMSSM) by introducing a Higgs
singlet, and the parameter µ arises dynamically from electroweak symmetry breaking.
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Supermultiplet spin 0 spin 1/2 SUC(3)× SUL(2)× UY (1)

Ŝ S S̃ (1,1, 0)

Table 3.3: The Higgs singlet introduced in NMSSM. The superfield is denoted with a hat,
the superpartner has a tilde to distinguish. The numbers in the fourth column denote the
dimensions of the corresponding representation of the gauge group.

3.2.1 The particle content and Lagrangian

Compare to MSSM, the particle spectrum of the NMSSM contains one more Higgs singlet
described in table 3.3. With the introduction with one more superfield, the most general
superpotential and the soft-breaking terms contributing to the Higgs mass are

WHiggs
NMSSM = −(µ+ λŜ)Ĥd · Ĥu + ξF Ŝ +

1

2
µ′Ŝ2 +

κ

3
Ŝ3 (3.2.1)

where the newly introduced terms must stop at third order for a renormalizable theory, since
[W ] = 3, and

LNMSSM
soft Higgs = −m2

S |S|2+

(
AλλSHu ·Hd −

1

3
AκκS

3 +m2
3Hu ·Hd +

1

2
m′S

2
S2 + ξSS + h.c.

)
(3.2.2)

while the kinetic term of this superfield gives no modification to the mass spectrum; thus, it
is not considered. These superpotential and soft-breaking terms, however, also poses it own
hierarchy problem [40]. All newly introduced parameters take part in breaking electroweak
symmetry, but at the same times, they should naturally be on SUSY scale. To eliminate this
issue, any scale-dependent parameter should vanish. That is, because µ, µ′ and ξF are dimen-
sionful (µ, µ′ being mass while ξF being mass2), they naturally should depend on the energy
scale at which they are introduced. Thus, they and their corresponding soft-SUSY-breaking
parameters m2

3,m
′
S

2, ξS should vanish. The remaining parameters are dimensionless, thus, have
no dependence on the energy scale at which they appear. Accidentally, this scale independence
requirement leaves the complete Lagrangian with a Z3-symmetry. That is, if each chiral super-
field is multiplied with a phase e2πi/3, called Z3 charge, the Lagrangian will possesses no phase,
or no Z3 charge. Thus, the name Z3-invariance NMSSM is often used to refer to the version of
NMSSM where the newly introduced terms are scale-independent.

With the restriction of Z3-symmetry, eliminating hierarchy problem, the superpotential of
the NMSSM is

WNMSSM = Ĥd · L̂YeÊ
c + Ĥd · Q̂YdD̂

c − Ĥu ·QYuÛ
c − λŜĤd · Ĥu +

κ

3
Ŝ3 (3.2.3)

= ûcYuûLĤ
0
u − ûcYud̂LĤ+

u − d̂cYdûLĤ−d + d̂cYdd̂LĤ
0
d − êcYeν̂Ĥ−d + êcYeêLĤ

0
d

+ λŜ(Ĥ+
u Ĥ

−
d − Ĥ0

uĤ
0
d) +

κ

3
Ŝ3. (3.2.4)

and the soft-breaking term is

LNMSSM
soft = −1

2

(
M3G̃

aG̃a +M2W̃
bW̃ b +M1B̃B̃ + h.c.

)
−m2

HuH
†
uHu −m2

Hd
H†dHd −m2

S |S|2+

(
AλλSHu ·Hd −

1

3
AκκS

3 + h.c.

)
− Q̃†M2

Q̃
Q̃− L̃†M2

L̃
L̃− Ũ †M2

Ũ
Ũ − D̃†M2

D̃
D̃ − Ẽ†M2

Ẽ
Ẽ (3.2.5)

− (Ũ †YuAuQ̃ ·Hu − D̃†YdAdQ̃ ·Hd − Ẽ†YeAeL̃ ·Hd + h.c.). (3.2.6)
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3.2.2 Tree level mass spectrum

With the completed Lagrangian at hand, multiple investigations can be taken. This section
focuses on analysing the mass spectrum of NMSSM and compares it with that of the SM and
MSSM. Among the SM particles, only the Higgs boson express significantly different behaviour,
while the gauge bosons and fermions show quite similar results. This is a rather fortunate
finding, since these sectors have been intensively tested by experiment. Any new behaviour
could easily falsify the theory. The newly introduced superpartners, however, yield a wide
range of interesting behaviours.

The Higgs potential

The Higgs potential of the NMSSM reads

VH =
(
|λS|2 +m2

Hd

)(
|H−d |2+|H0

d |2
)

+
(
|λS|2 +m2

Hu

)(∣∣H0
u

∣∣2 +
∣∣H+

u

∣∣2)+m2
S |S|2

+
1

2
g2
∣∣H+

u H
0∗
d +H0

uH
−∗
d

∣∣2 +
g2 + g′2

8

(
|H+

u |2+|H0
u|2−|H0

d |2−|H−d |2
)2

+
∣∣λ(H+

u H
−
d −H0

uH
0
d) + κS2

∣∣2 +

[
−λAλS

(
H+
u H

−
d −H0

uH
0
d

)
+

1

3
κAκS

3 + h.c.

]
.

(3.2.7)

Just as before, experiments confirm that the gauge symmetry SUL(2)×UY (1) is broken to UQ(1).
For the symmetry to be broken, the Higgs field must obtain a degenerate global minimum so
that vacuum can break symmetry spontaneously. However, to preserve electromagnetic UQ(1)
symmetry, the charged Higgs must obtain non-degenerate, thus vanishing, expectation value at
the vacuum. That is, the expansion of the Higgs field about its vacuum can be obtained

Hd =

(
(vd + hd + iad)/

√
2

h−d

)
, Hu = eiϕu

(
h+
u

(vu + hu + iau)/
√

2

)
, S =

eiϕs√
2

(vs + hs + ias),

(3.2.8)

with ϕu, ϕs being the possible phase differences. Since absolute phase can always be absorbed
into the field without changing any physical interpretation, it is not considered. By pulling out
the phases, the vacuum expectation values (VEV) vd, vu and vs can be chosen to be real and
positive.

Here, we can also see how NMSSM circumvent the µ-problem. The term λŜĤd · Ĥu replaces
µĤd · Ĥu. Thus, when electroweak symmetry is broken, it becomes

λŜĤd · Ĥu −→
vse

iϕsλ√
2

Ĥd · Ĥu. (3.2.9)

Instead of directly introducing the parameter µ, NMSSM dynamically generates a similar term,
sometimes denoted as

µeff =
eiϕsvsλ√

2
. (3.2.10)

Since this parameter comes from electroweak symmetry breaking, the conundrum of its partic-
ipation in the process become natural.

The Higgs potential can now be rewritten in term of expansion around its VEV as

VH = V const
H + thdhd + thuhu + thshs + tadad + tauau + tasas
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+
1

2
φ0TMφφφ

0 + φc†Mh+h−φ
c + V φ3,φ4

H , (3.2.11)

with φ0 = (hd, hu, hs, ad, au, as)
T and φc =

(
(h−d )∗, h+

u

)T
, tφ(φ = hd, hu, hs, ad, au, as) are called

the tadpoles coefficients while Mφφ and Mh+h− are the neutral and charged Higgs mass matrix.

V const
H is the constant terms while V φ3,φ4

H is the third and fourth order terms.

The gauge sector

Since the gauge sector is not affected, expanding the kinetic term of the Higgs field still yield
the masses of the gauge boson

MW =
g

2

√
v2
u + v2

d, (3.2.12)

MZ =
1

2

√
g2 + g′2

√
v2
u + v2

d, (3.2.13)

Mγ = MG = 0, (3.2.14)

with v =
√
v2
u + v2

d. As usual, we also defines the angles θW and β as

tan θW =
g

g′
, tanβ =

vu
vd
. (3.2.15)

The Higgs sector

For the desired symmetry breaking mechanism to be realized, when the Higgs acquires its VEV
at 〈hd〉 = 〈hu〉 = 〈hs〉 = 〈ad〉 = 〈au〉 = 〈as〉 = 0, the potential must also reach its minimum.
That is, its first derivatives must vanish

tφ =

〈
∂V

∂φ

〉
= 0 with φ = hd, hu, hs, ad, au, as, (3.2.16)

where the abbreviation cx ≡ cosx, sx = sinx, tβ ≡ tanβ has been used. Although trivially
vanishes at tree-level, these terms gain non-trivial quantum corrections at higher levels. Thus,
to keep them vanish, that is to keep the minimum of the Higgs potential unshifted, careful
consideration of these parameters must be made. For that reason, although zero, they are
explicitly kept for the sake of higher order calculation. Using definition (3.2.16), the tadpoles
parameters are

thd
vcβ

= m2
Hd

+
c2βM

2
Z

2
− |λ|tβvs

2

(
|κ|cϕyvs −

√
2=Aλsϕω−ϕy +

√
2<Aλcϕω−ϕy

)
+

1

2
|λ|2
(
s2
βv

2 + v2
s

)
(3.2.17)

thu
vsβ

= m2
Hu −

c2βM
2
Z

2
− |λ|vs

2tβ

(
|κ|cϕyvs −

√
2=Aλsϕω−ϕy +

√
2<Aλcϕω−ϕy

)
+

1

2
|λ|2
(
c2
β + v2

s

)
(3.2.18)

ths
vs

= m2
S + |κ|2v2

s +
|λ|2v2

2
+ |λ|cβsβv2

(=Aκsϕω−ϕy −<Aκcϕω−ϕy√
2v2

− |κ|cϕy
)

+
|κ|vs(<Aκcϕω −=Aκsϕω)√

2
(3.2.19)

tad
vsβ

=
1

2
|λ|vs

(
−|κ|vssϕy +

√
2=Aλcϕω−ϕy +

√
2<Aλsϕω−ϕy

)
(3.2.20)
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tau =
1

tanβ
tad (3.2.21)

tas =
1

2
|λ|cβsβv2

(
2|κ|vssϕy +

√
2=Aλcϕω−ϕy +

√
2<Aλsϕω−ϕy

)
− |κ|v

2
s(=Aκcϕω + <Aκsϕω)√

2
(3.2.22)

where the frequently encountered phase combination is abbreviated as

ϕy = ϕκ − ϕλ + 2ϕs − ϕu, (3.2.23)

ϕω = ϕκ + 3ϕs. (3.2.24)

It is conventional that the dimensionless parameters λ and κ be expressed by their modulus
and phase, while the trilinear couplings Aλ, Aκ are written in terms of their real and imaginary
parts. Because the two tadpoles parameters tad , tau are linearly dependent, only five tadpole
equations yield conditions to the Higgs sector. In the case of CP-conserving NMSSM, the pseu-
doscalar field tadpole conditions are trivially satisfied. On the other hand, if CP is violated,
the two minimization conditions tad = tas = 0 can be used to eliminate =Aλ and =Aκ. The
other three tadpole equations thd = thu = ths = 0 can be used to replace the soft-breaking mass
parameters m2

Hu
,m2

Hd
,m2

S .

The explicit expression for the mass matrix of the charged Higgs is given by

Mh+h− =
1

2

(
tanβ 1

1 cotβ

)[
M2
W s2β +

|λ|vs
(
|κ|vscϕω +

√
2<Aλ

)
cϕω−ϕy

− 1

2
|λ|2s2βv

2

]

+

 thd−tad tan(ϕω−ϕy)

vcβ
− tad (tan(ϕω−ϕy)+i)

vsβ

− tad (tan(ϕω−ϕy)−i)
vsβ

sβthu−cβtad tan(ϕω−ϕy)

vs2β

 (3.2.25)

where the tadpoles parameters are explicitly kept. This mass matrix can be diagonalized using
the mixing matrix (

G±

H±

)
= RG±

(
h±d
h±u

)
, RG± =

(
− cosβc sinβc

sinβc cosβc

)
, (3.2.26)

and

diag
(
0,M2

H±
)

= RG±Mh+h−

(
RG±

)T
. (3.2.27)

At tree level, the mixing angle βc = β. However, the two angles are distinguished, since while
β receives quantum correction, βc is considered renormalized, thus not receiving counterterm.
The charged Higgs mass can be obtained

M2
H± =

|λ|c2
β−βcvs

(
|κ|vscϕω +

√
2<Aλ

)
s2βcϕy−ϕω

− 1

2
|λ|2c2

β−βcv
2 + c2

β−βcM
2
W

+
sβ(cβc

2
βc
thu + sβs

2
βc
thd + c2

β−βctad tan(ϕy − ϕω))

cβs
2
βv

. (3.2.28)

The tadpoles parameters and the charged mixing angles are explicitly kept for the sake of higher
order computation. Using this relation, the parameter <Aλ can be replaced by the charged Higgs
mass. It should also be noted that two massless charged Nambu-Goldstone bosons are also the
mass eigenstates
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The neutral Higgs mass is described by a 6 × 6 matrix. However, only 5 of the mass
eigenstates are Higgs bosons, while one becomes the Goldstone boson. To separate these two,
a rotation is needed. To obtain the final mass eigenstates of the Higgs bosons, one more
transformation is required. Thus, two rotations must be performed

(hd, hu, hs, a, as, G)T = RG(hd, hu, hs, ad, au, as)
T (3.2.29)

(G, h1, h2, h3, h4, h5)T = R(hd, hu, hs, a, as, G)T (3.2.30)

which consecutively decouples the Goldstone boson and diagonalize the mass matrix

Mhh = RGMφφ

(
RG
)T

, diag
(
0,m2

h1 ,m
2
h2 ,m

2
h3 ,m

2
h4 ,m

2
h5

)
= RMhhR

T (3.2.31)

where the rotation matrix capable of decoupling the Goldstone boson is

RG =

(
I3×3 0

0 R̃G

)
, R̃G =

sinβn cosβn 0

0 0 1

cosβn − sinβn 0

 (3.2.32)

which only mixes the CP-odd sector. Thus, the Goldstone boson is a pseudoscalar. The mass
eigenstates hi are sorted from lightest to heaviest 0 ≤ mh1 ≤ · · · ≤ mh5 . The mass matrix Mhh

is

(Mhh)hdhd =
1

2
v2 |λ|2 s2

β −
(cβ+βc − 3cβ−βc) cβcthd

2vc2
β−βc

−
c2
βc
sβthu

vc2
β−βc

+ c2
βM

2
Z +

M2
H±s

2
β

c2
β−βc

−M2
W s

2
β

(Mhh)hdhu =
1

2
v2 |λ|2 cβsβ +

sβs
2
βc
thd

vc2
β−βc

+
cβc

2
βc
thu

vc2
β−βc

+ cβM
2
W sβ − cβM2

Zsβ −
M2
H±s2β

2c2
β−βc

(Mhh)hdhs = |λ|2
(
vcβvs −

v3cβs
2
β

2vs

)
− 1

2
v |κ| |λ| sβvscϕy +

s2
βs

2
βc
thd

c2
β−βcvs

+
c2
βc
s2βthu

2c2
β−βcvs

+
v

vs

(
cβM

2
W s

2
β −

M2
H±cβs

2
β

c2
β−βc

)
(Mhh)hda =

tadcβn
vsβ

(Mhh)hdas =
tad
vs

+
3

2
v |κ| |λ| sβvssϕy

(Mhh)huhu =
1

2
v2 |λ|2 c2

β −
cβs

2
βc
thd

vc2
β−βc

+
sβc (2cβcβc + sβsβc) thu

vc2
β−βc

− c2
βM

2
W +

M2
H±c

2
β

c2
β−βc

+M2
Zs

2
β

(Mhh)huhs = |λ|2
(
vsβvs −

v3c2
βsβ

2vs

)
− 1

2
v |κ| |λ| cβvscϕy +

s2βs
2
βc
thd

2c2
β−βcvs

+
c2
βc

2
βc
thu

c2
β−βcvs

+
v

v2

(
c2
βM

2
W sβ −

M2
H±c

2
βsβ

c2
β−βc

)
(Mhh)hua =

tadsβn
vsβ

(Mhh)huas =
cotβtad
vs

+
3

2
v |κ| |λ| cβvssϕy

(Mhh)hshs =
ivcβ

(
−1 + e2iϕω

)
tad

v2
s (1 + e2iϕω)

− i
(
−1 + e2iϕω

)
tas

vs (1 + e2iϕω)
+

√
2 |κ| vseiϕω<Aκ

1 + e2iϕω

+
1

2
v2 |κ| |λ| cβsβ

(
−cϕy +

3i
(
−1 + e2iϕω

)
sϕy

1 + e2iϕω

)
+
v4 |λ|2 s2

2β

8v2
s

+ 2 |κ|2 v2
s
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−
vcβs

2
βs

2
βc
thd

c2
β−βcv

2
s

−
vc2
βc

2
βc
sβthu

c2
β−βcv

2
s

+

v2

(
M2
H±

s22β
4c2β−βc

− c2
βM

2
W s

2
β

)
v2
s

+
ths
vs

(Mhh)hsa =
tad (cotβcβn + sβn)

vs
− 1

2
v |κ| |λ| vscβ−βnsϕy

(Mhh)hsas = −2vcβtad
v2
s

+
2tas
vs
− 2v2 |κ| |λ| cβsβsϕy

(Mhh)aa =
1

2
v2 |λ|2 c2

β−βn −
thdsβc−βn (2sβsβcsβn + cβsβc+βn)

vc2
β−βc

+
thusβc−βn (2cβcβccβn + sβsβc+βn)

vc2
β−βc

−M2
W c

2
β−βn +

M2
H±c

2
β−βn

c2
β−βc

(Mhh)aas =
v3 |λ|2 s2βcβ−βn

4vs
− 3

2
v |κ| |λ| vscβ−βncϕy −

sβcβ−βns
2
βc
thd

c2
β−βcvs

−
cβc

2
βc
cβ−βnthu

c2
β−βcvs

+
v

vs

(
M2
H±s2βcβ−βn

2c2
β−βc

− 1

2
M2
W s2βcβ−βn

)

(Mhh)asas = −3ivcβ
(
−1 + e2iϕω

)
tad

v2
s (1 + e2iϕω)

+
3i
(
−1 + e2iϕω

)
tas

vs (1 + e2iϕω)
− 3
√

2 |κ| vseiϕω<Aκ
1 + e2iϕω

+
3

2
v2 |κ| |λ| cβsβ

(
cϕy −

3i
(
−1 + e2iϕω

)
sϕy

1 + e2iϕω

)
+
v4 |λ|2 s2

2β

8v2
s

−
vcβs

2
βs

2
βc
thd

c2
β−βcv

2
s

−
vc2
βc

2
βc
sβthu

c2
β−βcv

2
s

+
v2

v2
s

(
M2
H±s

2
2β

4c2
β−βc

− c2
βM

2
W s

2
β

)
+
ths
vs

(3.2.33)

In the case of CP-conservation, the CP-odd and CP-even sectors decouple; thus, the mass ma-
trices can be simultaneously diagonalized, and an analytical expression for the mass eigenvalue
is possible. If CP-violation is considered, the rotation to obtain the mass eigenvalues cannot be
expressed analytically. Just like βc, at tree level, βn = βc = β. However, all mixing angles are
kept separately because only β receives quantum correction, but not βc and βn. However, the
relation βc = βn always hold. One remark is that the neutral Goldstone boson derived from
NMSSM is also CP-odd, just like SM and MSSM.

