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Introduction

The Large Hadron Collider (LHC), which was built by the European Organization for Nuclear
Research (CERN), is the most powerful particle collider. Its total collision energy of 13 TeV is
not only a good condition to search for new particles, but also to study more deeply about the
properties of discovered particles, such as the W± and Z bosons.

In this thesis, based on the Standard Model (SM) and the Parton Distribution Functions (PDF),
we calculate the cross section of pp −→ N leptons scattering processes inside the LHC at 13 TeV,
with N = 2, 4. The Feynman amplitudes are calculated using the helicity amplitude method. The
cross sections and kinematical distributions are calculated by using the Monte Carlo integration
method for the case of N = 2. For the case N = 4, we present results at the amplitude level for
the production of e+νeµ

+µ−. Finally, we use Madgraph and MadAnalysis programs (Ref. [2]) to
cross check our results at leading order.

This thesis is presented in the following chapters:

• Chapter 1: The Standard Model
We give an overview of the Standard Model: the elementary particles and the Lagrangian.
From there, we will calculate some Feynman rules (vertices and propagators), which will be
used in later calculations.

• Chapter 2: Collision of two partons into N leptons
Next, we will discuss the N -body phase space integral and give some master equations for the
cases N = 2, 4. The parton distribution functions are also discussed and their application in
proton-proton scatterings is introduced. This is needed for our later calculations in Chapter
3.

• Chapter 3: Two-lepton production
In this chapter, we will apply the Monte Carlo method to calculate the cross section of
pp −→ e+νe +X and pp −→ µ+µ− +X processes. This method also enables us to calculate
the polar-angle and transverse-momentum distributions of a final-state particle. We then
compare them with the results of the Madgraph and MadAnalysis.

• Chapter 4: Process pp −→ e+νeµ
+µ− +X

In this final chapter, we calculate all helicity amplitudes for the process pp −→ e+νeµ
+µ−+X.

The results will be compared against Madgraph.

Finally, conclusion and outlook will be presented.
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Chapter 1

The Standard Model

1.1 An overview of Standard Model

The Standard Model is the particular physical model which summaries our present knowledge of the
elementary particles’s propeties and their behavior. It is able to describe three of four fundamental
interactions: electromagnetic, weak and strong interactions. Gravity interaction is not considered
in this model. Based on the framework of Quantum Field Theory and group theory, it is invariant
under the local gauge transformations with the symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The
color group SU(3)C stands for the strong interaction, and the SU(2)L⊗U(1)Y is for the electroweak
interaction spontaneously broken by the Higgs mechanism. In the Standard Model, the elementary
particles can be classified like this table below:

Standard Model of Elementary Particles

Fermions Gauge Bosons Higgs Boson

Quarks
u c t g

H
d s b γ

Leptons
νe νµ ντ W±

e µ τ Z

I II III Three generation of fermions

Table 1.1: Classification of elementary particles in the SM, according to Ref. [1].

According to the SM, the gauge bosons W±, Z, accquire masses through Higgs mechanism
while the fermions gain masses with the help of gauge-invariant Yukawa interactions and Higg
field. In the SM, the neutrinos are considered as massless and right-handed neutrinos are not
introduced.

8



1.2. Lagrangian 9

1.2 Lagrangian

The classical Lagrangian of SM, according to Ref. [3], can be expressed explicit by:

LSM =− 1

4
GA
µνG

A,µν − 1

4
W I
µνW

I,µν − 1

4
BµνB

µν

+
(
Dµφ

)†(
Dµφ

)
−
[
− µ2φ†φ+

λ

2
(φ†φ)2

]
+ i
(
lL /DlL + eR /DeR + qL /DqL + uR /DuR + dR /DdR

)
−
(
lLΓeeRφ+ qLΓuuRφ̃+ qLΓddRφ+ h.c

)
.

(1.2.1)

The covariant derivative, according to Yang-Mills theory, have the form of:

Dµ = ∂µ + igsτ
AGA

µ + ig2τ
IW I

µ + ig1Y Bµ, (1.2.2)

where the generators of SU(3) and SU(2) group:

τA =
1

2
λA, λA: Gell-Mann matrices,

τ I =
1

2
σI , σI : Pauli matrices.