The following set of independent parameters shall be used for the Higgs sector{
thd , thu , ths , tad , tas ,M

2
H± , v, sin θW , v, tanβ, |λ|, vs, |κ|,<Aκ, ϕλ, ϕκ, ϕu, ϕs

}
. (3.2.34)

Neutralinos and Charginos

Unlike their SM counterpart, the superpartners of Higgs and gauge bosons mixes to form the
mass eigenstates. The two neutral gauginos (B̃, W̃ 3) mixes with the three neutral Higgsi-
nos (H̃0

d , H̃
0
u, S̃) to form the five mass eigenstates, called neutralinos. Written in the basis

(B̃, W̃ 3, H̃0
d , H̃

0
u, S̃)T , their mass matrix is

MN =


M1 0 −MZsW cβ e−iϕuMZsW sβ 0

0 M2 MZcW cβ −e−iϕuMZcW sβ 0

−cβsWMZ cβcWMZ 0 −eiϕsλvs/
√

2 −eiϕuλvu/
√

2

e−iϕusβsWMZ −e−iϕusβcWMZ −eiϕsλvs/
√

2 0 −λvd/
√

2

0 0 −eiϕsλvu/
√

2 −λvd/
√

2
√

2eiϕsvsκ

 ,

(3.2.35)
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where the short-hand notation sx ≡ sinx, cx ≡ cosx and sW ≡ sin θW , cW = cos θW have
been introduced. Using an appropriate unitary transformation N, the mass matrix can be
diagonalized yielding the five neutralinos mass eigenstates χ0

i (i = 1, · · · , 5)

(
χ̃0

1, χ̃
0
2, χ̃

0
3, χ̃

0
4, χ̃

0
5

)T
= N

(
B̃, W̃ 3, H̃0

d , H̃
0
u, S̃

)T
, (3.2.36)

and the mass eigenvalues

diag
(
mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
,mχ̃0

5

)
= N∗MNN

† (3.2.37)

where they are ordered by ascending mass mχ̃0
1
≤ · · · ≤ mχ̃0

5
. These neutralinos are Majorana

fermions and do not interact electromagnetically. Thus, they can be candidates for dark matter,
though more analysis should be done for a more definitive answer.

For the charged gauginos W̃± and charged Higgsinos H̃−d , H̃
+
u , their mass eigenstates are

called charginos. Their mass matrix in the basis (W̃+, H̃+
u )T on the right and (W̃−, H̃−d )T on

the left is

MC =

(
M2

√
2 sinβMW e

−iϕu
√

2 cosβMW λvse
iϕs/
√

2

)
. (3.2.38)

This matrix is not symmetric; thus, two unitary mixing matrices(
χ̃+

1

χ̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
χ̃−1
χ̃−2

)
= U

(
W̃−

H̃−d

)
(3.2.39)

are needed to diagonalize it

diag
(
mχ̃±1

,mχ̃±2

)
= U∗MCV

† (3.2.40)

where the mass eigenvalues squared are

m2
χ̃±1,2

=
1

2

[
|M2|2 + |µeff |2 + 2M2

W

∓
√(
|M2|2 + |µeff |2 + 2M2

W

)2
− 4
∣∣M2µeff − e−iϕuM2

W sin 2β
∣∣2] , (3.2.41)

with µeff defined in (3.2.10)

Gluino

Gluino is the superpartner of gluons. They are Majorana fermions that carry color charge.
They does not couples with the Higgs field or mix with any other particle in the NMSSM. Thus,
at tree-level, the mass of gluino is entirely determined by the soft SUSY breaking parameter
M3

mG̃ = |M3|. (3.2.42)

Quarks and leptons

Similar to that of the SM, the masses of quarks and leptons comes from the Yukawa interaction
with the Higgs field. The difference is that all fermions in the SM couples with just one Higgs
doublet, while the NMSSM Hu couples with up-type quarks and Hd gives mass to down-type
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quarks and leptons.

Since the mass matrix of leptons is proportional to its Yukawa coupling, let λl , l = e, µ, τ
be the eigenvalues of the Yukawa coupling matrix Ye. The masses of the charged-lepton are

ml =
λlvd√

2
=

√
2λlMW sin θW cosβ

e
. (3.2.43)

Experimental data suggests that the mass eigenstates of charged leptons can be set identical to
its flavour eigenstates

At the same time, let λqu , qu = u, c, t and λqd , qd = d, s, b respectively be the eigenvalues of
the Yukawa coupling matrices of up-type and down-type quarks Yu,Yd. In contrary to leptons,
flavour mixing among quarks is non-vanishing. Thus, four unitary matrices V u,d

L,R are needed to
obtain the eigenvalues, just as in the case of SM. Then, the masses of the quarks are

mqu =
λquvu√

2
=

√
2λquMW sin θW sinβ

e
, mqd =

λqdvd√
2

=

√
2λqdMW sin θW cosβ

e
. (3.2.44)

Squarks and sleptons

The mass matrix for the sfermions, excluding sneutrino, can be written in one general way in
the basis (f̃L, f̃R)T is

Mf̃ =

M2
Zc2β

(
If3 −Qfs2

W

)
I3×3 +M2

f̃L
+ m∗fm

T
f m∗fX

∗
f

XT
fm

T
f mT

fm
∗
f +M2

f̃R
+M2

Zc2βQfs
2
W I3×3

 ,

(3.2.45)

with f = e, u, d. If3 and Qf are respectively the isospin and electric charge of the fermion. M2
f̃L

is M2
Q̃

for squarks or M2
L̃

for sleptons. M2
f̃R

is M2
Ũ

for up-type squarks, M2
D̃

for down-type

squarks and M2
Ẽ

for sleptons. mf is the corresponding mass matrix for fermions. It is Yevd/
√

2

for leptons, Ydvd/
√

2 for down-type quarks and eiϕuYuvu/
√

2 for up-type quarks. And

Xf = Af − I3×3 e
−iϕuµ∗eff (cotβ)2 If3 , (3.2.46)

with If3 = 1/2 for up-type sfermions and −1/2 for down-type sfermions. The mass matrices
can be diagonalize analytically if the different generations of sfermions and fermions decouple.
Such case yields 2× 2 mass matrix

Mf̃i
=

M2
Zc2β

(
Ifi3 −Qfis2

W

)
+M2

f̃iL
+m2

fi
mfiX

∗
fi

Xfimfi m2
fi

+M2
f̃iR

+M2
Zc2βQfis

2
W I3×3

 , (3.2.47)

with i = 1, 2, 3 being the generation index, the real and positive mfi is the mass of the corre-
sponding fermion and

Xfi = Afi − e−iϕuµ∗eff (cotβ)2 If3 . (3.2.48)

Then, the sfermions f̃iL and f̃iR mixes to generate two mass eigenstates. The masses of the
sfermions are

m2
f̃i1,2

=
1

2

[
2m2

f +M2
f̃iL

+M2
f̃iR

+ If3M
2
Z cos 2β
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∓
√[

M2
f̃iL
−M2

f̃iR
+M2

Z cos 2β(If3 − 2Qf sin2 θW )
]2

+ 4m2
fi
|Xfi |2

]
, (3.2.49)

and their eigenstates are obtained by(
f̃i1

f̃i2

)
= Uf̃

(
f̃iL

f̃iR

)
, Uf̃ =

(
− sin θf̃i cos θf̃i
cos θf̃i sin θf̃i

)
, (3.2.50)

with θf̃i defined as

cot θf̃i = − 1

2mfiX
∗
fi

[
M2
f̃iL
−M2

f̃iR
+M2

Z cos 2β(If3 − 2Qf sin2 θW )

+

√[
M2
f̃iL
−M2

f̃iR
+M2

Z cos 2β(If3 − 2Qf sin2 θW )
]2

+ 4m2
fi
|Xfi |2

]
.

(3.2.51)

Lastly, the mass for sneutrino is, given that the different flavours decouple and suppressing the
generation index,

m2
ν̃ = M2

L̃
+

1

2
m2
Z cos 2β. (3.2.52)
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Chapter 4

Inverse Seesaw Mechanism

4.1 Experimental data and motivation

Although neutrino is predicted in SM to be massless, experiments with solar, atmospheric,
reactor and accelerator neutrino has shown evidence of oscillation [31–33]. Such data implies
massive neutrinos and the existence of mixing between different flavours of neutrino. This phe-
nomenon is characterized by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix UPMNS

Further investigations not only strengthen the evidence but also report unusually light neu-
trinos. The upper bound for neutrino mass from cosmological data [41]

3∑
i=1

mni < 0.23 eV (4.1.1)

is of order 106 times smaller than that of electron, the lightest massive particle in SM. However,
given that the masses of all particles in the SM is generated through the same way, the Higgs
mechanism, the many orders of magnitude difference in their masses is troublesome.

The fact that neutrino has mass proves that the current description of neutrino is incom-
plete. New ways of explaining the smallness, yet non-zero, of neutrino mass have been proposed.
Upon them, the most attractive explanation is probably the seesaw mechanism.

This mechanism has many versions, but they generally introduces right-handed neutrino
and Majorana mass term. The smallness of the observed neutrinos is then explained by the
arbitrarily large mass of sterile neutrinos due to parameters independent of SM, thus can be on
any scale, including GUT or SUSY scale.

4.2 Type I Seesaw Mechanism

The mass terms for a general Dirac fermion ΨD = (fL, fR)T is

LD = −mΨ̄DΨD = −m
(
f̄LfR + f̄RfL

)
. (4.2.1)

Since right-handed neutrino is not observed in experiment, thus, massless according to SM.
However, this argument is not applicable if right-handed neutrino does exist and singlet under
gauge group, called sterile right-handed neutrino. Moreover, it is also not the most general
mass term and it alone cannot explain the smallness of neutrino mass. Beside Dirac fermion,
a different kind of fermion, called Majorana fermion, was proposed. This particle is its own
anti-particle, defined by

ΨM = Ψc
M , (4.2.2)
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with c being the charge-conjugated operator. If Majorana fermion is included, more mass terms
are possible

LM = −m
2

Ψ̄MΨc
M + h.c. = −m

2
(f̄Lf

c
L + f̄Rf

c
R) + h.c. . (4.2.3)

In general, Majorana mass terms do not respect gauge symmetry if it is not a gauge singlet.

Combine both cases, we can write down the general mass term for neutrino

LD+M = −m
M
L

2
f̄Lf

c
L −

mM
R

2
f̄Rf

c
R −mDf̄LfR + h.c. . (4.2.4)

For the specific case of neutrino with 3 generations ν = (νe, νµ, ντ )T , that is

LD+M = −1

2
ν̄LM

M
L νcL −

1

2
ν̄RM

M
R νcR − ν̄LMDνR + h.c. (4.2.5)

= −1

2

(
ν̄L ν̄cR

)
MD+M

ν

(
νcL
νR

)
+ h.c., (4.2.6)

with

MD+M
ν =

(
MM

L MD

(MD)T MM
R

)
. (4.2.7)

Even though the mass term can be constructed using only left-handed neutrino, such Majorana
term would violate SU(2) symmetry; thus, we must exclude its Majorana term, meaning MM

L =
0, and must introduce sterile right-handed neutrino. Meaning that

MD+M
ν =

(
0 MD

(MD)T MM
R

)
. (4.2.8)

Diagonalizing this matrix, we will obtain the neutrino mass.

To show how seesaw mechanism work, we shall consider the simplest case of only 1 flavour
of neutrino. Then the mass matrix becomes

MD+M
ν =

(
0 mD

mD mR

)
. (4.2.9)

Diagonalizing this matrix yields the eigenvalues∣∣∣∣∣−µ mD

mD mR − µ

∣∣∣∣∣ = 0⇐⇒ µ =
1

2

[
mR ±

√
m2
R + 4(mD)2

]
. (4.2.10)

While mD is generated from electroweak symmetry breaking, mR is not bound to the SM, which
is considered to be an effective theory of a more general theory at higher energy scale; thus, it is
natural to expect the value of mD is of order of electroweak symmetry breaking while mR can
be on the scale of the general theory, which may be SUSY or GUT. That means mD � mR.
Using this, the mass eigenvalues can be approximated to first order as

µ =
1

2
mR

1±

√
1 +

(
2mD

mR

)2
 ≈ 1

2
mR

[
1±

(
1 + 2

(
mD

mR

)2
)]

(4.2.11)
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=⇒ µ ≈ −(mD)2

mR
or µ ≈ mR. (4.2.12)

Since mR is large compared to mD, we have 2 mass eigenvalues, one represents very light neu-
trino, as demanded by experiment, the other is very heavy, thus the name seesaw mechanism.

In the case of 3 flavours, the mathematical formula is more complicated, but the idea is the
same. That is, we can block diagonalize the mass matrix in the case MD �MM

R [42]

MD+M
ν =

(
0 MD

(MD)T MM
R

)
≈ Uν

(
−(MD)TM−1

R MD 0

0 MR

)
UT
ν , (4.2.13)

with

Uν =

(
I3 −M−1

R (MD)T

(MD)∗(M−1
R )† I3

)
. (4.2.14)

Since the mass matrix is block diagonalized, we can find the eigenvalues of each block inde-
pendently. Because MD � MM

R , the upper-left block and its eigenvalues are very small, of
order (mD)2/mR like in equation (4.2.12), thus contributing to the unusual smallness of light
neutrino, while the lower-left block is on SUSY or GUT scale demanding the existence of very
heavy neutrino just as showed in the case of 1 flavour.

To get a qualitative picture of how massive heavy neutrino should be, we can use some
approximation of the values of the parameters. The upper-bound for neutrino mass from cos-
mological data is 0.23 eV = 0.23×10−9 GeV [41]. Since mD is on electroweak breaking scale. It
may ranges from the lightest lepton’s mass, electron, to heaviest quark’s mass, top quark. That
is mD may varies from 0.5 × 10−3 GeV to 170 GeV; thus, the mass of heavy neutrino ranges
from 103 GeV to 1014 GeV

4.3 Inverse Seesaw Mechanism

Although seesaw mechanism can explain the existence and the smallness of neutrino mass, it is
experimentally impractical to detect neutrino as heavy as 1014 GeV. Inverse seesaw mechanism
is an alternative explanation for the mass of neutrino that does not resort to such high mass.
In fact, heavy neutrinos in this mechanism can be as light as TeV scale, which is within grasp
of today experimental capability. The trade of is that we need to introduce a fermionic singlet
for every light neutrino. That is, we need an additional 3 singlets to describe the 3 generations
of light neutrino. The Lagrangian is

Lν = −1

2
n̄cMνn+ h.c., (4.3.1)

with n = (νcL, NR, s)
T and

Mν =

 0 MD 0

MT
D µR µT

0 µ λX

 . (4.3.2)

To conserve gauge invariant, the terms νcLν
c
L and νcLs must vanishes. Among the remaining

terms, MD is on the electroweak symmetry breaking scale, µ can be on any arbitrary scale. While
µR and λX can be on any scale, these terms break lepton number, which is highly constrained
by experiments. Thus, they have to be very small. Therefore, we have λX �MD � µ. With
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this, we can approximately, to first order, block diagonalize the mass matrix to obtain the block
for light neutrino [42]

mν = MDµ
−1λX(µ−1)TMT

D. (4.3.3)

Diagonalizing this matrix gives the mass of the light neutrino. The contribution of µR to mν

is to second order. Thus, it is often dropped from the analysis, as will be the case in this thesis.

To have a qualitative picture of the energy scale of each terms, we shall follow the same
procedure of that in previous section. That is, the scale for neutrino mass is 0.1 eV = 0.1 ×
10−9 GeV. MD may varies from 0.5 × 10−3 GeV to 170 GeV. With λX � MD, and since
lepton number violation should be on the energy scale smaller than the lower bound of MD

because no such violation is observed yet, it is required that µ < 2 × 105 GeV. That is, all
parameters in this mechanism is within the TeV scale or lower. This is an interesting result
since the newly introduced particles are in the reach of future or even present collider.

4.4 Inverse Seesaw Mechanism in NMSSM

To incorporate the idea of inverse-seesaw into NMSSM, two superfields, each with three gener-
ations corresponding to the three flavour of light neutrinos, must be introduced. As mentioned
while the Lagrangian for NMSSM was constructed, the requirement of scale-independent, thus
producing no hierarchy problem, coincidently forces the Lagrangian to be Z3-invariant. Thus,
in bringing more superfields into the theory, caution should be taken in order to conserve Z3-
symmetry. Following [43], each of the new neutrino superfields is assigned with the appropriate
Z3-charge as described in table 4.1. The superpotential involving only the neutrino sectors is
given by

WISS = N̂ cyνL̂ · Ĥu + ŜX̂λXX̂ + N̂ cµXX̂, (4.4.1)

while the soft SUSY breaking Lagrangian is

LISSsoft = −ÑTM2
Ñ
Ñ∗ − X̃†M2

X̃
X̃ −

(
SX̃λXAXX̃ + Ñ∗yνAνL̃ ·Hu + Ñ∗µXBµX X̃ + h.c.

)
,

(4.4.2)

with yν , λX , µX are 3×3 matrices in flavour space. After constructing the Lagrangian, the mass
matrix for neutrino can be obtained. In the interaction basis (ν,N c, X), it is the 9× 9 matrix

Mν =


0

vue
iϕuyν√

2
0

vue
iϕu

√
2
yTν 0 µX

0 µTX
vse

iϕs

√
2

(
λX + λTX

)

 . (4.4.3)

In general, we will use four-component spinor in our calculation. In this notation, a Majorana
fermion ΨM is defined as

ΨM ≡
(
ψL

ψcL

)
= Ψc

M . (4.4.4)

The respective chiral components can be obtained using the chiral operator PL,R = 1±γ5
2

ψL = PLΨM , ψR = PRΨM = (ψL)c. (4.4.5)
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Superfields spin 0 spin 1/2 SUC(3)× SUL(2)× UY (1) Z3-charge

N̂ c Ñ∗ N c (1,1, 0) ω2

X̂ X̃ X (1,1, 0) ω

Table 4.1: The newly introduced neutrino superfield. The superfields are denoted with a hat, the
superpartner of SM particles have a tilde to distinguish. The generation indices are suppressed.
The numbers in the fourth column denote the dimensions of the corresponding representation
of the gauge group, with the bar denote complex conjugate representation. The last column is
the Z3-charge with unit charge ω = e2πi/3

Since neutrinos are proposed to be Majorana fermions, they also have similar definition

ψν =

(
ν

νc

)
, ψN =

(
N c

N

)
, ψX =

(
X

Xc

)
. (4.4.6)

Approximately block diagonalize the matrix (4.4.3), the mass matrix for light neutrino is
obtained [42]

mν =

[(
vue

iϕuyν√
2

)
(µTX)−1

]
vse

iϕs

√
2

(
λX + λTX

)[
µ−1
X

(
vue

iϕu

√
2
yTν

)]
=
v2
uvse

i(2ϕu+ϕs)

2
√

2

[
yv(µ

T
X)−1

]
(λX + λTX)

[
µ−1
X yTν

]
. (4.4.7)

Diagonalizing this 3× 3 matrix yields the masses of light neutrinos. An analysis similar to
that of the inverse-seesaw mechanism in the SM can be taken. vu is on the electroweak sym-
metry breaking scale. The parameter λX characterize lepton number violation, which is not
detected by experiments. Therefore, it should be sufficiently small. With the help of this lepton
number violating parameter, the unusual smallness of neutrino mass matrix only requires µX
on the TeV scale, within the reach of present or future colliders.

With the introduction of the new superfield, sneutrino sector is also changed. To incorporate
CP-violation, each sneutrino field is separate into its CP-even and CP-odd component

ν̃ =
1√
2

(ν̃+ + iν̃−), (4.4.8)

Ñ∗ =
1√
2

(
Ñ+ + iÑ−

)
, (4.4.9)

X̃ =
1√
2

(
X̃+ + iX̃−

)
. (4.4.10)

Although the mass matrix for these fields can be computed from the Yukawa couplings and
other parameters, in practice, it is the mass matrix that is known beforehand, while the other
parameters such as the Yukawa couplings must be computed. Thus, a reverse parametrization
is needed. One such way is using the mass and mixing matrices of neutrino as input parameter
and the Yukawa coupling matrix have to be computed. Let the mass of neutrino be mν1 ≤
mν2 ≤ mν3 . The unitary mixing matrix UPMNS is defined as

mν = UTPMNSDνUPMNS , Dν = diag(mν1 ,mν2 ,mν3). (4.4.11)

Note that it is conventional for UPMNS to be defined as transforming the mass eigenstates to
the flavour eigenstates, contrary to the convention for mixing matrices used in this thesis. Let
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√
λX and

√Dν be the matrix such that

2
√
λX

T√
λX = λX + λTX ,

√
Dν = diag

(√
mν1 ,

√
mν2 ,

√
mν3

)
. (4.4.12)

Since no information regarding the new neutrino sector has been confirmed, without lost of
generality, the matrices µX and λX can be made diagonalized by rotating the fields N and X
to the appropriate basis. Then, the matrix

√
λX can be constructed from taking the square

root of the diagonal element of λX . Thus, it can always be defined. Then, equation (4.4.7) is
equivalent to

I3×3 =
v2
uvse

i(2ϕu+ϕs)

√
2

[√
D−1
ν U∗PMNS yv(µ

T
X)−1

√
λX

T
][√

λXµ
−1
X yTν U

†
PMNS

√
D−1
ν

]
. (4.4.13)

Let

R =

√
v2
uvse

i(2ϕu+ϕs)

√
2

√
λXµ

−1
X yTν U

†
PMNSD−1

ν . (4.4.14)

Then, this relation immediately equivalents to I3×3 = RTR, which is correct for all complex
orthogonal matrix R. Thus, all yν satisfying the relation

yν = UTPMNS

√
DνRT

(√
λX

T
)−1

µTX (4.4.15)

for all complex orthogonal R, generate the desirable mass matrix mν

4.5 Feynman rules for NMSSM with inverse seesaw mechanism

In this section, the necessary Feynman rules for the theory is presented. Only those that have
new contribution to the Higgs sector of NMSSM is considered. Due to the existence of fermion-
number-violating interaction, the usual Feynman rules are not usable. Therefore, the Feynman
rules for fermion in such case following the work in [44]. They are then summarized in the last
part.

4.5.1 Motivation for Feynman rules for fermion-number-violating interaction

Let us denote ψ as any kind of fermion, ψD as Dirac fermion, ψM as Majorana fermion and Γ
denote the gamma matrix structure, thus is a 4 × 4 matrix. Without Majorana fermion, it is
possible to arrange the contraction among fermions so that it takes the form

〈· · ·| (ψ̄Γψ)(ψ̄Γψ) · · · · · · (ψ̄Γψ) |· · ·〉 (4.5.1)

for an open fermion line, or

· · · (ψ̄Γψ)(ψ̄Γψ) · · · · · · (ψ̄Γψ) · · · (4.5.2)

for a closed fermion loop. This show that the fermion line in the Feynman diagram is a con-
tinuous and oriented line, or that fermion-number is conserved. However, this is not the case if
Majorana fermion present. One reason is thatm as opposed to Dirac fermion, where only one
contraction is possible, the following contractions are also non-vanishing for Majorana fermion
(detailed calculation is presented later)

ψMψM , ψ̄M ψ̄M (4.5.3)
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Here, we denoted ψM for Majorana fermion. Therefore, if the contraction

· · · (ψ̄MΓψM ) · · · (4.5.4)

is possible, so is the contraction

· · · (ψ̄MΓψM ) · · · (4.5.5)

However, while the former conserves fermion-number and show diagrammatically as an oriented
continuous line, it is not the case for the later. Firstly, in ψψ̄, if we denote the fermion-number
of ψ as 1 and ψ̄ as −1, this contraction yield a fermion-number 0, thus conserved. But, in ψψ, it

is 2 and in ψ̄ψ̄, it is −2, violating fermion-number. Secondly, (4.5.5) breaks the continuous flow.
One cannot unambiguously determine the direction of particle-number flow with the propagator

ψψ and ψ̄ψ̄.

To resolve these problems and implement Feynman rule in theories with Majorana fermion,
we follow the work in [44]. The idea is to keep essence of the concept fermion-number flow by
adjusting the interaction Lagrangian. This adjustment is built upon the following observation.
Introducing as the charge-conjugating matrix 1, ψc and ψ̄c are the charge conjugated field,
transforming according to

ψc = Cψ̄T , ψ̄c = −ψTC†, (4.5.6)

we can obtain

ψ̄1Γψ2 = (ψ̄1Γψ2)T = −ψT2 ΓT ψ̄T1 = (−ψT2 C†)(CΓTC†)(Cψ̄T1 ) = ψ̄c2(CΓTC†)ψc1 = ψ̄c2Γcψc1, (4.5.7)

where we introduced Γc = CΓTC†. In this expression, the fields operator ψ̄1 and ψ2 switched
place and the direction within this interaction Lagrangian is reversed. Note that the coupling
constants and non-fermionic field is unaffected by this argument. Using this, one can restore
the continuous flow, which is called fermion flow, by replacing

· · · (ψ̄M1ΓψM2) · · · −→ · · · (ψ̄cM2ΓcψcM1) · · · (4.5.8)

Also, the only contractions are between ψ and ψ̄ since we transform the contractions ψψ and

ψ̄ψ̄ to ψψ̄c and ψcψ̄ respectively. Additionally, using this trick, we can choose any orientation
as the fermion flow. If the chosen flow is in the opposite direction of the fermion-number flow
in the ordinary Feynman rules, we just need to use charge conjugation to reverse the flow. The
cost is introducing charge conjugated fields in the contraction. Therefore, we must calculate
the Feynman rules relating to these fields before we can state it.

We shall denote, for brevity, SF as the propagator for its corresponding contraction. Then
all of the non-vanishing contractions involving charge-conjugated fields are

SF (ψcaψ̄
c
b) = −SF (Cadψ̄Td ψTc C†cb) = −CadSF (ψ̄dψc)C†cb = CadSF (ψcψ̄d)C†cb

= Cad
i(/p+m)cd

p2 −m2 + iε
C†cb =

i(pµCγµTC† +m)ab
p2 −m2 + iε

=
i(−/p+m)ab

p2 −m2 + iε

SF (ψaψ
c
b) = SF (ψaCbdψ̄Td ) = SF (ψaψ̄d)Cbd =

i(/p+m)ad

p2 −m2 + iε
CTdb =

i
[
(/p+m)CT

]
ab

p2 −m2 + iε

1C has the properties C† = C−1, C−1γµC = −γµT so that it leaves free Dirac field invariant under charge
conjugation
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SF (ψ̄caψ̄b) = −SF (ψTc C†caψ̄b) = −C†caSF (ψcψ̄b) = −C†ca
i(/p+m)cb

p2 −m2 + iε
=
i
[
−C∗(/p+m)

]
ab

p2 −m2 + iε

The later 2 propagators are calculated to demonstrate the claim in (4.5.3) that these propagators
are not zero for Majorana fermion, where ψcM = ψM . However, using the rules laid out in the last
part, we will only encounter the first of these three propagators. Since we shall not encounter
external fermion line in this problem, we shall not include the derivation for external charge
conjugated fermion line here.

4.5.2 Feynman rules of NMSSM for new contributions from inverse seesaw
mechanism

In all of the below Feynman rules, it is understood that momentum is conserved at each vertex,
all undetermined momentums are to be integrated over. Loops of fermion receive an extra (−1)
factor. There is a potential symmetry factor for each diagram. The momentum of every line is
assumed to flow from left to right, unless explicitly shown otherwise.

In this section, only the new contribution to the Higgs sector is considered. The Feynman-’t
Hooft gauge ξ = 1 is used. For fermion, choose and fix an arbitrary orientation as the fermion
flow for every fermion chain. The Feynman rules of fermion will depends on this choice. The
thick and short arrow denotes momentum flow. The thin and long arrow denotes fermion flow.
Fermion is denoted by a solid line. Dirac fermion has an arrow associated with its line where
Majorana fermion does not. Scalar field is denoted by dashed line with complex scalar having
an arrow denoting particle flow. Vector field is presented by a wiggly line with an arrow for
complex vector field. Since no decay processes is considered, the regulator iε in the denominator
is set in the limit ε→ 0 without changing the result

Propagator

• Real scalar: =
i

p2 −m2

• Complex scalar: =
i

p2 −m2

• Dirac fermion: =
i(/p+m)

p2 −m2

=
i(−/p+m)

p2 −m2

• Majorana fermion: =
i(/p+m)

p2 −m2

External line

• External real scalar: = 1 (incoming)

= 1 (outgoing)

• External complex scalar:

– Particle: = 1 (incoming)

= 1 (outgoing)

49



– Antiparticle: = 1 (incoming)

= 1 (outgoing)

• External real vector: = εµ(p) (incoming)

= ε∗µ(p) (outgoing)

• External complex vector:

– Particle: = εµ(p) (incoming)

= ε∗µ(p) (outgoing)

– Antiparticle: = εµ(p) (incoming)

= ε∗µ(p) (outgoing)

Vertex

Since we have the freedom to choose the orientation of fermion flow and adjust the vertex
accordingly. Let Γ be the gamma matrix structure of the vertex reading off from the Lagrangian
in the ordinary sense, the dashed line represent either a scalar field or a vector field. There are
4 possible vertex types, each with 2 possible orientation of fermion flow. All of them and their
corresponding Feynman rules are as followed (the subscript is used to distinguish between each
vertex, the momentum p is assumed to flow to the right)

Γ1 Γ1 Γ2 Γc2

Γ3 Γc3 Γ4 Γc4

With these rules presented, in the following vertices, we shall present the rules for just one
fermion line direction. The reversed one is obtained using the rule above. The vertex is calcu-
lated using

−iλ = −i 〈0| ∂nL
∂φi · · · ∂φj

|0〉 (4.5.9)

The momentum p is assumed to flow to the right, the projection operator are PL =
1− γ5

2
,PR =

1 + γ5

2
. The vertices relevant to the current problem are

• Neutral Higgs interaction
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hi

ν̃j

ν̃k

−iλhν̃ν̃ijk

hi

ν̃j ν̃k

hl

−iλhhν̃ν̃iljk

hi

νj

νk

−i
(
λhννLijk PL + λhννRijk PR

)

• Charged Higgs interaction
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H−
i

ν̃j

ẽ−k

−iλH−ν̃ẽ+ijk

H−
i

ν̃j

ẽ−k

−iλH+ν̃ẽ−
ijk

H+

ν̃j

ẽ+k

−iλH+ν̃ẽ−
ijk

H+
i

ν̃j

ẽ+k

−iλH−ν̃ẽ+ijk

H−
i

νj

e−k

−i(λH−νe+Lijk PL+λH
−νe+R

ijk PR)

H−
i

νj

e−k

−i(λH+νe−L
ijk PL+λH

+νe−R
ijk PR)

H+
i

νj

e+k

−i(λH+νe−L
ijk PL+λH

+νe−R
ijk PR)

H+
i

νj

e+k

−i(λH−νe+Lijk PL+λH
−νe+R

ijk PR)

• Z-boson interaction
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Zµ

ν̃j

ν̃k

p

q
−iλZν̃ν̃jk (qµ − pµ)

Zµ Zν

ν̃jν̃i

−iλZZν̃ν̃ij gµν

Zµ

νj

νk

−i
(
λZννLjk γµPL + λZννRjk γµPR

)

• W-boson interaction

W−
µ

ν̃j

ẽ−k

p

q
−iλW−ν̃ẽ+jk (qµ − pµ)

W−
µ

ν̃j

ẽ−k
q

p

−iλW+ν̃ẽ−
ijk (−qµ + pµ)

W+
µ

ν̃j

ẽ+k

p

q
−iλW+ν̃ẽ−

ijk (qµ − pµ)
W+

µ

ν̃j

ẽ+k

q

p

−iλW−ν̃ẽ+ijk (−qµ + pµ)

W−
µ

νj

e−k

−iλW−νe+Lijk γµPL
W−

µ

νj

e−k

−iλW+νe−L
ijk γµPL

W+
µ

νj

e+k

−iλW+νe−L
ijk γµPL

W+
µ

νj

e+k

−iλW−νe+Lijk γµPL
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Chapter 5

Techniques for calculating radiative
corrections at one-loop level

The calculation of the loop-corrected Higgs boson mass develops ultraviolet (UV) divergences.
Thus, approach similar to the calculation at tree-level is not possible. Several treatments must
be used to obtain a finite result for the parameters entering the loop calculation. This chapter
concentrates on discussing the techniques used in treating the divergences encountered in the
calculations of the one-loop Higgs boson mass corrections in chapter 6.

5.1 Dimensional regularization

A general Feynman diagram at one-loop order involves evaluating the integral of the kind

TNµ1...µP (q1, · · · , qN−1,m0, · · · ,mN−1) =

∫ ∞
−∞

d4p

(2π)4

pµ1 · · · pµP
D0D1 · · ·DN−1

(5.1.1)

where the denominators is denoted as

D0 = p2 −m2
0 , Di = (p+ qi)−m2

i , i = 1, · · · , N − 1 (5.1.2)

with N being the number of propagator factors in the loop, P is the tensor rank, which for
renormalizable theory, P ≤ N , and qi are external momenta. Generally, the mass term in the
denominator is m2

i − iε, with ε related to the decay width of the particle. For simplicity of
writing, we assume that m2

i is a complex quantity. Unfortunately, this integral diverges in the
limit p→∞ if 4 +P ≥ 2N , hence the name ultraviolet (UV) divergence. To work around this,
a regularization scheme must be used.

Regularization is the common name for class of methods that deal with UV-divergent inte-
grals by introducing new parameters to separate its finite and divergent part and compute each
individually. For example, Pauli-Villars method [45] uses a momentum cut-off Λ or dimensional
regularization [46] utilizes a dimensional parameter ε. These parameters are used to separate
the UV-finite and UV-divergent part of the integral. After the introduction of counterterms in
renormalization process, all of these UV divergences will be precisely cancelled.

The dimensional regularization (DREG) involves moving the divergent integrals from 4 to
D = 4 − 2ε dimensional space. In such space, the integral converges, thus can be integrated.
The result will be series expanded in term of ε. The term proportional 1/ε is the divergent part.
At one-loop level, we need to take only the 1/ε and the term independent of ε. Other terms
do not contribute. However, changing the dimension of space also changes the dimensionality
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of the momentum integrals, which usually have physical meaning. To preserves this, an ar-
bitrary parameter µ4−D with fixed dimensionality, called renormalization scale, is introduced.
Conventionally, [µ] = 1. Since the dimensionality of mass and momentum is unchanged, only
the integral changes its dimensionality, while the integrand does not. Thus, using dimensional
regularization, the integral becomes∫ ∞

−∞

d4p

(2π)4
→ µ4−D

∫ ∞
−∞

dDp

(2π)D
(5.1.3)

The integral (5.1.1) becomes

TNµ1...µP (q1, · · · , qN−1,m0, · · · ,mN−1) = µ4−D
∫ ∞
−∞

dDp

(2π)D
pµ1 · · · pµP

D0D1 · · ·DN−1
(5.1.4)

Since the parameter ε is unphysical and introduced to treat the UV-divergence, after all diver-
gences are cancelled for observables. The case for µ is more complicated and will be mentioned
in section 5.3

This scheme works very well with the SM. The only complication arises from the definition
of γ5 matrix since it is intrinsically a 4-dimensional object. Different definitions for this matrix
have been made to resolves the problem. For example ’t Hooft and Veltman [46] proposed using
the definition γ5 = iγ0γ1γ2γ3. This, however, violates the axial-vector Ward identities. In
theories free of axial anomalies like the SM, the alternative definition

{
γ5, γµ

}
= 0 is preferred.

However, applying DREG the supersymmetric theories has a flaw since changing spacetime
dimensions does not preserve supersymmetry [47]. Several ways have been proposed to cure
this. One such way is using SUSY restoring counterterms. However, a different technique called
dimensional reduction (DRED) [47] is used in this thesis. DRED is a modified version of DREG
which changes only the dimensionality of momenta, space-time coordinate vectors and metric
tensor, while keeping the vector fields and γ matrices in 4 dimensions. This, however, still
possess some mathematical inconsistency related to the analytic continuation [48]. Later, a
mathematically consistent formulation of DRED was introduced [49] where the 4-dimensional
space is realized as an infinite dimensional space having the properties of 4-dimensional space,
called quasi-4-dimensional. In this formulation, γ5 can be defined in either way presented in
DREG, as long as the theory is axial anomaly free. It should be noted that a general proof that
DRED preserves in all cases has not existed [50]. While DRED has been checked extensively
in one-loop case [51–55], the same cannot be said for higher order corrections. Thus, cautions
must be taken if one is to use this regulation for higher order calculation.

5.2 One-loop integral

Since the there is a finite number of integration structures, they shall be considered individually
in this section. Specifically, two types of integrations called the scalar one-point and two-point
function shall be evaluated, because they are relevant to the calculation of Higgs boson mass at
one-loop level. The extension of these results to include integrals with tensor structure is also
discussed.