The Γe,u,d, which stands for the Yukawa couplings, are the 3× 3 matrices in generation space.
The notation Y stands for the weak hypercharge, which have the relation between the electric
charge Q and the weak isospin I3 of any particles by the Gell-Mann - Nishijima formula:

Q = I3 +
1

2
Y, (1.2.3)

and their values is list in Table 1.2 amd Table 1.3.

Fermion
family

Left-chiral spinor Right-chiral spinor
Electric
charge
Q

Weak
isospin
I3

Weal
hypercharge
Y

Electric
charge
Q

Weak
isospin
I3

Weak
hypercharge
Y

Leptons
νe, νµ, ντ 0 +1

2
−1 No interaction, if extant

e−, µ−, τ− −1 −1
2

−1 e−R, µ−R, τ−R −1 0 −2

Quarks
u, c, t +2

3
+1

2
+1

3
uR, cR, tR +2

3
0 +4

3

d, s, b −1
3

−1
2

+1
3

dR, sR, bR −1
3

0 −2
3

Table 1.2: Electric charges, weak isospin and weak hypercharge of quarks and leptons.

The field strengh tensor are given by:
GA
µν = ∂µG

A
ν − ∂νGA

µ − gsfABCGB
µG

C
ν ,

W I
µν = ∂µW

I
ν − ∂νW I

µ − g2ε
IJKW J

µW
K
ν ,

Bµν = ∂µBν − ∂νBµ.

(1.2.4)

Chapter 1. The Standard Model



1.3. Feynamn rules 10

Mediated
fundamental
interaction

Boson
Electric
charge
Q

Weak
isospin
I3

Weak
hypercharge
Y

Weak
W ±1 ±1 0
Z 0 0 0

Electric γ 0 0 0

Higgs H0 0 −1
2 +1

Table 1.3: Electric charges, weak isospin and weak hypercharges of some bosons.

The physical gauge fields can appears in the Lagrangian by the transformation from weak
eigenstates to mass eigenstates as follow:

W±
µ =

1√
2

(
W 1
µ ∓W 2

µ

)
, (1.2.5)

(
Zµ
Aµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
W 3
µ

Bµ

)
=

(
cW sW
−sW cW

)(
W 3
µ

Bµ

)
, (1.2.6)

where θW is the Weinberg angle, which has:

tan θW = tW =
g1

g2

. (1.2.7)

1.3 Feynamn rules

From the lagrangian, we can have the Feynman rule to calculate the Feynman amplitude of any
process. These feynman rule has been proved and compared with the results in Ref ¿ From the
lagrangian, we can have Feynman rules to calculate the Feynman amplitudes of any process. These
feynman rules have been proved and compared with the results in Ref. [4].

Chapter 1. The Standard Model



1.3. Feynamn rules 11

1.3.1 Vertex factors.

Figure 1.1: The vertex factor of VFF-coupling.

with the actual value of V , F1, F2 and C+, C−:

γfifj :

{
C+ = −Qfδij

C− = −Qfδij
, Zfifj :

{
C+ = g+

f δij

C− = g−f δij
; (1.3.8)

W+uidj :

{
C+ = 0

C− = 1√
2sW

δij
, W−djui :

{
C+ = 0

C− = 1√
2sW

δij
; (1.3.9)

W+νilj :

{
C+ = 0

C− = 1√
2sW

δij
, W−ljνi :

{
C+ = 0

C− = 1√
2sW

δij
; (1.3.10)

where:

g+
f = −sW

cW
Qf , g−f =

If3 − s2
WQf

sW cW
. (1.3.11)

Then the explicit form of these VFF-vertices are:

λµ
γff

= −ieQfγ
µ, (1.3.12)

λµ
Zff

= ieγµ
I3(1− γ5)− 2s2

WQf

2sW cW
, (1.3.13)

λµ
WF i1F

j
2

= ieγµ
1√
2sW

PL. (1.3.14)

Chapter 1. The Standard Model



1.3. Feynamn rules 12

Figure 1.2: The 3-gauge bosons coupling.

The actual form of 3-gauge bosons vertex factor, with all the momenta are considered as
incoming, is:

λV1V2V3µνρ = −ieC
[
gµν(k2 − k1)µ + gνρ(k3 − k2)µ + gρµ(k1 − k3)ν

]
, (1.3.15)

with the actual values of V1, V2, V3 and C are:

AW+W− : C = 1, (1.3.16)

ZW+W− : C = −cW/sW . (1.3.17)

1.3.2 Propagators

From the lagrangian, using equation of motion, we have these propagator for each gauge boson:

Figure 1.3: Vector boson propagator.