5.2.1 Scalar one-point function

The scalar one-point is usually encountered in computing tadpoles diagrams, that is those with
only one external leg. The function is defined as

A0(m) := −(4π)2i

∫
dDp

(2π)D
1

p2 −m2
µ4−D (5.2.1)
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Obviously, evaluating this integral in Minkowski space is more challenging than doing it in
Euclidean space. Exploiting this fact, the technique called Wick rotation redefine the integration
variable so that the new integral would be in Euclidean space. That is, it defines the vector
variable lE such that

p0 = il0E , ~p = ~lE (5.2.2)

While the variable p0 is rotated counter-clockwise by 90 deg in the complex plane, due to the
locations of the poles in the complex plane and the behaviour of the integrand, the new variable
l0E is still integrated from −∞ to ∞. The integration now become

A0(m) = −(4π)2

∫
dDlE
(2π)D

1

l2E +m2
µ4−D (5.2.3)

In this Euclidean space, the integration can now be performed in spherical coordinate like usual,
but in D-dimension ∫

dDlE =

∫
dΩD

∫ ∞
0

lD−1
E dlE (5.2.4)

where the solid angle integration is determined using the trick

(
√
π)D =

(∫ ∞
−∞

dxe−x
2

)D
=

∫
dDx exp

(
−

D∑
i=1

x2
i

)
=

∫
dΩD

∫ ∞
0

drrD−1e−r
2

=

(∫
dΩD

)
1

2

∫ ∞
0

d(x2)(x2)D/2−1e−x
2

=

(∫
dΩD

)
1

2
Γ(D/2) (5.2.5)

=⇒
∫
dΩD =

2πD/2

Γ(D/2)
(5.2.6)

Thus, ∫
dDlE =

2πD/2

Γ(D/2)

∫ ∞
0

lD−1
E dlE (5.2.7)

And

A0(m) = −(4π)2 2πD/2

Γ(D/2)

∫ ∞
0

lD−1
E dlE
(2π)D

1

l2E +m2
µ4−D

= −(4π)2 2

Γ(D/2)(4π)D/2
1

2

∫ ∞
0

d(l2E)

l2E +m2
(l2E)D/2−1µ4−D

Let x =
m2

l2E +m2
or l2E =

m2

x
−m2

A0(m) = −8π2 2

Γ(D/2)(4π)D/2

∫ 1

0

dx

m2/x

m2

x2

(
m2

x
−m2

)D/2−1

µ4−D

= −8π2 2(4π)−2

Γ(D/2)(4π)(D−4)/2
(m2)D/2−1

∫ 1

0
dx

1

x

(
1− x
x

)D/2−1

µ4−D

= −8π2 2(4π)−2

Γ(D/2)(4π)(D−4)/2
(m2)D/2−1

∫ 1

0
dx x(1−D/2)−1(1− x)D/2−1µ4−D

Using the identity ∫ 1

0
dxxα−1(1− x)β−1 = B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
(5.2.8)
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The scalar function can be rewritten

A0(m) = −8π2 2(4π)−2

Γ(D/2)(4π)(D−4)/2
(m2)D/2−1 Γ(1−D/2)Γ(D/2)

Γ(1)
µ4−D

Therefore, the scalar one-point function is

A0(m) = (−m2)

(
m2

4πµ2

)(D−4)/2

Γ

(
1− D

2

)
To obtain the finite and divergent part, this function need to be expanded about ε = (4−D)/2.
Using the expression (A.4.4) and (A.4.1), the function reads

A0(m) = (−m2)

(
1− ε ln

m2

4πµ2
+O(ε2)

)(
−1

ε
+ γE − 1 +O(ε)

)
= m2

(
1

ε
− γE + 1− ln

m2

4πµ2

)
+O(ε)

with the UV-divergence conventionally is contained in

∆ =
1

ε
− γE + ln 4π (5.2.9)

where γE is the Euler-Mascheroni constant. The scalar one-point function yields

A0(m) = m2

(
∆− log

m2

µ2
+ 1

)
+O(ε) (5.2.10)

Although in principle, only the pole 1/ε should vanish when the final, physical, and UV-finite
result is obtained, the constants in ∆ also disappear along with it since these terms are generated
together while doing dimensional regularization. The terms of order O(ε) is irrelevant for one-
loop calculation since they vanish in the limit ε → 0. Though, the same cannot be stated for
higher-loop calculations.

5.2.2 Scalar two-point function

Next, the scalar two-point integral shall be evaluated. This integral is usually encountered in
diagrams with two external legs, hence the name. Though that is not always the case. The
scalar two-point integral was defined as

B0(q,mj ,mk) := −i(4π)2µ4−D
∫

dDp

(2π)D
1[

(p+ q)2 −m2
k

]
(p2 −m2

j )
(5.2.11)

To evaluate this integral, we first note the identity

1

AB
=

∫ 1

0

dx

[xA+ (1− x)B]2
=

∫ 1

0
dxdy

δ(x+ y − 1)

[xA+ yB]2
(5.2.12)

This identity is capable of fusing the different factors of the denominator into one, with the
cost of introducing two auxiliary variables x, y. It will make the integral easier later on. The
variables x, y are called Feynman parameters.

B0(q,mj ,mk) = −i(4π)2

∫ 1

0
dxdyµ4−D

∫
dDp

(2π)D
δ(x+ y − 1){

x
[
(p+ q)2 −m2

k

]
+ y(p2 −m2

j )
}2 (5.2.13)
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The δ function forces us to consider the case where x+ y = 1. The next task is to complete the
square in the denominator. Let D be denoted as as

D = x
[
(p+ q)2 −m2

k

]
+ y(p2 −m2

j ) = (x+ y)p2 + 2xpq + xq2 − xm2
k − ym2

j

= p2 + 2xpq + x2q2 − x2q2 + xq2 − xm2
k − ym2

j

= (p+ xq)2 + xyq2 − xm2
k − ym2

j (5.2.14)

The square in the denominator can now be used as the new variable. That is, let l = p + xq.
For shortness, let ∆m = −xyq2 + xm2

k + ym2
j . The integral is simplified into

B0(q,mj ,mk) = −i(4π)2

∫ 1

0
dxdyδ(x+ y − 1)

∫
dDl

(2π)D
1

(l2 −∆m)2 (5.2.15)

Next, the coordinates are Wick rotated l0 = il0E ,
~l = ~pE

B0(q,mj ,mk) = −i(4π)2

∫ 1

0
dxdyδ(x+ y − 1)i

∫
dDlE
(2π)D

1(
l2E + ∆m

)2µ4−D (5.2.16)

Similar to section 5.2.1, to evaluate this integral, spherical coordinate is used as in (5.2.7)

B0(q,mj ,mk) = (4π)2

∫ 1

0
dxdyδ(x+ y − 1)

2πD/2

Γ(D/2)

∫ ∞
0

lD−1
E dlE
(2π)D

1(
l2E + ∆m

)2µ4−D

= (4π)2

∫ 1

0
dxdyδ(x+ y − 1)

1

Γ(D/2)

∫ ∞
0

d(l2E)

(4π)D/2
(l2E)D/2−1(
l2E + ∆m

)2µ4−D (5.2.17)

Then, let z =
∆m

l2E + ∆m
, or l2E =

∆m

z
−∆m,

B0(q,mj ,mk) = (4π)2

∫ 1

0
dxdyδ(x+ y − 1)

1

Γ(D/2)

∫ 1

0

dz

(4π)D/2
∆m

z2

(∆m/z −∆m)D/2−1

(∆m/z)
2 µ4−D

= (4π)2

∫ 1

0
dxdyδ(x+ y − 1)

∆
D/2−2
m

Γ(D/2)

µ4−D

(4π)D/2

∫ 1

0
dz z1−D/2(1− z)D/2−1

= (4π)2

∫ 1

0
dxdyδ(x+ y − 1)

∆
D/2−2
m

Γ(D/2)

µ4−D

(4π)D/2
Γ(D/2)Γ(2−D/2)

Γ(2)

=

∫ 1

0
dxdyδ(x+ y − 1)

µ4−D∆
D/2−2
m

(4π)D/2−2
Γ(2−D/2)

=

∫ 1

0
dxdyδ(x+ y − 1)

(
∆m

4πµ2

)D/2−2

Γ(2−D/2) (5.2.18)

Integrating the δ-function, the function yields

B0(q,mj ,mk) =

∫ 1

0
dx

(
x2q2 + x(m2

k −m2
j − q2) +m2

j

4πµ2

)D/2−2

Γ(2−D/2) (5.2.19)

To obtain the finite and diverged part, this function must be expanded about ε = (4 −D)/2.
Using the expression (A.4.3) and (A.4.1), the function reads

B0(q,mj ,mk) =

∫ 1

0
dx

(
1− ε ln

x2q2 + x(m2
k −m2

j − q2) +m2
j

4πµ2
+O(ε2)

)(
1

ε
− γE +O(ε)

)
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=

∫ 1

0
dx

(
1

ε
− γE − ln

x2q2 + x(m2
k −m2

j − q2) +m2
j

4πµ2

)
+O(ε)

Using the variable ∆ in (5.2.9), the function reads

B0(q,mj ,mk) = ∆−
∫ 1

0
dx ln

x2q2 + x(m2
k −m2

j − q2) +m2
j

µ2
+O(ε) (5.2.20)

The integral over x can now be evaluated. If q2 = 0, then there are two possible cases. If
mj = mk

B0(0,mj ,mj) = ∆− ln
m2
j

µ2
+O(ε) (5.2.21)

if mj 6= mk

B0(0,mj ,mk) = ∆ + lnµ2 + 1−
m2
k lnm2

k −m2
j lnm2

j

m2
k −m2

j

+O(ε) (5.2.22)

Else, let r1, r2 be determined from

x2q2 + x(m2
k −m2

j − q2) +m2
j = q2(x+ r1)(x+ r2) (5.2.23)

Then

B0(q,mj ,mk) = ∆ + 2− ln
q2

µ2
+ r1 ln

r1

1 + r1
+ r2 ln

r2

1 + r2
− ln[(1 + r1)(1 + r2)] +O(ε)

(5.2.24)

5.2.3 Reduction of tensor integral to scalar integrals

The general structure for one-loop two-point integral is:

I1L2P(q,mj ,mk) =

∫
d4p

(2π)4

A+Bqp+ Cµνpµpν[
(p+ q)2 −m2

k

]
(p2 −m2

j )
(5.2.25)

Generally, one may write the numerator as A + Bµpµ + Cµνpµpν . However, only one tensor
structure is possible for Bµ, which is Bqµ with B being a suitable scalar. Therefore, both forms
are equivalent. Evaluating each of the three tensor structure separately is tedious. However, it
is possible to calculate only the scalar integral and express the other two in term of it. That is,
to evaluate this integral, we need two steps. First is to reduce the tensor integral to scalar inte-
gral. Then, we evaluate the scalar integral. The method used here is called Pasarino-Veltman
reduction method [56]

Firstly, the general tensor structure in the numerator of the one-loop two-point integral can
be reduce to purely scalar integrals. Consider the case of 1 propagator factor in the denominator
of the following structure

T 1(q,m) =
1

C

∫
dDp

(2π)D
1

(p+ q)2 −m2
µ4−D (5.2.26)

T 1
µ(q,m) =

∫
dDp

(2π)D
pµ

(p+ q)2 −m2µ4−D (5.2.27)
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with C = i/(4π)2. Both integrals can be evaluated using a change of variable k = p + q. The
first integral is

T 1(q,m) =
1

C

∫
dDk

(2π)D
1

k2 −m2
µ4−D = A0(m) (5.2.28)

For the second integral,

T 1
µ(q,m) =

1

C

∫
dDk

(2π)D
kµ − qµ
k2 −m2

µ4−D =
1

C

∫
dDk

(2π)D
kµ

k2 −m2
µ4−D − qµ

1

C

∫
dDk

(2π)D
1

k2 −m2
µ4−D

The first term vanishes, since it is odd symmetric. The integral becomes

T 1
µ(q,m) = −qµA0(m) (5.2.29)

As a special case, T 1
µ(0,m) =

1

C

∫ dDp

(2π)D
pµ

p2 −m2
µ4−D = 0.

For the case of 2 propagator factor, there are three structures encountered in this thesis

B0(q,mj ,mk) =
1

C

∫
dDp

(2π)D
1[

(p+ q)2 −m2
k

]
(p2 −m2

j )
µ4−D (5.2.30)

Bµ(q,mj ,mk) =
1

C

∫
dDp

(2π)D
pµ[

(p+ q)2 −m2
k

]
(p2 −m2

j )
µ4−D (5.2.31)

Bµν(q,mj ,mk) =
1

C

∫
dDp

(2π)D
pµpν[

(p+ q)2 −m2
k

]
(p2 −m2

j )
µ4−D (5.2.32)

The first integral is a scalar one. All other tensor integrals will be expressed in term of the
scalar ones A0(m) and B0(q,mj ,mk). For the second integral (5.2.31), its result must have the
form

Bµ(q,mj ,mk) = B1qµ (5.2.33)

To find B1, both sides are contracted with qµ

B1qµq
µ = Bµ(q,mj ,mk)q

µ =
1

C

∫
dDp

(2π)D
pµq

µ[
(p+ q)2 −m2

k

]
(p2 −m2

j )
µ4−D (5.2.34)

For short, let D0 = p2 −m2
j and D1 = (p+ q)2 −m2

k. Then, the numerator can be rewritten as

pµq
µ =

1

2

[
(p+ q)2 −m2

k −
(
p2 −m2

j

)
+ (m2

k −m2
j − q2)

]
=

1

2

[
D1 −D0 + (m2

k −m2
j − q2)

]
(5.2.35)

The integral, thus, become

B1q
2 =

1

2

1

C

∫
dDp

(2π)D
D1 −D0 + (m2

k −m2
j − q2)

D1D0
µ4−D

=
1

2

[
T 1(0,mj)− T 1(q,mk) + (m2

k −m2
j − q2)B0(q,mj ,mk)

]
=

1

2

[
A0(mj)−A0(mk) + (m2

k −m2
j − q2)B0(q,mj ,mk)

]
(5.2.36)

meaning

B1 =
1

2q2

[
A0(mj)−A0(mk) + (m2

k −m2
j − q2)B0(q,mj ,mk)

]
(5.2.37)
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and

Bµ(q,mj ,mk) = B1qµ =
qµ
2q2

[
A0(mj)−A0(mk) + (m2

k −m2
j − q2)B0(q,mj ,mk)

]
(5.2.38)

For the third integral (5.2.32), the tensor structure of the result must be

Bµν(q,mj ,mk) = B00gµν +B11qµqν (5.2.39)

To determine B11 and B00, we need two equations. These equations can be obtained by con-
tracting the left-hand-side with appropriate tensor

Bµν(q,mj ,mk)g
µν = DB00 +B11q

2 (5.2.40)

Bµν(q,mj ,mk)q
µqν = q2B00 +B11

(
q2
)2

(5.2.41)

At the same times, the contraction on the left can be evaluated using scalar integral

Bµν(q,mj ,mk)g
µν =

1

C

∫
dDp

(2π)D
pµpν
D0D1

µ4−Dgµν =
1

C

∫
dDp

(2π)D
D0 +m2

j

D0D1
µ4−D

=
1

C

∫
dDp

(2π)D
1

D1
µ4−D +m2

j

1

C

∫
dDp

(2π)D
1

D0D1
µ4−D

= T 1(q,mk) +m2
jB0(q,mj ,mk)

= A0(mk) +m2
jB0(q,mj ,mk) (5.2.42)

And

Bµν(q,mj ,mk)q
µqν =

1

C

∫
dDp

(2π)D
pq

D0D1
pqµ4−D

=
1

2

1

C

∫
dDp

(2π)D
D1 −D0 + (m2

k −m2
j − q2)

D0D1
pqµ4−D

=
1

2

1

C
qµ
∫

dDp

(2π)D

[
pµ
D0
− pµ
D1

+ (m2
k −m2

j − q2)
pµ

D0D1

]
µ4−D

=
1

2
qµ
[
T 1
µ(0,mj)− T 1

µ(q,mk) + (m2
k −m2

j − q2)Bµ(q,mj ,mk)
]

=
1

2

{
q2A0(mk) +

1

2
(m2

k −m2
j − q2)

×
[
A0(mj)−A0(mk) + (m2

k −m2
j − q2)B0(q,mj ,mk)

]}
=

1

4
(m2

k −m2
j − q2)A0(mj) +

1

4
(−m2

k +m2
j + 3q2)A0(mk)

+
1

4
(m2

k −m2
j − q2)2B0(q,mj ,mk) (5.2.43)

Substitute (5.2.42) and (5.2.43) into (5.2.40) and (5.2.41)

DB00 +B11q
2 = A0(mk) +m2

jB0(q,mj ,mk)

q2B00 +B11

(
q2
)2

=
1

4
(m2

k −m2
j − q2)A0(mj) +

1

4
(−m2

k +m2
j + 3q2)A0(mk)

+
1

4
(m2

k −m2
j − q2)2B0(q,mj ,mk)

The solution to this system of equations is

B00 =
1

4(D − 1)q2

{
(m2

k −m2
j + q2)A0(mk) + (−m2

k +m2
j + q2)A0(mj)
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+
[
4q2m2

j − (m2
k −m2

j − q2)2
]
B0(q,mj ,mk)

}
(5.2.44)

B11 =
1

4(D − 1)(q2)2

{
D(m2

k −m2
j − q2)A0(mj) + (−Dm2

k +Dm2
j + (3D − 4)q2)A0(mk)

+
[
D(m2

k −m2
j − q2)2 − 4q2m2

j

]
B0(q,mj ,mk)

}
(5.2.45)

Thus

Bµν(q,mj ,mk) = (5.2.46)
gµν

4(D − 1)q2

{
(m2

k −m2
j + q2)A0(mk) + (−m2

k +m2
j + q2)A0(mj)

+
[
4q2m2

j − (m2
k −m2

j − q2)2
]
B0(q,mj ,mk)

}
+

qµqν
4(D − 1)(q2)2

{
D(m2

k −m2
j − q2)A0(mj) + (−Dm2

k +Dm2
j + (3D − 4)q2)A0(mk)

+
[
D(m2

k −m2
j − q2)2 − 4q2m2

j

]
B0(q,mj ,mk)

}
(5.2.47)

It is important to point out that the derivation here cannot be used in the case q2 = 0. However,
that is suffice for our present purpose. For convenience, the following shall be precomputed.

gµνBµν(q,mj ,mk) = A0(mk) +m2
jB0(q,mj ,mk) (5.2.48)

qµqνBµν(q,mj ,mk) =
1

4

[
(m2

k −m2
j − q2)A0(mj) + (−m2

k +m2
j + 3q2)A0(mk)

+(m2
k −m2

j − q2)2B0(q,mj ,mk)
]

(5.2.49)

5.3 Renormalization

Although regularization schemes can be used as a workaround to compute the loop integrals,
they cannot eliminate any divergences. One need to resolve to renormalization theory to com-
plete this task. The theory is based on the idea that the quantities appearing in the Lagrangian
are unphysical, called bare parameters, and all the divergences are absorbed into these quanti-
ties , leaving only the physical parameters behind. Although there may be other ways to remove
divergences, counterterm formalism is most widely used due to its systematic approach.

In this formalism first one chooses a set of independent parameters. Other quantities are
calculated based on this set. According to renormalization theory, a bare parameter, denoted as
p0, are split into a UV-finite renormalized part p and a counterterm δp containing the divergence.
That is

p0 = p+ δp (5.3.1)

For each order of correction, one counterterm is introduced. That is δp = δ(1)p+ δ(2)(p) + · · ·,
where δ(n) is the contributions from the n-th order of correction. It is conventional, however,
to define the counterterms of the couplings g, and thus electric charge, as

g0 = Zgg = (1 + δZg)g , e0 = Zee = (1 + δZe)e (5.3.2)

However, not only the parameters, but the fields also need to be renormalized to make the
self-energies UV-finite. Commonly, the renormalization of the fields is introduced as

Φ0 =
√
ZΦΦ (5.3.3)

=
√

1 + δ(1)ZΦ + δ(2)ZΦ + · · ·Φ (5.3.4)

=

(
1 +

1

2
δ(1)ZΦ −

1

8
(δ(1)ZΦ)2 +

1

2
δ(2)ZΦ + · · ·

)
Φ (5.3.5)
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Inserting these decompositions into the Lagrangian also splits the bare Lagrangian into finite
renormalized part and a counterterm part containing the divergences

L0 = L+ δL (5.3.6)

Note that although any physical quantities has its own counterterm, these counterterms are
calculated based only a set of independent parameters and their counterterms.

The problem arises, however, as one still have a freedom in the finite contributions of the
counterterm. Thus, one has to make a set of rules to fix how much is absorbed into the
counterterm, and what is left for renormalized parameter. This set of rules is called renormal-
ization conditions and is what determine the renormalization scheme. When fixed, a new set of
Feynman rules involving the counterterms can be derived. These rules contributes to the coun-
terterm diagrams. If the renormalization procedure is done correctly, the UV-divergences of the
counterterm diagrams will precisely cancel those from loop diagrams, yielding finite physical
observables.

There are two popular renormalization schemes used. The differences of these schemes lie
in the the finite part of the counterterm and the renormalized quantity.

• On-shell (OS) scheme: the on-shell conditions are applied so that the renormalized quan-
tity is equivalent to the physical one for each and every order in the perturbation theory.
For examples, tadpole parameters, motivated from their zero at tree-level, are defined so
that total contributions from all diagrams, including counterterms diagrams, yield van-
ishing renormalized tadpole parameters. Renormalization for mass is motivated from the
fact that

propagator ∼ 1

p2 −m2 + iε

Thus, the mass counterterm is defined so that the leftover finite renormalized quantity is
the real part of the pole of the propagator, or the physical mass. This scheme is useful
when a clear physical description of a parameter can be given, such as mass or tadpoles.
If this is not the case, other renormalization scheme may be helpful.

• MS/MS or DR/DR: the MS renormalization condition dictates that strictly only the
divergent parts, terms proportional to 1/ε, is allowed in the counterterm. All finite parts
are absorbed inside the renormalized quantity. Since this is the simplest condition, it
is called Minimal Subtraction (MS). On the other hand, the MS absorbs every terms
proportional to the variable ∆ = 1/ε−γE+ln 4π into the counterterms, because, as stated
above, these terms are also cancelled along with the pole. The scheme is called Modified
Minimal Subtraction scheme (MS). The DR, or DR, scheme is essentially identical to
that of MS, or MS, scheme. The only difference is that the MS/MS is used in dimensional
regularization, while DR/DR is used with dimensional reduction.

One important point is that if all order of perturbation is included, the final result cannot
depend on the renormalization scheme anymore. However, practical calculations always stop
at a specific order of correction. Thus, results may vary if one chooses different schemes for
computation. The same problem applies to the renormalization scale µ. Since the parameter
is only introduced as a reference scale and have no physical meaning, if all order of quantum
corrections are taken into account, the physical result should be independent of µ. This is of
course impractical. Hence, the dependence of computed predictions on the scale µ is a measure
for the missing higher order corrections.
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Chapter 6

One loop corrections to the Higgs
boson mass

This chapter is devoted for the evaluation of one-loop Higgs boson mass using the techniques
presented in chapter 5. The calculations in this chapter is focused to one-loop order and to the
new sector in NMSSM appeared because of inverse seesaw mechanism. A mixed renormalization
scheme was used that mixes on-shell and DR conditions.

6.1 Counterterms and renormalization constants

The final goal of this chapter is computing the neutral Higgs mass at one-loop level. However,
as anticipated, the amalgamation of all diagrams contributing to this quantity UV-diverges.
Thus, the counterterm for Higgs mass matrix must be computed to cancel these divergences.
The counterterm for Higgs mass matrix in the mass basis

Mhh0 = Mhh + δMhh (6.1.1)

However, the bare mass matrix appearing in the bare Lagrangian is not an input parameter,
but rather, it is computed from a set of independent bare parameter. Thus, to obtain the
counterterm for mass matrix, the counterterms of independent parameters must be computed
first. The following set is chosen as the set of independent input parameter for computation of
the Higgs sector{

thd , thu , ths , tad , tas ,M
2
W ,M

2
Z ,M

2
H± , v, tanβ, vs, |λ|, |κ|,<Aκ, ϕλ, ϕκ, ϕu, ϕs

}
(6.1.2)

The renormalization and counterterms of these parameters are defined as follow

tφ0 = tφ + δtφ with φ = {hd, hu, hs, ad, au} (6.1.3)

M2
W0 = M2

W + δM2
W (6.1.4)

M2
Z0 = M2

Z + δM2
Z (6.1.5)

M2
H±0 = M2

H± + δM2
H± (6.1.6)

v0 = v + δv (6.1.7)

These parameters will be renormalized on-shell. Although not part of chosen set of input, the
renormalization of electric charge is required for on-shell renormalization of v. Conventionally,
that is

e0 = (1 + δZe)e. (6.1.8)
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The following will be imposed with DR conditions

tanβ0 = tanβ + δ tanβ (6.1.9)

vs0 = vs + δvs (6.1.10)

|λ|0 = |λ|+ δ|λ| (6.1.11)

|κ|0 = |κ|+ δ|κ| (6.1.12)

<Aκ0 = <Aκ + δ<Aκ (6.1.13)

φp0 = φp + δφ with p = {u, s, λ, κ} (6.1.14)

Inserting the replacements from equation (6.1.3)-(6.1.14) into the bare Lagrangian and keeping
terms linear to the counterterm, meaning quadratic terms such as δ|κ|δ|λ| are not accounted for
first order correction of the Higgs mass, the Higgs mass matrix counterterm can be obtained.
In other words, expanding the Higgs mass matrix at tree level (3.2.33) around the counterterms
to first order, the Higgs mass matrix can be obtained. The analytical expression is presented
in B. Thus, to compute the counterterm for Higgs mass matrix to yield UV-finite Higgs mass,
the counterterms (6.1.3)-(6.1.14) must be computed first. In order to do that, the Higgs field
also need to be renormalized. Let the Higgs field be renormalized as

Hu0 =

(
1 +

1

2
δZHu

)
Hu , Hd0 =

(
1 +

1

2
δZHd

)
Hd , S0 =

(
1 +

1

2
δS

)
S (6.1.15)

Hence the renormalization for the field φ = (hd, hu, hs, ad, au, as)
T is

φ0 = diag

(
1 +

1

2
δZHd , 1 +

1

2
δZHu , 1 +

1

2
δZS , 1 +

1

2
δZHd , 1 +

1

2
δZHu , 1 +

1

2
δZS

)
φ

On the other hand, by definition, the renormalization constant is

φ0 =

(
1 +

1

2
δZZZφ

)
φ (6.1.16)

Therefore

ZZZφ = diag(δZHd , δZHu , δZS , δZHd , δZHu , δZS) (6.1.17)

However, since it will be more convenient working in the basis Φ = (hd, hu, hs, a, as, G)T , these
field renormalization will be rotated to the new basis. In this new basis,

Φ0 = RGφ0 , Φ = RGφ and Φ0 =

(
1 +

1

2
δZZZ

)
Φ (6.1.18)

and

RG

(
1 +

1

2
δZZZφ

)
φ = RGφ0 = Φ0 =

(
1 +

1

2
δZZZ

)
Φ =

(
1 +

1

2
δZZZ

)
RGφ (6.1.19)

Thus

δZZZ = RGδZZZφ
(
RG
)T

=



δZHd 0 0 0 0 0

0 δZHu 0 0 0 0

0 0 δZS 0 0 0

0 0 0 s2
βδZHd + c2

βδZHu 0 (δZHd − δZHu)cβsβ

0 0 0 0 δZS 0

0 0 0 (δZHd − δZHu)cβsβ 0 c2
βδZHd + s2

βδZHu


(6.1.20)
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6.2 Tadpole and self-energies diagrams

For the purpose of setting renormalization conditions for counterterms, it is important to com-
pute all the diagrams contributing to a quantity. The diagrams contributing to tadpole pa-
rameters are called tadpole diagrams. Those contributing to the mass parameters are called
self-energy diagrams. Here, only contributions different than that in the NMSSM without in-
verse seesaw are computed. Conventionally, all of the diagrams are multiplied with an i

6.2.1 Tadpole diagrams

Figure 6.1: Neutrino and sneutrino contribution to Higgs tadpole diagrams

p

hi

ν̃j

(a) Sneutrino contribution

p

hi

νj

(b) Neutrino contribution

Sneutrino contribution

For the sneutrino contribution to Higgs tadpole in figure 6.1a, the amplitude is

T ν̃i = (−i)1

2

∑
j

∫
dDp

(2π)D
i

p2 −m2
j

(−i)λhν̃ν̃ijj µ
4−D (6.2.1)

The 1
2 factor in front is due to the symmetry of the diagram. Using the result in section 5.2.1,

the result of this integral is

T ν̃i =
1

2

∑
j

λhν̃ν̃ijj

(4π)2
A0(mj) (6.2.2)

6.2.2 Neutrino contribution

For the neutrino contribution in figure 6.1b, note a minus sign for fermion loop and a 1
2 factor

for the symmetry of the diagram, the amplitude can be written as

T νi = −(−i)1

2

∑
j

∫
dDp

(2π)D
Tr

[
i(/p+mj)

p2 −m2
j

(λhννLijj (−i)PL + λhννRijj (−i)PR)

]
µ4−D

= i
1

2

∑
j

∫
dDp

(2π)D
Tr

[
(/p+mj)

p2 −m2
j

(
λhννLijj

1− γ5

2
+ λhννRijj

1 + γ5

2

)]
µ4−D

= i
1

4

∑
j

∫
dDp

(2π)D

{
Tr

[
(/p+mj)

p2 −m2
j

(
λhννLijj + λhννRijj

)]

+ Tr

[
(/p+mj)γ5

p2 −m2
j

(
−λhννLijj + λhννRijj

)]}
µ4−D

Since Tr(γ5) = Tr(γµγ5) = Tr(γµ) = 0, the second term vanishes and

T νi = i
1

2

∑
j

∫
dDp

(2π)D
4mj

p2 −m2
j

1

2

(
λhννLijj + λhννRijj

)
µ4−D
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= i
1

2

∑
j

∫
dDp

(2π)D
1

p2 −m2
j

4mj

2

(
λhννLijj + λhννRijj

)
µ4−D

With the result in section 5.2.1, the outcome is

T νi = i
1

2

∑
j

i

(4π)2
2mj

(
λhννLijj + λhννRijj

)
A0(mj) = −

∑
j

1

(4π)2
mj

(
λhννLijj + λhννRijj

)
A0(mj)

(6.2.3)

6.2.3 Neutral Higgs self-energy diagrams

The self-energy of neutral Higgs is contributed by the 3 processes in figure 6.2

hi hj
ν̃j

ν̃k
q q

−p

p + q

(a) Higgs-sneutrino-sneutrino loop

hi hj
νj

νk
q q

−p

p + q

(b) Higgs-neutrino-neutrino loop

hi hj

q q

p

ν̃j

(c) Higgs-Higgs-sneutrino-
sneutrino loop

Figure 6.2: Neutral Higgs self-energy from neutrino and sneutrino sectors

Higgs-sneutrino-sneutrino loop

The diagram of this process is illustrated in figure 6.2a. With the index j, k = 1, ..., 18 repre-
sents the different flavour of neutrino and i = 1, ..., 5 represents different flavour of Higgs, the
amplitude is

Σhν̃ν̃
hihj

(q) = (−i)1

2

∑
j,k

∫
dDp

(2π)D
(−iλhν̃ν̃ijk )

i

p2 −m2
j

(−iλhν̃ν̃ijk )
i

(p+ q)2 −m2
k

µ4−D

= (−i)1

2

∑
j,k

(λhν̃ν̃ijk )2

∫
dDp

(2π)D
1

(p2 −m2
j )
[
(p+ q)2 −m2

k

]µ4−D (6.2.4)

With the result from chapter 5, the result reads

Σhν̃ν̃
hihj

(q) =
1

2

∑
j,k

(λhν̃ν̃ijk )2 1

(4π)2
B0(q,mj ,mk) (6.2.5)

Higgs-neutrino-neutrino loop

With the diagram illustrated in figure 6.2b, j, k = 1..9 and i = 1, ..., 5, the amplitude for this
contribution is

Σhνν
hihj

(q) = −(−i)1

2

∑
j,k

∫
dDp

(2π)D
Tr

{
(−i)

(
λhννLijk PL + λhννRijk PR

) i(/p+mj)

p2 −m2
j

(−i)
(
λhννLijk PL + λhννRijk PR

) i(/p+ /q +mk)

(p+ q)2 −m2
k

}
µ4−D

= i
1

2

∑
j,k

∫
dDp

(2π)D
1

4
Tr

{[
(λhννLijk + λhννRijk ) + γ5(λhννRijk − λhννLijk )

] /p+mj

p2 −m2
j
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[
(λhννLijk + λhννRijk ) + γ5(λhννRijk − λhννLijk )

] /p+ /q +mk

(p+ q)2 −m2
k

}
µ4−D

The trace structure is of the form

Tr{(a+ γ5b)(pµγ
µ +mj)(a+ γ5b)(pνγ

ν + qνγ
ν +mk)}

= Tr
{
a2(pµγ

µ +mj)(pνγ
ν + qνγ

ν +mk) + γ5b
2(pµγ

µ +mj)γ5(pνγ
ν + qνγ

ν +mk)
}

= Tr
{
a2pµ(pν + qν)γµγν + a2mjmkI + b2pµ(pν + qν)γ5γ

µγ5γ
ν + b2mjmkγ5γ5

}
= a2pµ(pν + qν)4gµν + 4a2mjmk + 4b2mjmk +−Tr

{
b2pµ(pν + qν)γµγν

}
= 4(a2 − b2)p(p+ q) + 4(a2 + b2)mjmk

= 4(a2 − b2)p(p+ q) + 4(a2 + b2)mjmk (6.2.6)

Since the trace of one γ5 with less than 4 gamma matrices vanishes, those terms are eliminated
in the second line, trace of an odd number of gamma matrices was eliminated in the third line.
Using this, the self-energy yields

Σhνν
hihj

(q) = i
1

2

∑
j,k

∫
dDp

(2π)D
αhννijk gµνp

µpν + αhννijk gµνq
νpµ + βhννijk mjmk

(p2 −m2
j )
[
(p+ q)2 −m2

k

] µ4−D

where the followings are abbreviated

αhννijk =

[(
λhννLijk + λhννRijk

)2
−
(
λhννRijk − λhννLijk

)2
]

= 4λhννLijk λhννRijk (6.2.7)

βhννijk =
(
λhννLijk + λhννRijk

)2
+
(
λhννRijk − λhννLijk

)2
= 2
[
(λhννLijk )2 + (λhννRijk )2

]
(6.2.8)

Evaluating the integrals yields

Σhνν
hihj

(q) = −1

2

∑
j,k

1

(4π)2

[
αhννijk gµνB

µν(q,mj ,mk) + αhννijk gµνq
νBµ(q,mj ,mk)

+βhννijk mjmkB0(q,mj ,mk)
]

(6.2.9)

In term of the scalar functions, we have

gµνB
µν(q,mj ,mk) + q2B1(q,mj ,mk)

= A0(mk) +m2
jB0(q,mj ,mk) +

1

2

[
A0(mj)−A0(mk) + (m2

k −m2
j − q2)B0(q,mj ,mk)

]
=

1

2

[
A0(mj) +A0(mk) + (m2

k +m2
j − q2)B0(q,mj ,mk)

]
The completely reduced amplitude is

Σhνν
hihj

(q) = −1

4

∑
j,k

1

(4π)2

{
αhννijk

[
A0(mj) +A0(mk) + (m2

k +m2
j − q2)B0(q,mj ,mk)

]
+2βhννijk mjmkB0(q,mj ,mk)

}
(6.2.10)

Higgs-Higgs-sneutrino-sneutrino loop

With the diagram 6.2c, j = 1, ..., 18 and i = 1, ..., 5, the amplitude is

Σhhν̃ν̃
hihj

(q) = (−i)1

2

∑
j

∫
dDp

(2π)D
(−iλhhν̃ν̃iijj )

i

p2 −m2
j+

µ4−D (6.2.11)

With the result in section 5.2.1, the outcome is

Σhhν̃ν̃
hihj

(q) = (−i)1

2

∑
j

∫
λhhν̃ν̃iijj

dDp

(2π)D
1

p2 −m2
j

µ4−D =
1

2

∑
j

λhhν̃ν̃iijj

1

(4π)2
A0(mj) (6.2.12)
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6.2.4 Charged Higgs self-energy

The self-energy of charged Higgs is contributed by the 4 diagrams in figure 6.3

H− H−
ν̃j

ẽ−k
q q

−p

p + q

(a) Charged Higgs-slepton-sneutrino loop

H− H−
νj

e−k
q q

−p

p + q

(b) Charged Higgs-lepton-neutrino loop

Figure 6.3: Charged Higgs self-energy from neutrino and sneutrino sectors

Charged Higgs-sneutrino-slepton loop

The diagram of this process is illustrated in figure 6.3a. The indices are i = 1, 2, j = 1, ..., 18,
k = 1, 2, 3. The amplitude is

Σν̃
H±H∓(q) = (−i)