For each vector boson, their propagator are:

• Photon propagator:

DA
µν(q) = − i

q2

[
gµν − (1− ξA)

qµqν
q2

]
(1.3.18)

• W±-boson propagators:

DW±

µν (q) = − i

q2 −m2
W

[
gµν − (1− ξW )

qµqν
q2 − ξWm2

W

]
(1.3.19)

Chapter 1. The Standard Model



1.3. Feynamn rules 13

• Z-boson propagator:

DZ
µν(q) = − i

q2 −m2
Z

[
gµν − (1− ξZ)

qµqν
q2 − ξZm2

Z

]
(1.3.20)

which ξA, ξW and ξZ are the gauge-fixing parameters.

Figure 1.4: The fermion propagator.

The fermion propagtor, for the momenta has the same direction with the fermion line, is:

DF =
i(/p+mf )

p2 −m2
f

. (1.3.21)

Chapter 1. The Standard Model



Chapter 2

Collision of two partons into N leptons

Consider a collision between two partons (quarks) into leptons (the 2 −→ N process):

q1(p1, h1) + q2(p2, h2) −→
N+2,N≥1∑

i=3

leptoni(pi, hi), (2.0.1)

with pi and hi are the momentum and helicity parameter.

In this collision, the charge conservation and the energy conservation must be satisfied.

2.1 N-particle phase space

According to Ref. [5], the N-body phase space can be described as:

dΩN = (2π)4δ(4)(Pi − Pf )
N∏
i=1

d3pi
(2π)32Ei

, (2.1.2)

with:
Pi : Sum of initial momenta,

Pf : Sum of final momenta.

Based on this formula, we can build the phase spaces for 2 −→ 2 processes and 2 −→ 4 process.
All of their result had checked with Ref. [6].

2.1.1 2-body final state

Consider an 2 −→ 2 process in the Partonic Center of Mass system (PCMs):

p1 + p2 −→ p3 + p4, (2.1.3)

with p1 = −p2 and p3 = −p4, we have the invariance square mass:

s = (p1 + p2)2 = (p3 + p4)2. (2.1.4)

14



2.1. N-particle phase space 15

Figure 2.1: The 2 −→ 2 process.

The phase space of 2-body final state is:

dΩ2 =
d3p3

(2π)32E3

d3p4

(2π)32E4

(2π)4δ4(p1 + p2 − p3 − p4). (2.1.5)

After some transformation, which can be described specificly in Ref. [7], we have:

dΩ2 =
1

16π2
d cos θdφ

λ1/2(s,m2
3,m

2
4)

2s
θ(
√
s−m3 −m4), (2.1.6)

with θ and φ are the polar and azimuthal angles of the p3-particle. θ(
√
s−m3−m4) is the Heaviside

function and λ(s,m3,m4) is the Källén function, which has the definiton:

λ(a, b, c) = (a− b− c)2 − 4bc. (2.1.7)

From this result, we can calculate the 4-particles final state phase space.

2.1.2 4-body final state

Now, consider a 2 −→ 4 process in the PCMs:

p1 + p2 −→ p3 + p4 + p5 + p6, (2.1.8)

we have the phase space:

dΩ4 =
dp3

(2π)32E3

d3p4

(2π)32E4

d3p5

(2π)32E5

d3p6

(2π)32E6

(2π)4δ4(p1 + p2 −
6∑
i=3

pi). (2.1.9)

Chapter 2. Collision of two partons into N leptons



2.1. N-particle phase space 16

Figure 2.2: The 2 −→ 4 process.

So, we can described this process by:

• In the PCMs:
p1 + p2 −→ p34 + p56 (2.1.10)

• In the s34-particle frame:
p34 −→ p3 + p4 (2.1.11)

• In the s56-particle frame:
p56 = p5 + p6 (2.1.12)

Then the phase space can be rewriten as product of 2 −→ 2 phase spaces:

dΩ4 =
ds34

2π

ds56

2π
dΩ2(34, 56)dΩ2(3, 4)dΩ2(5, 6). (2.1.13)

After some transformation, we have:

dΩ4 =
ds34

2π

ds56

2π

[d cos θdφ

4π2

λ1/2(s, s34, s56)

8s

]
×
[d cos θ1dφ1

4π2

λ1/2(s34,m
2
3,m

2
4)

8s34

]
×
[d cos θ2dφ2

4π2

λ1/2(s56,m
2
5,m

2
6

8s56

]
,

(2.1.14)

with the conditions:

(m3 +m4)2 ≤ s34 ≤ (
√
s−m5 −m6)2,

(m5 +m6)2 ≤ s56 ≤ (
√
s−
√
s34)2.