∑
j,k

∫
dDp

(2π)D
(−iλH−ν̃ẽ+ijk )

i

p2 −m2
j

(−iλH+ν̃ẽ−
ijk )

i

(p+ q)2 −m2
k

µ4−D

= (−i)
∑
j,k

λH
−ν̃ẽ+

ijk λH
+ν̃ẽ−

ijk

∫
dDp

(2π)D
1

(p2 −m2
j )
[
(p+ q)2 −m2

k

]µ4−D (6.2.13)

Using the result from chapter 5

Σν̃
H±H∓(q) = (−i)

∑
j,k

λH
−ν̃ẽ+

ijk λH
+ν̃ẽ−

ijk

∫
dDp

(2π)D
1

(p2 −m2
j )
[
(p+ q)2 −m2

k

]µ4−D

=
∑
j,k

λH
−ν̃ẽ+

ijk λH
+ν̃ẽ−

ijk

1

(4π)2
B0(q,mj ,mk) (6.2.14)

Charged Higgs-neutrino-lepton loop

With the diagram in figure 6.3b, the indices i = 1, 2, j = 1, ..., 9, k = 1, 2, 3, the upper sign
corresponding to the self energy of minus Higgs while the lower sign being for the plus Higgs,
the amplitude yields

Σν
H±H∓(q) = −(−i)

∑
j,k

∫
dDp

(2π)D
Tr

{
(−i)(λH−νe+Lijk PL + λH

−νe+R
ijk PR)

i(±/p± /q +mk)

(p+ q)2 −m2
k

(−i)(λH+νe−L
ijk PL + λH

+νe−R
ijk PR)

i(±/p+mj)

p2 −m2
j

}
µ4−D

= i
∑
j,k

∫
dDp

(2π)D
Tr

{
(λH

−νe+L
ijk PL + λH

−νe+R
ijk PR)

±/p± /q +mk

(p+ q)2 −m2
k

(λH
+νe−L

ijk PL + λH
+νe−R

ijk PR)
±/p+mj

p2 −m2
j

}
µ4−D (6.2.15)

= i
∑
j,k

∫
dDp

(2π)D
1

4
Tr
{[

(λH
−νe+L

ijk + λH
−νe+R

ijk ) + γ5(λH
−νe+R

ijk − λH−νe+Lijk )
]
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±/p± /q +mk

(p+ q)2 −m2
k

[
(λH

+νe−L
ijk + λH

+νe−R
ijk ) + γ5(λH

+νe−R
ijk − λH+νe−L

ijk )
]±/p+mj

p2 −m2
j

}
µ4−D

The numerator of the above expression has the same matrix structure as that in equation (6.2.6).
Using that result, we have

Σν
H±H∓ i(q) = i

∑
j,k

∫
d4p

(2π)4

αH
±νe∓

ijk gµνp
µpν + αH

±νe∓
ijk gµνp

µqν + βH
±νe∓

ijk mjmk

(p2 −m2
j )
[
(p+ q)2 −m2

k

] µ4−D (6.2.16)

We abbreviated

αH
±νe∓

ijk = 2λH
−νe+L

ijk λH
+νe−R

ijk + 2λH
−νe+R

ijk λH
+νe−L

ijk (6.2.17)

βH
±νe∓

ijk = 2λH
−νe+L

ijk λH
+νe−L

ijk + 2λH
−νe+R

ijk λH
+νe−R

ijk (6.2.18)

Similar to equation (6.2.10), evaluating the integrals yields

Σν
H±H∓ i(q) = −

∑
j,k

1

(4π)2

(
αH
±νe∓

ijk gµνB
µν(q,mj ,mk) + αH

±νe∓
ijk gµνq

νBµ(q,mj ,mk)

+βH
±νe∓

ijk mjmkB0(q,mj ,mk)
)

= −
∑
j,k

1

2

1

(4π)2

{
αH
±νe∓

ijk

[
A0(mj) +A0(mk) + (m2

k +m2
j − q2)B0(q,mj ,mk)

]
+2βH

±νe∓
ijk mjmkB0(q,mj ,mk)

}
6.2.5 Z-boson self-energy

The self-energy of Z-boson is contributed by the 3 processes in figure 6.4

Zµ Zµ
ν̃j

ν̃kq q

−p

p + q

(a) Z-sneutrino-sneutrino loop

Zµ Zµ
νj

νk
q q

−p

p + q

(b) Z-neutrino-neutrino loop

Zµ Zµ

q q

p

ν̃j

(c) Z-Z-sneutrino-sneutrino
loop

Figure 6.4: Neutral Higgs self-energy from neutrino and sneutrino sectors

Z-sneutrino-sneutrino loop

The diagram of this process is illustrated in figure 6.4a. With the index j, k = 1, ..., 18 repre-
senting the different flavour of neutrino. In considering the self-energy, we only care about the
transverse amplitude. The reason will be clear in later chapters. The truncated amplitude is

ΣZν̃ν̃ µν
ZZ (q) = (−i)1

2

∑
j,k

∫
dDp

(2π)D
(−i)λZν̃ν̃jk (qµ + 2pµ)

i

p2 −m2
j

× (−i)λZν̃ν̃jk (−qν − 2pν)
i

(p+ q)2 −m2
k

µ4−D
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= i
1

2

∑
j,k

(
λZν̃ν̃jk

)2 ∫ dDp

(2π)D
qµqν + 2qµpν + 2pµqν + 4pµpν

(p2 −m2
j )
[
(p+ q)2 −m2

k

] µ4−D

With the result from chapter 5, we arrive at

ΣZν̃ν̃ µν
ZZ (q) =

1

2

∑
j,k

(
λZν̃ν̃jk

)2 −1

(4π)2
[qµqνB0(q,mj ,mk)

+2qµBν(q,mj ,mk) + 2qνBµ(q,mj ,mk) + 4Bµν(q,mj ,mk)]

= −1

2

∑
j,k

(
λZν̃ν̃jk

)2 1

(4π)2
[qµqνB0(q,mj ,mk) + 4qµqνB1(q,mj ,mk)

+4qµqνB11(q,mj ,mk) + 4gµνB00(q,mj ,mk)]

Because only the transverse amplitude is of our concerned and, since that term is of the form
gµνΓT , we shall extract the coefficient of gµν in the amplitude expression and omit the rest.
Because Bµ = qµB1 and Bµν = gµνB00 + qµqνB11, the transverse amplitude is

ΣZν̃ν̃
ZZ T (q) = 2

∑
j,k

(
λZν̃ν̃jk

)2 1

(4π)2
B00(q,mj ,mk) (6.2.19)

Z-neutrino-neutrino loop

With the diagram illustrated in figure 6.4b, j, k = 1..9, the truncated amplitude for this contri-
bution is

ΣZνν
ZZ µν(q) = −(−i)1

2

∑
j,k

∫
dDp

(2π)D
Tr

{
(−i)

(
λZννLjk γµPL + λZννRjk γµPR

) i(/p+mj)

p2 −m2
j

µ4−D

(−i)
(
λZννLjk γνPL + λZννRjk γνPR

) i(/p+ /q +mk)

(p+ q)2 −m2
k

}
= i

1

2

∑
j,k

∫
dDp

(2π)D
Tr

{
γµ
(
λZννLjk PL + λZννRjk PR

) /p+mj

p2 −m2
j

γν

(
λZννLjk PL + λZννRjk PR

) /p+ /q +mk

(p+ q)2 −m2
k

}
µ4−D

= i
1

2

∑
j,k

∫
dDp

(2π)D
1

4
Tr

{
γµ
[
(λZννLjk + λZννRjk ) + γ5(λZννRjk − λZννLjk )

] /p+mj

p2 −m2
j

× γν
[
(λZννLjk + λZννRjk ) + γ5(λZννRjk − λZννLjk )

] /p+ /q +mk

(p+ q)2 −m2
k

}
µ4−D

The trace structure of the above expression is of the form

Tr
{
γµ(a+ γ5b)(/p+mj)γν(a+ γ5b)(/p+ /q +mk)

}
= Tr

{
γµa(/p+mj)γν(a+ γ5b)(/p+ /q +mk) + γµbγ5(/p+mj)γν(a+ γ5b)(/p+ /q +mk)

}
= Tr

{
a2γµ(/p+mj)γν(/p+ /q +mk) + abγµ(/p+mj)γνγ5(/p+ /q +mk)

+abγµγ5(/p+mj)γν(/p+ /q +mk) + b2γµγ5(/p+mj)γνγ5(/p+ /q +mk)
}

= Tr
{
a2pρ(pσ + qσ)γµγργνγσ + a2mjmkγµγν + abpρ(pσ + qσ)γµγργνγ5γσ

+abpρ(pσ + qσ)γµγ5γργνγσ + b2pρ(pσ + qσ)γµγ5γργνγ5γσ + b2mjmkγµγ5γνγ5

}
= a2pρ(pσ + qσ)4(gµρgνσ − gµνgρσ + gµσgρν) + a2mjmk4gµν + abpρ(pσ + qσ)× (−4i)εσµρν
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+ abpρ(pσ + qσ)(−4i)ερνσµ + b2pρ(pσ + qσ) Tr{γµγργνγσ} − b2mjmk Tr{γµγν}
= 4(a2 + b2)pρ(pσ + qσ)(gµρgνσ − gµνgρσ + gµσgρν) + 4(a2 − b2)mjmkgµν (6.2.20)

Due to being contracted with a symmetric tensor, after finish integration, all antisymmetric
tensors in this trace vanish. Thus, for simplification, we omit them in this calculation. Let

αZννjk =
(
λZννLjk + λZννRjk

)2 − (λZννRjk − λZννLjk

)2
= 4λZννLjk λZννRjk (6.2.21)

βZννjk =
(
λZννLjk + λZννRjk

)2
+
(
λZννRjk − λZννLjk

)2
= 2
[
(λZννLjk )2 + (λZννRjk )2

]
(6.2.22)

β′
Zνν
jk µνρσ = βZννjk (gµρgνσ − gµνgρσ + gµσgρν) (6.2.23)

We arrive at

ΣZνν
ZZ µν(q) = i

1

2

∑
j,k

∫
d4p

(2π)4

β′Zννjk µνρσp
ρpσ + β′Zννjk µνρσp

ρqσ + αZννjk mjmkgµν

(p2 −m2
j )
[
(p+ q)2 −m2

k

] (6.2.24)

Using the result from chapter 5, the integral yields

ΣZνν
ZZ µν(q) =

1

2

∑
j,k

−1

(4π)2

[
β′
Zνν
jk µνρσB

ρσ(q,mj ,mk) + β′
Zνν
jk µνρσq

σBρ(q,mj ,mk)

+αZννjk mjmkgµνB0(q,mjmk)
]

We have that

β′
Zνν
jk µνρσg

ρσ = βZννjk (gµρgνσ − gµνgρσ + gµσgρν)gρσ = βZννjk (2−D)gµν (6.2.25)

β′
Zνν
jk µνρσq

ρqσ = βZννjk (gµρgνσ − gµνgρσ + gµσgρν)qρqσ = βZννjk (2qµqν − q2gµν) (6.2.26)

Therefore

ΣZνν
ZZ µν(q) =

1

2

∑
j,k

−1

(4π)2

[
βZννjk (2−D)gµνB00(q,mj ,mk)+

βZννjk (2qµqν − q2gµν)(B11(q,mj ,mk) +B1(q,mj ,mk))

+αZννjk mjmkgµνB0(q,mjmk)
]

(6.2.27)

Because we only take the transverse amplitude corresponding to the tensor structure gµν , the
transverse amplitude is

ΣZνν
ZZ T (q) =

1

2

∑
j,k

1

(4π)2

[
βZννjk (2−D)B00(q,mj ,mk)− q2βZννjk (B11(q,mj ,mk) +B1(q,mj ,mk))

+αZννjk mjmkB0(q,mjmk)
]

(6.2.28)

Z-Z-sneutrino-sneutrino loop

With the diagram 6.4c, j = 1, ..., 18, the truncated amplitude is

ΣZZν̃ν̃
ZZ (q) = (−i)1

2

∑
j

∫
dDp

(2π)D
(−iλZZν̃ν̃j )gµν

i

p2 −m2
j

µ4−D (6.2.29)

From chapter 5,, we obtain

ΣZZν̃ν̃
ZZ (q) = (−i)1

2

∑
j

λZZν̃ν̃j gµν

∫
dDp

(2π)D
1

p2 −m2
j

µ4−D =
1

2

∑
j

λZZν̃ν̃j gµν
1

(4π)2
A0(mj)

(6.2.30)

Taking only the transverse amplitude

ΣZZν̃ν̃
ZZ T (q) = −1

2

∑
j

λZZν̃ν̃j

1

(4π)2
A0(mj) (6.2.31)
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6.2.6 W-boson self-energy

The self-energy of W-boson is contributed by the 4 diagrams in figure 6.5

W− W−
ν̃j

ẽ−kq q

−p

p + q

(a) W-slepton-sneutrino loop

W−
W−

νj

e−k
q q

−p

p + q

(b) W-lepton-neutrino loop

Figure 6.5: W-boson self-energy from neutrino and sneutrino sectors

W-sneutrino-slepton loop

The diagram of this process is illustrated in figure 6.5a. The indices are j = 1, ..., 18, k = 1, 2, 3.
The truncated amplitude is

Σν̃
W±W∓ µν(q) = (−i)

∑
j,k

∫
dDp

(2π)D
(−i)λW−ν̃ẽ+jk (qµ + 2pµ)

i

p2 −m2
j

(−i)λW+ν̃ẽ−
jk (−qν − 2pν)

× i

(p+ q)2 −m2
k

µ4−D

= (−i)
∑
j,k

∫
dDp

(2π)D
λW

−ν̃ẽ+
jk λW

+ν̃ẽ−
jk

−qµqν − 2qµpν − 2pµqν − 4pµpν

(p2 −m2
j )
[
(p+ q)2 −m2

k

] µ4−D

Using results from chapter 5, we arrive at

Σν̃
W±W∓ µν(q) =

∑
j,k

λW
−ν̃ẽ+

jk λW
+ν̃ẽ−

jk

−1

(4π)2
[qµqνB0(q,mj ,mk) + 2qνBµ(q,mj ,mk)

+2qµBν(q,mj ,mk) + 4Bµν(q,mj ,mk)]

=
∑
j,k

λW
−ν̃ẽ+

jk λW
+ν̃ẽ−

jk

−1

(4π)2
[qµqνB0(q,mj ,mk) + 4qνqµB1(q,mj ,mk)

+4qµqνB11(q,mj ,mk) + 4gµνB00(q,mj ,mk)] (6.2.32)

Because we only take the transverse amplitude corresponding to the tensor structure gµν , the
transverse amplitude is

Σν̃
W±W∓ T i(q) =

∑
j,k

λW
−ν̃ẽ+

jk λW
+ν̃ẽ−

jk

4

(4π)2
B00(q,mj ,mk) (6.2.33)

W-neutrino-lepton loop

The diagram in figure 6.5b illustrate the neutrino contribution to W-boson self energy, the
indices j = 1, ..., 9, k = 1, 2, 3, the upper sign corresponding to the self energy of W− while the
lower sign being for the W+. The truncated amplitude yields

Σν
W±W∓ µν(q)

= −(−i)
∑
j,k

∫
dDp

(2π)D
Tr

{
(−iλW−νe+Ljk γµPL)

i(±/p± /q +mk)

(p+ q)2 −m2
k

(−iλW+νe−L
jk γνPL)
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× i(±/p+mj)

p2 −m2
j

}
µ4−D

= i
∑
j,k

∫
dDp

(2π)D
Tr

{
(λW

−νe+L
jk γµPL)

±/p± /q +mk

(p+ q)2 −m2
k

(λW
+νe−L

jk γνPL)
±/p+mj

p2 −m2
j

}
µ4−D

= i
∑
j,k

∫
dDp

(2π)D
1

4
λW

−νe+L
jk λW

+νe−L
jk

× Tr

{
γν(1− γ5)

±/p+mj

p2 −m2
j

γµ(1− γ5)
±/p± /q +mk

(p+ q)2 −m2
k

}
µ4−D (6.2.34)

This expression has the similar trace structure as equation (6.2.20) with a = b = 1. Using that
result, we arrive at

Σν
W±W∓ µν(q) = i

∑
j,k

∫
dDp

(2π)D
2λW

−νe+L
jk λW

+νe−L
jk

βW
±νe∓

jk µνρσp
ρpσ + βW

±νe∓
jk µνρσp

ρqσ

(p2 −m2
j )
[
(p+ q)2 −m2

k

] µ4−D (6.2.35)

Where we denoted,

βW
±νe∓

jk µνρσ = gµρgνσ − gµνgρσ + gµσgρν (6.2.36)

Using the result in chapter 5, we have

Σν
W±W∓ µν(q) =

∑
j,k

2λW
−νe+L

jk λW
+νe−L

jk

−1

(4π)2

×
[
βW

±νe∓
jk µνρσB

ρσ(q,mj ,mk) + βW
±νe∓

jk µνρσq
σBρ(q,mj ,mk)

]
(6.2.37)

We have that

βW
±νe∓

jk µνρσg
ρσ = (2−D)gµν (6.2.38)

βW
±νe∓

jk µνρσq
ρqσ = 2qµqν − gµνq2 (6.2.39)

The integration becomes

Σν
W±W∓ µν(q) =

∑
j,k

2λW
−νe+L

jk λW
+νe−L

jk

−1

(4π)2
[(2−D)gµνB00(q,mj ,mk)

+(2qµqν − gµνq2)(B11(q,mj ,mk) +B1(q,mj ,mk))
]

(6.2.40)

The transverse amplitude

Σν
W±W∓ T (q) =

∑
j,k

2λW
−νe+L

jk λW
+νe−L

jk

1

(4π)2

×
[
(2−D)B00(q,mj ,mk)− q2(B11(q,mj ,mk) +B1(q,mj ,mk))

]
(6.2.41)

6.3 Calculation of the counterterms and Higgs masses

6.3.1 Renormalized self-energy

With the counterterms of physical quantities and renormalization constants for field renormal-
ization, the renormalized self-energy, derived from the Lagrangian, written in mass basis is

Σ̂
(1)
hihj

(p2) = Σ
(1)
hihj

(p2) +
1

2
p2
[
R
(
δZZZ† + δZZZ

)
RT
]
ij
− 1

2

[
R
(
δZZZ†Mhh +MhhδZZZ

)
RT
]
ij
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−
[
RδMhhR

T
]
ij

(6.3.1)

where theˆis used to denote renormalized quantities. Here, Σ
(1)
hihj

is the unrenormalized Higgs
self-energy at one-loop level in the mass basis. Ultimately, the divergent part of the renormalized
self-energy has to vanish for all external momentum p.