(2.1.15)

We have:

• θ and φ are the polar and azimuthal angles of s34-particle in the PCMs.

• θ1 and φ1 are the polar and azimuthal of angles of p3-particle in the s34-particle rest frame.

• θ2 and φ2 are the polar and azimuthal of angles of p5-particle in the s56-particle rest frame.
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2.2 Total cross section of parton-parton collision

The differential cross section is:

dσparton2−→N =
1

2E12E2|v1 − v2|
× dΩN × |M(p1, p2 −→

N∑
i=1

pi)|2. (2.2.16)

Consider the 2 −→ 2 process, the total cross-section is:

σparton2−→2 =
1

2E12E2|v1 − v2|
× 1

16π2

1∫
−1

d cos θ

2π∫
0

dφ
λ1/2(s,m2

3,m
2
4)

2s
|M(2→ 2)|2. (2.2.17)

The total cross section of 2 −→ 4 process is:

σparton2−→4 =
1

2E12E2|v1 − v2|
×

(
√
s−m5−m6)2∫

(m3+m4)2

ds34

2π

(
√
s−√s34)2∫

m5+m6

ds56

2π

×
[ 1∫
−1

d cos θ

2π∫
0

dφ
λ1/2(s, s34, s56)

32π2s

]
×
[ 1∫
−1

d cos θ1

2π∫
0

dφ1
λ1/2(s34,m

2
3,m

2
4)

32π2s34

]

×
[ 1∫
−1

d cos θ2

2π∫
0

dφ2
λ1/2(s56,m

2
5,m

2
6

8s56

]
|M(2→ 4)|2.

(2.2.18)

2.3 Proton-proton collision

2.3.1 Parton model and Parton Distribution Funcitons

The parton model, which was proposed by Richard Feynman in 1969, is a way to analyze high-
energy hadron collision. According to this model, a hadron is composed of a number of point-like
constituents, termed ”partons”. Later, with the experimental observation of Bjorken scalling
(Ref. [8]), the validation of the quark model, and the confirmation of asymptotic freedom in quan-
tum chromodynamics, partons were matched to quarks and gluons.

Therefore, we can consider a proton as:

proton =
{
u, d, c, s, b, g, ū, d̄, c̄, s̄, b̄

}
. (2.3.19)

Because of the large mass, compared to other quarks, the top quark is not considered in this
model, due to small probability to finding it in the proton.

A parton distribution function (pdf) within so called collinear factorization is defined as the
probability density for finding a particle with a certain longitudinal momentum fraction x at reso-
lution scale Q2. Parton distribution functions are obtained by fitting observables to experimental
data; they cannot be calculated using perturbative QCD.

Experimentally determined parton distribution functions are available from various groups
worldwide. In this thesis, we using the NNPDF 23 lo as 0119 qed from the NNPDF Collabo-
ration as provided via the LHAPDF library version 6.2.1 (Ref. [9]).
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2.3.2 Total cross section of proton-proton collision

Consider proton proton scattering with total collision energy at 13 TeV. We have:

√
s = 13 (TeV) =⇒ E =

√
s

2
= 6500 (TeV). (2.3.20)

Figure 2.3: An example for proton-proton scattering.

Now, consider a parton in proton 1, with momentum p1, collides with another parton in proton
2, with momentum p2. In the Laboratory frame, these momentum are:

p1 = (x1E, 0, 0, x1E), (2.3.21)

p2 = (x2E, 0, 0,−x2E), (2.3.22)

with x1 and x2 are the momentum fraction of each particle inside the proton that contain it.

Then, in the partonic center of mass frame:

sp = (p1 + p2)2 = x1x2s. (2.3.23)

Therefore, the probaility density pdf(id, x,Q2) for a parton that contribute in this collision
have the momentum fraction x, is depend on that fraction, the exact identity of parton and the
energy scale Q, which is called factorization scale. We used this particle number scheme (from
Ref. [10]) to identified these particles:

Particle t̄ b̄ c̄ s̄ ū d̄ g d u s c b t

Id number (id) -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Table 2.1: The particle number scheme using in LHAPDF set.