6.3.2 Wave-function renormalization constants

The DR condition dictates the first derivative divergent part of renormalized self-energy vanish

R̃e
∂Σ̂

(1)
hihi

∂p2

∣∣∣∣∣
div

p2=m2
hi

= 0 (6.3.2)

with R̃e only take the real part of loop integrals. This condition leads 6.3.1 to the equation

1

2
R
(
δZZZ† + δZZZ

)
RT = −R̃e

∂Σ(1)

∂p2

∣∣∣∣∣
div

p2=m2
hi

⇐⇒ δZZZ = −RT R̃e
∂Σ(1)

∂p2

∣∣∣∣∣
div

p2=m2
hi

R (6.3.3)

where the symmetric matrix δZZZ was assumed to be real. While δZZZ contains only three un-
known variables δ(1)ZHu , δ

(1)ZHd and δ(1)ZS , this matrix equation has much more equations.
Such system has no solution except in very special cases. Thus this overdetermined system of
equations can be used as a non-trivial double check tool for calculation.

6.3.3 Counterterm conditions

As mentioned in section 6.1, a renormalization scheme mixed between on-shell and DR scheme
is used. The on-shell condition is based on physical observables, while DR scheme are used for
the parameters whose physical interpretation is not obvious

The following quantities are renormalized on-shell

• Tadpole parameters: to keep the minimum of the Higgs potential from shifting, the tadpole
counterterms are defined such that it exactly cancels any contribution from the diagrams
at one-loop level

δtφ + Tφ = 0 with φ = hd, hu, hs, ad, as (6.3.4)

where Tφ denotes the irreducible one-loop tadpole diagrams. Since the diagrams are com-
puted in mass eigenbasis, to obtain the tadpole diagrams in interaction basis, a rotation
must be made

Tφi = (RRG)TijThj (6.3.5)

with Thj is in the mass basis

• Mass parameters: the condition to renormalized mass parameters is that the pole of
the two-point correlation function at one-loop level occurs at exactly the physical mass.
For that to occur, the counterterms must cancel all contributions from one-loop diagram
computed at the physical mass. That is,

δ(1)M2
W = R̃eΣ

(1)T
WW (M2

W ) (6.3.6)

δ(1)M2
Z = R̃eΣ

(1)T
ZZ (M2

Z) (6.3.7)
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δ(1)M2
H± = R̃eΣ

(1)
H±H∓(M2

H±) (6.3.8)

(6.3.9)

with Σ(1)T denoting the transverse part of the respective one-loop self-energy

• VEV: the on-shell renormalization condition for VEV counterterm δv is computed from
the counterterm for electric charge δe

δv =
2
[
δM2

ZM
4
W +M2

Z

(
2δZeM

2
W (M2

W −M2
Z) + δM2

W (−2M2
W +M2

Z)
)]

e2M4
Zv

(6.3.10)

• Electric charge: the on-shell condition is set so that the electric charge is exactly the
electron-position-photon coupling. That is, this coupling receives no quantum correction.
In terms of transverse part of photon-photon and photon-Z self-energies, the condition
yields [44, 57]

δZe =
1

2

∂ΣT
γγ(k2)

∂k2

∣∣∣∣∣
k2=0

+
sW
cW

ΣT
γZ(0)

M2
Z

(6.3.11)

While the DR parameters are defined according to the following conditions

• tanβ: this parameter is computed via [58–60]

δ(1) tanβ =
1

2
tanβ

(
δ(1)ZHu − δ(1)ZHd

)∣∣∣∣
div

(6.3.12)

• The remaining DR counterterms are defined so that

Σ̂
(1)
hihj

∣∣∣∣
div

= 0 (6.3.13)

This introduces more equations than counterterms. Thus, the system is overdetermined.
However, the suitable solution must render all components of the UV-part of renormalized
self-energy UV-finite. It should be noted that these parameters can also be computed from
other sectors of the NMSSM just like the case with on-shell parameters. In the end, all of
these results must coincide. Thus, these different approaches are a good cross-check for
the calculation.

After all counterterms are available, the renormalized self-energy can be calculated. Then,
the one-loop masses can be obtained as the poles of the propagators of the Higgs boson. That
is, they are from the equation

det
(

Γ̂(p2)
)

= 0 (6.3.14)

with Γ̂ being the renormalized two-point correlation function

Γ̂(p2) = i
(
p2I6×6 −M

)
(6.3.15)

whereM is the matrix part defined from the renormalized self-energy Σ̂ij(p
2) and the tree-level

Higgs mass mhi

Mij = m2
hi
δij − Σ̂ij(p

2) (6.3.16)

76



To solve this equation, iterative method was used [57, 61, 62]. Each time, only one solution
to the equation can be found. For the first iteration, the external momentum squared is set
equal to the chosen nth tree-level Higgs mass p2 = m2

hn
. In each iteration, an updated guess

of the external momentum squared is used to compute the matrix part. That matrix is then
diagonalized, turning the determinant equation into a trivial one with the roots being the n-th
diagonal element. This value is then used for new iteration. The process is repeated until the
change in p2 between two consecutive iterations is less then 10−9. The algorithm is repeated
for all neutral Higgs boson mass.
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Chapter 7

Numerical Analysis

This section is devoted for numerical analysis of the one-loop corrected Higgs mass in NMSSM
with inverse seesaw mechanism. The couplings and mass matrices are created using the pack-
age SARAH [63–69] where the inverse seesaw mechanism is newly implemented in the model
for NMSSM with CP violation. Then, the generated model file is implemented into FeynArts

[70–73] and FeynCalc [74, 75] to generate amplitudes, manipulate gamma matrices, perform
tensor reduction and then factorize the divergent and finite parts. This result is cross-check by
hand. The analytical expressions are then implement into the Fortran package NMSSMCAL [57,
61, 62, 76–79]. The package NMSSMCALC was modified to incorporate the new behaviours and
contributions from inverse seesaw mechanism.

7.1 Numerical parameters

When some parameters are being analysed, if no specification is stated, the other parameters
are kept unchanged. The current numerical analysis does not consider the case of CP-violation;
thus, CP-violating parameters are left out. During calculation, we also take into account the
the constraints arise from experimental data. The use of parametrization in this thesis allows
simple reproduction of neutrino oscillation data since the masses and the mixing angles can be
used as input; thus, constraints on these parameters are controlled beforehand. For the sake of
simplicity, the matrix parameters µX , λX , Aν , AX , BµX ,M

2
Ñ
,M2

X̃
are set to be diagonal without

loosing generality.

Follow from experimental data [39], the SM parameters have been chosen as

α−1
em = 127.955 GF = 1.16637× 10−5 GeV−2

αs = 0.1181 MZ = 91.1876 GeV

mMS
b (mMS

b ) = 4.18 GeV mt = 172.74 GeV

mτ = 1.77682 GeV MW = 80.379 GeV (7.1.1)

me = 510.99891 keV mµ = 105.658367 MeV

md = 4.7 MeV mu = 2.2 MeV

ms = 95 MeV mc = 1.274 GeV

The extra parameters arising from NMSSM are not experimentally measured, though may have
constraints on their value. Here, we take the parameter point P1OS in [61]. It satisfies the LHC
Run 1 and Run 2 data on the Higgs signal strength.

M1 = 644.4699 GeV M2 = 585.2285 GeV
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M3 = 1850 GeV At = −1921.717 GeV

Ab = −1884.847 GeV Aτ = 1170.264 GeV

tanβ = 4.442242 MH± = 897.8267 GeV

|λ| = 0.301175 |κ| = 0.299105

ReAκ = −791.4436 GeV µeff = 208.7278 GeV (7.1.2)

ML̃1 = ML̃2 = 3000 GeV ML̃3 = 1368.968 GeV

MẼ1 = MẼ2 = 3000 GeV MẼ3 = 2967.018 GeV

MQ̃1 = MQ̃2 = 3000 GeV MQ̃3 = 1226.038 GeV

MŨ1 = MŨ2 = 3000 GeV MŨ3 = 880.8624 GeV

MD̃1 = MD̃2 = 3000 GeV MD̃3 = 2765.234 GeV

While the scale parameter µ arising from regularization is conventionally set at [80, 81]

µ = MSUSY =
√
MQ̃3

Mt̃R
(7.1.3)

Although the exact value is unavailable yet, there are some strict constraints on the mass of
neutrinos mni and their mixing matrices [31–33]. Cosmological data also put an upper bound
to the sum of neutrino masses at 0.23 eV [41]. The unitarity of the neutrino mixing matrix is
also tested and restrained [82–84]. Following [85], an upper bound to the Yukawa coupling of
neutrino Yv is set to ensure the perturbativity

|Yij |2
4π

< 1.5 (7.1.4)

Thus, the parameters are carefully picked to satisfy these constrains.

mn1 = 4.3× 10−5 eV mn2 = 8.6× 10−3 eV mn3 = 5.06× 10−2 eV

θ12 = 0.576 θ13 = 0.147 θ23 = 0.71

µX1 = 10 TeV µX2 = 20 TeV µX3 = 30 TeV

λX1 = 6× 10−9 λX2 = 7× 10−9 λX3 = 8× 10−9

θ1 = 2 θ2 = 3 θ3 = 4

The last lines show the values for the mixing angles of Casas-Ibarra parametrization following
[86]. For the soft SUSY breaking parameters for the modified neutrino sector, little can be
said about their values, except that they should be dependent on their corresponding SUSY-
conserving parameters. The solf breaking parameters are of order TeV and chosen as follows

Aν1 = 1 TeV Aν2 = 2 TeV Aν3 = 3 TeV

AX = 4 TeV AX = 5 TeV AX = 6 TeV

BµX1 = 1 TeV BµX2 = 2 TeV BµX3 = 3 TeV

MX̃1 = 1 TeV MX̃2 = 1.2 TeV MX̃3 = 1.3 TeV

MÑ1 = 3 TeV MÑ2 = 4 TeV MÑ3 = 5 TeV

7.2 Dependence of Higgs sector parameters in inverse seesaw
mechanism

To investigate how the Higgs sector changes with the introduction of the inverse seesaw mech-
anism, the Higgs masses are plotted against each parameter in the neutrino sector. The idea
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behind this section is to find out how much a parameter contribute to the masses of the Higgs
boson. The parameter range was chosen so that no data point violates experimental constrains.
Here, only µX and the neutrino mass is considered. Other parameters have negligible effect on
the mass of Higgs boson.

For illustrative purpose, the neutral Higgs masses at one-loop level are computed without
inverse seesaw mechanism to compare with when the mechanism is turned on. The computed
one-loop corrected Higgs masses, calculated using NMSSMCALC, are

mh1 = 86.6934 GeV (7.2.1)

mh2 = 135.065 GeV (7.2.2)

mh3 = 700.112 GeV (7.2.3)

mh4 = 895.828 GeV (7.2.4)

mh5 = 897.833 GeV (7.2.5)

The Higgs boson h2 is the candidate for experimentally detected Higgs boson and it receives
large negative two-loop correction of order −10 GeV which makes its corrected mass consistent
with the Higgs boson mass measured at LHC.

For the sake of simplicity, the MUX matrix is diagonalized with all three diagonal elements
equals. That is µX ≡ µXI3×3 The graph of MUX is plotted from 0.2 TeV to 50 TeV. The lower
limit is set according to [85, 87] as this region of energy is very well probed by colliders. The
corresponding soft SUSY breaking bilinear coupling is set BµX ≡ BµX I3×3 with BµX = 1 TeV.
The plot of the mass of each Higgs boson is plotted in figure 7.1. Although most Higgses gain
positive correction from the new sector at high value of µX , the lightest Higgs mass experience
the opposite after reach its peak. Among them, the second lightest Higgs receive the most
correction, as high as 9% compared to that of the NMSSM without inverse seesaw mechanism.
Figure 7.2 is graphed to compare between the quantum corrections between each Higgs mass. It
can be seen that h2 receives the most correction from the new sector, while the others deviates
very little with h3 receives the least change.

(a) Mass of h1 against µX (b) Mass of h2 against µX (c) Mass of h3 against µX

(d) Mass of h4 against µX (e) Mass of h5 against µX

Figure 7.1: Neutral Higgs mass plotted against µX . The Higgs are sorted in ascending mass
mh1 ≤ · · · ≤ mh5

Just like with µX , the same thing is done for mν1 , the mass of the lightest neutrino. Here,
only normal hierarchy mν1 < mν2 < mν3 is considered. The other neutrino mass is obtained
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(a) An overview (b) Zoomed in for better structure of graph

Figure 7.2: The deviation (in %) of neutral Higgs masses from their values without inverse
seesaw mechanism plotted against µX

from the lightest one using the best fitted experimental value [31]. The upper-bound is set
to be the value at which cosmological constrain to the sum of neutrino mass is violated. The
associated trilinear coupling Aν also diagonalized with the three diagonal elements the same
Aν ≡ AνI3×3 where Aν = 1 TeV. The result is shown in figure 7.3. The behaviour expressed by
this parameter is similar to that of µX . However, cosmological data put an upper bound to this
parameter, unlike MUX which has yet to be upper-bounded by experiment. Yet, the changes
made by this parameter is as much as 5% as shown in figure 7.4

(a) Mass of h1 against mν1 (b) Mass of h2 against mν1 (c) Mass of h3 against mν1

(d) Mass of h4 against mν1 (e) Mass of h5 against mν1

Figure 7.3: Neutral Higgs mass plotted against mν1 . The Higgs are sorted in ascending mass
mh1 ≥ · · · ≥ mh5

7.2.1 Parameter scan for maximal change in Higgs mass

To get an idea on the scale of correction contributed by the inverse seesaw mechanism, param-
eter scan is used, in which all parameters belonging to the inverse seesaw sector take random
value in their allowed range. The 6 parameters constrains by oscillation experiments [31–33]
mν1 ,mν2 ,mν3 , θ12, θ13, θ23 are allowed to take any value within the 3σ uncertainty of experi-
ment, with the exception of mν1 which takes any value that does not violate the upper bound
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Figure 7.4: The deviation (in %) of neutral Higgs masses from their values without inverse
seesaw mechanism plotted against mν1

set by cosmological data [41]. These parameters are randomized with a uniform distribution.
As before, the other parameters are diagonalized and set so that their diagonal elements are
the same. These parameters are distributed in a logarithmically uniform fashion so that any
energy scale is equally likely.

0.2 TeV ≤ µX ≤ 50 TeV

5× 10−10 ≤ λX ≤ 1× 10−5

1 GeV ≤ Aν ≤ 1 TeV

1 GeV ≤ AX ≤ 1 TeV

1 GeV ≤ BµX ≤ 1 TeV

0.2 TeV ≤ MX̃ ≤ 50 TeV

0.2 TeV ≤ MÑ ≤ 50 TeV

To get a somewhat complete picture, 2000 random points are generated, with those violating
any of the mentioned experimental constrains are discarded. The deviation of the result from
the one-loop Higgs boson mass without seesaw mechanism is plotted. These values are set at
100%. It can be observed from figure 7.5 that the three heaviest Higgs boson are barely changed
by the new sector, although closer inspection reveals that these three masses mostly decreases
with the introduction of new parameter. However, the same cannot be said for the two lighter
one. The lightest Higgs boson is completely raised to new mass value, more than 0.6% the old
one, and deviates about that value. The most significant change belongs to the second lightest
Higgs. Although a significant number of its data points lies above the 100% line, its mass can
increases as high as 9% its original mass at one-loop level due to the correction from inverse
seesaw mechanism. The previous section demonstrated that µX is the only parameter in the
neutrino sector that can have arbitrary large effect on the corrected mass of Higgs boson. This,
however, may require µX to be much above the reach of current collider, thus, beating the
advantage of inverse seesaw mechanism.

82



Figure 7.5: The deviation (in %) of neutral Higgs masses from their values without inverse
seesaw mechanism with parameter scan
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Chapter 8

Conclusion and proposal

This thesis has focused on discussing the Next-to-Minimal Supersymmetric theory (NMSSM)
with the concentration on the Higgs sector and the inverse seesaw mechanism and how the two
are incorporated with each other. The effect of the inverse seesaw mechanism on the Higgs mass
was particularly considered. One-loop calculation was needed for such investigation.

To alleviate some of the shortcomings of the Standard Model (SM), supersymmetric theo-
ries was devised. The theory is built based on the idea that the largest spacetime symmetry
is Poincaré plus a boson-fermion symmetry. The most minimum theory extended from the SM
is called the Minimal supersymmetric theory (MSSM) with only one additional Higgs doublet
introduced, along with the superpartners of each of the SM particles. The model has several
advantages over the SM; however, it also raises its own hierarchy problem called the µ-problem.
To solve this, the NMSSM was proposed where one additional Higgs singlet is introduced to
solve the µ-problem by dynamically produce the parameter from the electroweak symmetry
breaking (EWSB). The mass spectrum of these theories have been of special interest. While
the gauge and fermion sectors behave quite similar to that of the SM, the Higgs sector expe-
rience quite dramatic change, such as the lightest Higgs receives an upper bound for its mass.
Since experiments have confirmed and measured one Higgs boson, this data can be used to con-
strain the parameter of supersymmetric theories. For this reason, this sector get more attention
throughout the thesis.

Another problem unsolved by the SM that both MSSM and NMSSM fail to explain is the
non-zero, yet surprisingly tiny, mass of neutrino constrained by experiments. Seesaw mech-
anisms is brought in to propose an appealing solution to this discrepancy. The mechanism
suggests that if neutrinos are Majorana fermion, their masses can naturally appear without
breaking gauge symmetry. The mechanism also proposes that more neutrinos exist in nature
than detected by experiment but these sterile neutrinos are so heavy that they render the active
ones very light. Inverse seesaw is a variant of this mechanism in which the sterile neutrinos
need not be significantly heavy to generate the really low mass of active neutrino by introducing
lepton number violating parameters.

The introduction of new and heavy neutrinos surely influence the mass of Higgs boson. How-
ever, to investigate such changes, one-loop calculation is necessary. Therefore, the technique for
such computation is also studied at length. The problem with calculating one-loop diagrams
is that their integration over momentum diverges as p → ∞. Dimensional regularization tech-
nique is used to workaround this issue and compute their integrals. The problem still persists,
though, as the technique only hide the divergences in new parameters to allow computation, but
still fail to yield UV-finite results. An additional method called renormalization theory is used
to actually cancel these divergences by introducing counterterms. These counterterms contain
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its own divergences arriving from bare parameters. Renormalization conditions are required to
compute these counterterms and arrive at the result.

Using the technique of one-loop calculation, the corrected Higgs boson mass can be calcu-
lated and and its dependence on the inverse seesaw mechanism can be analysed. In the analysis,
experimental data is used to constrains the parameters of neutrino sector. Apparently, because
of the massive neutrino introduced, the Higgs mass can be corrected by as much as 9% from
this sector alone. Although small, the mass of light neutrino can still have noticeable effect on
the Higgs mass at one-loop level.

More analysis can still be done in the future. We plan to take into account the constrains
from lepton flavour violation data. Moreover, since two-loop quantum corrections is not neg-
ligible, to get an accurate bound for the Higgs mass, this perturbation level should also be
considered. Also, the observed Higgs boson mass can also be used as a restriction to the pa-
rameters of the NMSSM and inverse seesaw mechanism. All of these can be a subject for future
studies

85



Appendix A

Conventions and Formulas

A.1 Units and metric conventions

This thesis uses natural units

h̄ = c = 1 (A.1.1)

and works with the metric tensor

gµν = gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (A.1.2)

Conventionally, in four-component spacetime, the Greek indices runs over 0, 1, 2, 3, while the
Roman indices i, j,etc. denotes spatial components. Repeated indices are implicitly summed
over in all cases, unless specifically stated.

A.2 Spinor algebra

Pauli matrices and its extension to include the unit matrix are defined as

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(A.2.1)

Firstly, we need the definition of generalized Pauli matrix

σµ = (σ0, σ1, σ2, σ3) = (σ0,−σ1,−σ2,−σ3) (A.2.2)

σ̄µ = (σ0,−σ1,−σ2,−σ3) = (σ0, σ1, σ2, σ3) (A.2.3)

Then, we can define

(σµν) β
α =

i

4
(σµσ̄ν − σν σ̄µ) β

α , (σ̄µν)α̇
β̇

=
i

4
(σ̄µσν − σ̄νσµ)α̇

β̇
(A.2.4)

Some properties of the generalized Pauli matrices include

Tr{σµνσρτ} =
1

2
(gµρgντ − gµτgνρ + iεµνρτ ) (A.2.5)
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Since Lorentz group is homomorphic to the group SL(2,C) composed of 2 × 2 complex
matrices of determinant 1, we can use the representation of SL(2,C) for our purpose. The
fundamental representation of this group is defined

ψ′α = Nβ
αψβ (A.2.6)

with α, β = 1, 2, while its complex conjugate representation is

ψ̄
′α̇ = N α̇

β̇
ψ̄β̇ (A.2.7)

with α̇, β̇ = 1̇, 2̇. It should be noted that these two representations are inequivalent. In SL(2,C),
the invariant tensor used for raising and lowering spinor indices is a anti-symmetric tensor
conventionally defined as ε = iσ2

ε12 = ε1̇2̇ = ε12 = ε1̇2̇ = 1 (A.2.8)

It raises and lowers indices according to

ψα = εαβψβ , ψα = εαβψ
β , ψ̄α̇ = εα̇β̇ψ̄β̇ , ψ̄α̇ = εα̇β̇ψ̄

β̇ (A.2.9)

Unlike the four-component spinors of Lorentz group SO+(1, 3), these representations are called
two-component spinors and possess somewhat different rules of algebra and calculus.

A.3 Calculus of Grassmann variables

The two-component spinors have Grassmann numbers, or anti-commuting numbers, as its com-
ponents. Thus, its rules for calculus are somewhat different. However, an understanding of
them is vital in writing down the Lagrangian.

To arrive at the two-component case, the one-dimensional case is considered first. Let κ be
a Grassmann number. Due to its anti-commuting property, all quadratic or higher terms vanish
since κκ = −κκ = 0. Thus, the most general function for Grassmann number must be linear

f(κ) =
∞∑
k=0

fkκ
k = f0 + f1κ. (A.3.1)

Differentiation is straightforward

df

dκ
= f1 (A.3.2)

For integral, the definition would be∫
dκ := 0 ,

∫
dκκ := 1 (A.3.3)

So that Grassmann numbers and ordinary numbers do not equate. From these definitions, one
can obtain ∫

dκf(κ) =

∫
dκ(f0 + f1κ) = f0

∫
dκ+ f1

∫
dκκ = f1 =

df

dκ
(A.3.4)∫

dκδ(κ) = 1 =

∫
dκκ =⇒ δ(κ) = κ (A.3.5)
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In the case of two-component spinors, let the Grassmann numbers θα, θ̄α̇(α = 1, 2, α̇ = 1̇, 2̇)
be the components of the two-component spinor θ, θ̄. One will have that θαθβ = 0 if α = β,
similarly for θ̄α̇. Because that α, β can only take 2 values 1, 2, any product involving more
than two θ’s or θ̄’s (whose proof is similar) must vanish because the product such as θαθβθγ
have at least three indices so two of them must equal and vanish. Partial differentiations for
two-dimensional cases are defined as

∂α ≡
∂

∂θα
and ∂α = −εαβ∂β , ∂̄α̇ ≡

∂

∂θ̄α̇
and ∂̄α̇ = −εα̇β̇ ∂̄β̇ (A.3.6)

From which, the following equalities follow

∂αθ
β = δβα , ∂̄α̇θ̄

β̇ = δβ̇α̇ , ∂αθ̄β̇ = 0 , ∂̄α̇θβ = 0 (A.3.7)

Similar to ordinary number, one also need to define

d2θ :=
1

2
dθ1dθ2 , d2θ̄ :=

1

2
dθ̄2̇dθ̄1̇ (A.3.8)

Together with the relations θαθβ = −1
2ε
αβθθ and θ̄α̇θ̄β̇ = 1

2ε
α̇β̇ θ̄θ̄ one can prove that∫

d2θθθ =
1

2

∫
dθ1dθ2 × 2θ2θ1 =

∫
dθ1

(∫
dθ2θ2

)
θ1 =

∫
dθ1θ1 = 1 (A.3.9)∫

d2θ̄θ̄θ̄ =
1

2

∫
dθ̄1̇dθ̄2̇ × 2θ̄2̇θ̄1̇ =

∫
dθ̄1̇

(∫
dθ̄2̇θ̄2̇

)
θ̄1̇ =

∫
dθ̄1̇θ̄1̇ = 1 (A.3.10)∫

d2θ

∫
d2θ̄(θθ)(θ̄θ̄) =

∫
d2θ

∫
d2θ̄(θ̄θ̄)(θθ) =

∫
d2θ(θθ) = 1 (A.3.11)

From equations (A.3.9), (A.3.10), one may also see the connection between second order inte-
gration and differentiation∫

d2θ =
1

4
εαβ

∂

∂θα
∂

∂θβ
,

∫
d2θ̄ = −1

4
εα̇β̇

∂

∂θ̄α̇
∂

∂θ̄β̇
(A.3.12)

A.4 Some expansion formulas

Exponential function

The expansion of infinitesimal exponential is

uε = eε lnu ≈ 1 + ε lnu+O(ε2) (A.4.1)

Expansion of gamma function near negative poles

Let Γ(x) be the gamma function, n ∈ N and ε is infinitesimal, then

Γ(ε− n) =
(−1)n

n!

[
1

ε
+ ψ(n+ 1) +O(ε)

]
(A.4.2)

where ψ(1) = −γE ≈ −0.577216 with γE called Euler-Mascheroni number, and ψ(n + 1) =
ψ(1) + 1 + 1

2 + · · ·+ 1
n . Some special cases used in the thesis are

Γ(ε) =
1

ε
− γE (A.4.3)

Γ(−1 + ε) = −1

(
1

ε
− γE + 1

)
= −1

ε
+ γE − 1 (A.4.4)
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Appendix B

Neutral Higgs mass matrix
counterterm

(B.0.1)
(δMhh)hdhd = c3

βsβδtβ

(
v2 |λ|2 − 2M2

W − 2M2
Z + 2M2

H±

)
+ v2 |λ| s2

βδ|λ|+ v |λ|2 s2
βδv

− (c2β − 3) cβδthd
2v

−
c2
βsβδthu

v
+ c2

βδM
2
Z − s2

βδM
2
W + δM2

H±s
2
β

(B.0.2)
(δMhh)hdhu =

1

2
c2βc

2
βδtβ

(
v2 |λ|2 + 2M2

W − 2M2
Z − 2M2

H±

)
+ v2 |λ| cβsβδ|λ|

+ v |λ|2 cβsβδv+
c3
βδthu

v
+ cβsβδM

2
W − cβsβδM2

Z − cβδM2
H±sβ +

s3
βδthd
v

(δMhh)hdhs = −
vc2
βδtβ

2vs

(
2c2
βsβ

(
v2 |λ|2 − 2M2

W + 2M2
H±

)
+ |κ| |λ| cβv2

scϕy

+ s3
β

(
−
(
v2 |λ|2 − 2M2

W + 2M2
H±

))
+ 2 |λ|2 sβv2

s

)
+
vδvs

(
cβ

(
s2
β

(
v2 |λ|2 − 2M2

W

)
+ 2 |λ|2 v2

s

)
+ sβ

(
M2
H±s2β − |κ| |λ| v2

scϕy
))

2v2
s

+
δv
(
sβ
(
M2
W s2β − |κ| |λ| v2

scϕy
)

+ cβ

(
2 |λ|2 v2

s − s2
β

(
3v2 |λ|2 + 2M2

H±

)))
2vs

+ δ|λ|
(
cβ

(
2v |λ| vs −

v3 |λ| s2
β

vs

)
− 1

2
v |κ| sβvscϕy

)
− 1

2
v |λ| sβvsδ|κ|cϕy

+
1

2
v |κ| |λ| sβvssϕyδϕy +

c3
βsβδthu

vs
+
vcβs

2
βδM

2
W

vs
−
vcβδM

2
H±s

2
β

vs
+
s4
βδthd
vs

(B.0.3)

(B.0.4)(δMhh)hda =
δtad cotβ

v

(B.0.5)
(δMhh)hdas =

δtad
vs

+
3

2
v |κ| |λ| c3

βvssϕyδtβ +
3

2
v |κ| |λ| sβvscϕyδϕy +

3

2
v |λ| sβvsδ|κ|sϕy

+
3

2
v |κ| sβvsδ|λ|sϕy +

3

2
v |κ| |λ| sβδvssϕy +

3

2
|κ| |λ| sβvsδvsϕy
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(B.0.6)
(δMhh)huhu = c3

βsβδtβ

(
−v2 |λ|2 + 2M2

W + 2M2
Z − 2M2

H±

)
+ v2 |λ| c2

βδ|λ|+ v |λ|2 c2
βδv

−
cβs

2
βδthd
v

+
(c2β + 3) sβδthu

2v
− c2

βδM
2
W + c2

βδM
2
H± + s2

βδM
2
Z

(δMhh)huhs =
vc2
βδtβ

2vs

(
2cβ

(
|λ|2 v2

s + 2s2
β

(
M2
H± −M2

W

))
+ c3

β

(
−
(
v2 |λ|2 − 2M2

W + 2M2
H±

))
+ |λ| sβ

(
|κ| v2

scϕy + v2 |λ| s2β

))
+

1

2
vδvs

c2
βsβ

(
v2 |λ|2 − 2M2

W + 2M2
H±

)
v2
s

− |κ| |λ| cβcϕy + 2 |λ|2 sβ


+ δv

−c2
βsβ

(
3v2 |λ|2 − 2M2

W + 2M2
H±

)
2vs

− 1

2
|κ| |λ| cβvscϕy + |λ|2 sβvs


+ δ|λ|

(
−
v3 |λ| c2

βsβ

vs
− 1

2
v |κ| cβvscϕy + 2v |λ| sβvs

)
− 1

2
v |λ| cβvsδ|κ|cϕy

+
1

2
v |κ| |λ| cβvssϕyδϕy +

cβs
3
βδthd
vs

+
c4
βδthu

vs
+
vc2
βsβδM

2
W

vs
−
vc2
βδM

2
H±sβ

vs
(B.0.7)

(B.0.8)(δMhh)hua =
δtad
v

(δMhh)huas =
cotβδtad

vs
− 3

2
v |κ| |λ| c2

βsβvssϕyδtβ +
3

2
v |λ| cβvsδ|κ|sϕy +

3

2
v |κ| cβvsδ|λ|sϕy

+
3

2
v |κ| |λ| cβδvssϕy +

3

2
v |κ| |λ| cβvscϕyδϕy +

3

2
|κ| |λ| cβvsδvsϕy

(B.0.9)
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(δMhh)hshs = −
vsβδthuc

4
β

v2
s

+
v2s2

βδM
2
H±c

2
β

v2
s

−
v2s2

βδM
2
W c

2
β

v2
s

+
1

2
v2c2β

− |κ| |λ| cϕy +
3i
(
−1 + e2iϕω

)
|κ| |λ| sϕy

1 + e2iϕω

+

(
v2 |λ|2 − 2M2

W + 2M2
H±

)
s2β

v2
s

 δtβc
2
β +

i
(
−1 + e2iϕω

)
vδtadcβ

(1 + e2iϕω) v2
s

−
vs4
βδthdcβ

v2
s

+
v2 |κ| |λ| sβ

(
3i
(
−1 + e2iϕω

)
cϕy +

(
1 + e2iϕω

)
sϕy
)
δϕycβ

2 (1 + e2iϕω)

+
1

2
vδvs2β

− |κ| |λ| cϕy +
3i
(
−1 + e2iϕω

)
|κ| |λ| sϕy

1 + e2iϕω

+

(
v2 |λ|2 −M2

W +M2
H±

)
s2β

v2
s


+

(
1

2
|λ| cβsβ

(
3i
(
−1 + e2iϕω

)
sϕy

1 + e2iϕω
−cϕy

)
v2+vs

(√
2eiϕωReAκ
1 + e2iϕω

+4 |κ| vs
))

δ|κ|

+
1

4
v2s2β

(
|λ| s2βv

2

v2
s

− |κ| cϕy +
3i
(
−1 + e2iϕω

)
|κ| sϕy

1 + e2iϕω

)
δ|λ|

+

√
2eiϕω |κ| vsδReAκ

1 + e2iϕω
+

(
i− ie2iϕω

)
δtas

e2iϕωvs + vs
+
δths
vs

+

(
−
|λ|2 c2

βs
2
βv

4

v3
s

−
(
M2
H± −M2

W

)
s2

2βv
2

2v3
s

+ |κ|
(√

2eiϕωReAκ
1 + e2iϕω

+ 4 |κ| vs
))

δvs

+

(
−6e2iϕω |κ| |λ| cβsβsϕyv2 − i

√
2eiϕω

(
−1 + e2iϕω

)
|κ|ReAκvs

)
δϕω

(1 + e2iϕω) 2

(B.0.10)

(B.0.11)
(δMhh)hsa =

δtad
sβvs

− 1

2
v |κ| |λ| vscϕyδϕy −

1

2
v |λ| vsδ|κ|sϕy

− 1

2
v |κ| vsδ|λ|sϕy −

1

2
v |κ| |λ| δvssϕy −

1

2
|κ| |λ| vsδvsϕy

(B.0.12)
(δMhh)hsas = −2vcβδtad

v2
s

+
2δtas
vs
− 2v2 |κ| |λ| c2

βc2βsϕyδtβ − 2v2 |λ| cβsβδ|κ|sϕy
− 2v2 |κ| cβsβδ|λ|sϕy − 2v2 |κ| |λ| cβsβcϕyδϕy − 4v |κ| |λ| cβsβδvsϕy

(B.0.13)(δMhh)aa = v2 |λ| δ|λ|+ v |λ|2 δv − δM2
W + δM2

H±
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(B.0.14)

(δMhh)aas =
vc2βc

2
βδtβ

(
v2 |λ|2 − 2M2

W + 2M2
H±

)
2vs

−
vδvs

(
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2
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W
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β
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s

−
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v2
s
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2
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(
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(
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βs
2
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3
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(
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(
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1 + e2iϕω
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(
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W

)
s2
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2v2
s

)

+

(
3

2
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(
cϕy −
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(
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sϕy
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√
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1
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[71] J. Küblbeck, M. Böhm, and A. Denner. “Feyn arts — computer-algebraic generation of
Feynman graphs and amplitudes”. In: Computer Physics Communications 60.2 (Sept.
1990), pp. 165–180. doi: 10.1016/0010-4655(90)90001-h. url: https://doi.org/10.
1016/0010-4655(90)90001-h.

98

https://doi.org/10.1103/physrevd.85.075024
https://doi.org/10.1103/physrevd.85.075024
https://doi.org/10.1103/physrevd.85.075024
https://doi.org/10.1103/physrevd.66.095014
https://doi.org/10.1103%2Fphysrevd.66.095014
https://doi.org/10.1103%2Fphysrevd.66.095014
https://doi.org/10.1016/0550-3213(95)00523-2
https://doi.org/10.1016%2F0550-3213%2895%2900523-2
https://doi.org/10.1007/bf01624592
https://doi.org/10.1007%2Fbf01624592
https://doi.org/10.1007%2Fbf01624592
arXiv:1903.11358
https://doi.org/10.1007/jhep10(2012)122
https://doi.org/10.1007/jhep10(2012)122
https://doi.org/10.1016/j.cpc.2013.02.019
https://doi.org/10.1016/j.cpc.2013.02.019
https://doi.org/10.1016/j.cpc.2013.02.019
https://doi.org/10.1016/j.cpc.2012.04.013
https://doi.org/10.1016/j.cpc.2012.04.013
https://doi.org/10.1016/j.cpc.2012.04.013
https://doi.org/10.1007/jhep10(2010)040
https://doi.org/10.1007/jhep10(2010)040
https://doi.org/10.1016/j.cpc.2010.11.030
https://doi.org/10.1016/j.cpc.2010.11.030
https://doi.org/10.1016/j.cpc.2010.11.030
arXiv:0806.0538
https://doi.org/10.1016/j.cpc.2014.02.018
https://doi.org/10.1016/j.cpc.2014.02.018
https://doi.org/10.1016/j.cpc.2014.02.018
https://doi.org/10.1016/j.cpc.2010.01.011
https://doi.org/10.1016/j.cpc.2010.01.011
https://doi.org/10.1016/j.cpc.2010.01.011
https://doi.org/10.1016/s0010-4655(01)00290-9
https://doi.org/10.1016/s0010-4655(01)00290-9
https://doi.org/10.1016/s0010-4655(01)00290-9
https://doi.org/10.1016/0010-4655(90)90001-h
https://doi.org/10.1016/0010-4655(90)90001-h
https://doi.org/10.1016/0010-4655(90)90001-h


[72] Thomas Hahn and Christian Schappacher. “The implementation of the Minimal Super-
symmetric Standard Model in FeynArts and FormCalc”. In: Computer Physics Commu-
nications 143.1 (Feb. 2002), pp. 54–68. doi: 10.1016/s0010-4655(01)00436-2. url:
https://doi.org/10.1016/s0010-4655(01)00436-2.

[73] T. Fritzsche et al. “The implementation of the renormalized complex MSSM in FeynArts
and FormCalc”. In: Computer Physics Communications 185.6 (June 2014), pp. 1529–1545.
doi: 10.1016/j.cpc.2014.02.005. url: https://doi.org/10.1016/j.cpc.2014.02.
005.

[74] Vladyslav Shtabovenko, Rolf Mertig, and Frederik Orellana. “New developments in Feyn-
Calc 9.0”. In: Computer Physics Communications 207 (Oct. 2016), pp. 432–444. doi:
10.1016/j.cpc.2016.06.008. url: https://doi.org/10.1016/j.cpc.2016.06.008.
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