For every momentum in the laboratory frame, we have the total cross section for the 2 −→ 2
and 2 −→ 4 processes as:
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σpp2→2 =
∑
id1,id2

1∫
0

dx1 × pdf(x1, id1, Q
2)

1∫
0

dx2 × pdf(x2, id2, Q
2)

× 1

2E12E2|v1 − v2|
× 1

16π2

1∫
−1

d cos θ

2π∫
0

dφ
λ1/2(s,m2

3,m
2
4)

2s
|M(2→ 2)|2,

(2.3.24)

σpp2→4 =
∑
id1,id2

1∫
0

dx1 × pdf(x1, id1, Q
2)

1∫
0

dx2 × pdf(x2, id2, Q
2)

× 1

2E12E2|v1 − v2|
×

(
√
s−m5−m6)2∫

(m3+m4)2

ds34

2π

(
√
s−√s34)2∫

m5+m6

ds56

2π

×
[ 1∫
−1

d cos θ

2π∫
0

dφ
λ1/2(s, s34, s56)

32π2s

]
×
[ 1∫
−1

d cos θ1

2π∫
0

dφ1
λ1/2(s34,m

2
3,m

2
4)

32π2s34

]

×
[ 1∫
−1

d cos θ2

2π∫
0

dφ2
λ1/2(s56,m

2
5,m

2
6

8s56

]
|M(2→ 4)|2.

(2.3.25)

These equations are essential for the cross section calculation, using the Monte Carlo method.
From their results we can find the kinematical distributions.

For the cross section distribution by polar angle, we have:

dσpp2→2

dθ
=
∑
id1,id2

1∫
0

dx1 × pdf(x1, id1, Q
2)

1∫
0

dx2 × pdf(x2, id2, Q
2)

× 1

2E12E2|v1 − v2|
× 1

16π2

2π∫
0

dφ
λ1/2(s,m2

3,m
2
4)

2s
|M(2→ 2)|2 sin θ,

(2.3.26)

Another necessary distribution is the transverse momentum distribution. We can accquire
this quantities by switching from angular distribution to transverse momentum distribution, the
transformation formular is given by

pT =
∑
i

pT (θi)Ji =
∑
i

pT (θi)
dθ

dpT (θ)

∣∣∣
θ=θi

. (2.3.27)

Beside, for the transverse momentum, we still have:

pT = |~p| sin θ =⇒

{
θ1 = arcsin(pT/|~p|),
θ2 = π − arcsin(pT/|~p|).

(2.3.28)
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Here we have introduced the factor Ji which called Jacobian, the explicit form is:∣∣∣ dθ
dpT

∣∣∣ =
1

|~p|| cos θ|
=

1

|~p|
√

1− sin2 θ
,

=⇒
∣∣∣ dθ
dpT
|θ=θ1

∣∣∣ =
∣∣∣ dθ
dpT
|θ=θ2

∣∣∣ =
1√

|~p|2 − p2
T

.

(2.3.29)

Then we have the distribution:

dσpp2→2

dpT
=
∑
i

dσpp2→2

dθ
|θ=θi

∣∣∣ dθ
dpT
|θ=θi

∣∣∣
=

2∑
i=1

∑
id1,id2

1∫
0

dx1 × pdf(x1, id1, Q
2)

1∫
0

dx2 × pdf(x2, id2, Q
2)

× 1

2E12E2|v1 − v2|
× 1

16π2

2π∫
0

dφ
λ1/2(s,m2

3,m
2
4)

2s
|M(2→ 2)|2 sin θi√

|~p|2 − p2
T

=
∑
id1,id2

1∫
0

dx1 × pdf(x1, id1, Q
2)

1∫
0

dx2 × pdf(x2, id2, Q
2)

× 1

2E1E2|v1 − v2|
× 1

16π2

2π∫
0

dφ
λ1/2(s,m2

3,m
2
4)

2s
|M(2→ 2)|2 sin θ√

|~p|2 − p2
T

(2.3.30)

These integrals are calculated by using the Monte Carlo method. Because the appearance of
the W and Z boson propagators, the squared amplitudes will have the Breit-Wigner functions.
To make the errors descease, we can use the important sampling method, which is described in
section C.2.
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Two-lepton production

We used the input parameters in Ref. [11] for later results comparison and update:

• Fermi constant:
GF = 1.16637× 10−5 GeV−2 (3.0.1)

• W±-boson mass:
MW = 80.385 GeV (3.0.2)

• W±-boson decay width:
ΓW = 2.085 GeV (3.0.3)

• Z-boson mass:
MZ = 91.1876 GeV (3.0.4)

• Z-boson decay width:
ΓZ = 2.4952 GeV (3.0.5)

All the fermions (except top-quark) are considered massless in the following calculation.

The top-quark’s PDF is neglected.

3.1 Process pp −→ e+νe +X

First, we consider the scattering:
pp −→ e+νe +X. (3.1.6)

In this process, X stands for the combination of jets and other composite particles: baryon
and meson, that have the total electric charge as +1 to satisfy the conservation law.

In this collision, we only consider the two partonic-processes:

u+ d̄ −→ e+ + νe, (3.1.7)

c+ s̄ −→ e+ + νe. (3.1.8)

Due to the small value of the Cabibbo–Kobayashi–Maskawa matrix elements between two
quarks with diffent generation, we neglect the us̄, ub̄, cd̄ and cb̄ collisions.
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3.1.1 Helicity amplitudes

Figure 3.1: The u+ d̄ −→ e+ + νe process.

The cs̄ −→ e+νe process have the same diagram like 3.1.

Based on this diagram, we have the feynman amplitudes:

Mud̄ =
[
v̄(p2, h2)λµ

W+ud̄
u(p1, h1)

]
DW+

µν (k)
[
ū(p4, h4)λνW+e+νe

v(p3, h3)
]

=
[
v̄(p2, h2)ieγµ

1√
2sW

PLu(p1, h1)
][
ū(p4, h4)ieγν

1√
2sW

PLv(p3, h3)
]

× −i
q2 −m2

W + iMWΓW

[
gµν − (1− ξW )

qµqν
q2 − ξWm2

W

]
,

(3.1.9)

Md̄u =Mud

{
p1 ←→ p2

}
, (3.1.10)

Mcs̄ =Mud̄; Ms̄c =Md̄u. (3.1.11)

3.1.2 Cross section

We have the total cross section:

σppe+νe =

1∫
0

dx1

1∫
0

dx2
1

2E12E2|v1 − v2|
× 1

16π2

1∫
−1

d cos θ

2π∫
0

dφ× λ1/2(sp, 0, 0)

2sp

×
3∑

id=2

[
pdf(x1, id,m

2
W )pdf(x2, 1− id,M2

W )|Mud̄|2 + pdf(x1, 1− id,m2
W )pdf(x2, id,m

2
W )|Md̄u|2

]
.

(3.1.12)

In the experement at LHC, only the e+ can be measured by the detectors (The neutrinos can’t
be detected). Also, for the small value of θ, the events can’t be detected, due to the fact that
you can’t place detectors at small polar angles. The e+ can’t be detected also if their transverse

Chapter 3. Two-lepton production



3.1. Process pp −→ e+νe +X 23

momentum is too low.

To avoid that, in our calculation we apply cuts on the transverse momentum of e+ (pT,e) and
pseudo-rapidity (ηe). In this thesis, we consider ATLAS cuts (Ref. [12]) for the Monte Carlo
integration: {

pT,e ≥ 20 GeV,

|ηe| < 2.5,
(3.1.13)

where their definition are:

pT,e =
√
p2
x + p2

y, (3.1.14)

ηe = − ln
[

tan
(θ

2

)]
. (3.1.15)

Using the Monte Carlo method with 4× 106 events, we have the result:

σppe+νe = 4467± 34 pb. (3.1.16)

We can compare our result with the Madgraph program:

C++ code Madgraph

σppe+νe (pb) 4467 4418

δσ (pb) 34 4

Table 3.1: Cross section comparason between our C++ and Madgraph of pp −→ e+νe +X

The total error between two calculation is:

δσ =
√
δσ2

C++ + δσ2
Madgraph ≈ 34.23 pb. (3.1.17)

Then we have:
|σC++ − σMadgraph|

δσ
≈ 1.4. (3.1.18)

Our result agreed with Madgraph with 1.4 σ.

3.1.3 Kinematical distributions

The Monte Carlo method, not only can used in integration, but also to calculated distributions.

From the data generated in the phase space, we can include them into 50 bins. Each bin contain
the information, which is the range of the event minimum and maximum values.
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Figure 3.2: Cross section distribution by cos θ of positron.

From figure.3.2, we can see that the e+ is more likely to be detected near θ = 0 and θ = π, and
the probability is smallest at θ = π/2. The histogram is symmetric, which is true due to the fact
that two proton beams have equal energy.
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Figure 3.3: Cross section distribution by polar angle of positron with C++ code and Madgraph
calculation

The Diff in Figure 3.3 is calculated as:

Diff(x) =
(dσppe+νe

dx

∣∣∣
Madgraph

−
dσppe+νe
dx

∣∣∣
C++

)
/
dσppe+νe
dx

∣∣∣
C++

(3.1.19)
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Figure 3.4: Cross section distribution by transverse momenta of positron.

3.2 Process pp −→ µ+µ− +X

Consider the scattering:
pp −→ µ+µ− +X. (3.2.20)

In this process, X must have the electric charge QX = +2.

In this collision, neglect the top-quark, we have:

qi + q̄ −→ µ+ + µ−, (3.2.21)
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which
qi =

{
u, d, c, s, b

}
. (3.2.22)

3.2.1 Helicity amplitudes

Figure 3.5: Feynman diagrams for q̄iqi −→ µ+µ−.

Based on these diagrams, we have the Feynman amplitudes:

MZ
qiq̄i

=
[
v̄(p2, h2)λµZq̄iqiu(p1, h1

]
DZ
µν(q)

[
ū(p4, h4)λνZµ+µ−v(p3, h3)

]
=
[
v̄(p2, h2)ieγµ

Iqi3 (1− γ5)− 2s2
WQqi

2sW cW
u(p1, h1)

]
×
[
ū(p4, h4)

Iµ3 (1− γ5)− 2s2
WQµ

2sW cW
v(p3, h3)

]
× −i
q2 −m2

Z + iMZΓZ

[
gµν − (1− ξZ)

qµqν
q2 − ξZm2

Z

]
,

(3.2.23)
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MA
qiq̄i

=
[
v̄(p2, h2)λµAq̄iqiu(p1, h1)

]
DA
µν(q)

[
ū(p4, h4)λνAµ+µ−v(p3, h3)

]
=
[
v̄(p2, h2)(−ieQqiγ

µ)u(p1, h1)
][
ū(p4, h4)(−ieQµγ

ν)v(p3, h3)
]

× −i
q2

[
gµν − (1− ξA

qµqν
q2

]
.

(3.2.24)

The total Feynman amplitude is:

Mqiq̄i =MA
qiq̄i

+MZ
qiq̄i
. (3.2.25)

3.2.2 Cross section

We have the total cross section:

σppµ+µ− =

1∫
0

dx1

1∫
0

dx2
1

2E12E2|v1 − v2|
× 1

16π2

1∫
−1

d cos θ

2π∫
0

dφ× λ1/2(sp, 0, 0)

2sp

×
5∑

id=1

[
pdf(x1, id,m

2
Z)pdf(x2,−id,M2

Z)|Mqidq̄id|2 + pdf(x1,−id,m2
Z)pdf(x2, id,m

2
Z)|Mq̄idqid|2

]
.

(3.2.26)

We used these cuts on µ+ and µ− particles for the calculation (Ref. [11]):

pT,µ− ≥ 15 GeV,

|ηµ−| < 2.5,

pT,µ+ ≥ 15 GeV,

|ηµ+| < 2.5,

66.0 <
√
sp < 116.0 GeV.

(3.2.27)

The additional cut 66.0 <
√
sp < 116.0 GeV is included to avoid the divergence when the

invariant mass of the propagator is near zero, which is the collinear singularity when the photon
propagator appears.

Using the Monte Carlo method with 4× 106 events, we have the result:

σppµ+µ− = 565± 2 pb. (3.2.28)

We can compare our result with the Madgraph program:

C++ code Madgraph

σppµ+µ− (pb) 565 564

δσ (pb) 2 1

Table 3.2: Cross section comparison between C++ and Madgraph of pp −→ µ+µ− +X.
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The total error between two calculation is:

δσ =
√
δσ2

C + δσ2
Madgraph ≈ 2.24 pb. (3.2.29)

Then we have:
|σC++ − σMadgraph|

δσ
≈ 0.45. (3.2.30)

Our result agreed with Madgraph within 0.45 σ.

3.2.3 Kinematical distributions

Figure 3.6: Cross section distribution by cos θ of µ−.
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Figure 3.7: Cross section distribution by θ of µ− of C++ code and Madgraph calculations. The
subtiles figure is the different between two results.
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Figure 3.8: Cross section distribution by transverse momentum of µ− of C++ code and Madgraph
calculations. The subtiles figure is the different between two results.
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Figure 3.9: Cross section distribution by cos θ of µ−.
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Figure 3.10: Cross section distribution by θ of µ− of C++ code and Madgraph calculations. The
subtiles figure is the different between two results.
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Figure 3.11: Cross section distribution by tranvese momentum of µ+ of C++ code and Madgraph
calculations. The subtiles figure is the different between two results.

We can see that the two distributions by transverse momentum of µ+ and µ− are similar, because
the transverse momentum of initial quarks are neglected.
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Process pp −→ e+νeµ
+µ− +X

In this section, we consider the process

pp −→ e+νeµ
+µ− +X. (4.0.1)

We will use the same helicity amplitude method to calculate the amplitudes at leading order.
The aim is to calculate the cross section and kinematical distributions as for the 2 −→ 2 processes
presented in the previous section. However, because of a large number of Feynman diagrams and
a complicated phase-space structure (see Section 2.1.2), we have not been able to obtain results
at the cross section level in a short time frame. We would like to note that all helicity amplitudes
have been calculated and cross checked against Madgraph at a random phase space point. This
is the main result of this section. The phase space generation has been implemented in a C++
code and has been presented in Section 2.1.2. However, the numerical integration does not work
properly and the results cannot be compared with Madgraph yet. We are working on this and
hopefully it will be fixed in the near future.

4.1 Helicity amplitudes

In this collision, we only consider these process:

u+ d̄ −→ e+ + νe + µ+ + µ−, (4.1.2)

c+ s̄ −→ e+ + νe + µ+ + µ−. (4.1.3)

We have 10 diagrams in total to calculate these processes.

35



4.1. Helicity amplitudes 36

Figure 4.1: (Diagram 1) Only the W+-boson appears.

In diagram 1, we have:

q = p1 + p2, (4.1.4)

k = p3 + p4, (4.1.5)

f1 = p3 + p4 + p6, (4.1.6)

=⇒ 6f 1 = /p3
+ /p4

+ /p6
, (4.1.7)

M1 =
[
v̄(p2, h2)λµ

W+ud̄
u(p1, h1)

]
×DW+

µν (q)

×
[
ū(p6, h6)λαW+µνµ

DF (f1)λνW+µ+νµ
v(p5, h5)

]
×DW+

αβ ×
[
ū(p4, h4)λβW+e+νe

v(p3, h3)

=
[
v̄(p2, h2)ieγµ

1√
2sW

PLu(p1, h1)
]
× −i
q2 −m2

W + iMWΓW

[
gµν − (1− ξW )

qµqν
q2 − ξWM2

W

]
×
[
ū(p6, h6)ieγα

1√
2sW

PL
6f 1

f 2
1

ibeγν
1√
2sW

PLv(p5, h5)
]

× −i
k2 −m2

W + iMWΓW

[
gαβ − (1− ξZ)

kαkbeta
k2 − ξZM2

Z

×
[
ū(p4, h4)ieγβ

1√
2sW

PLv(p3, h3)
]
.

(4.1.8)
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Figure 4.2: (Diagram 2) Photon radiated from W+.

In diagram 2, we have:

q = p1 + p2, (4.1.9)

l = p3 + p4, (4.1.10)

k = p5 + p6, (4.1.11)

M2 =
[
v̄(p2, h2)λµ

W+ud̄
u(p1, h1)

]
×DW+

µα1
(q)×

[
ū(p3, h3)λνW+e+νe

v(p4, h4)
]
×DW+

α2ν
(l)

×DA
α3β

(k)×
[
ū(p6, h6)λβAµ+µ−v(p5, h5)

]
× λW+AW+

α1α2α3

=
[
v̄(p2, h2)ieγµ

1√
2sW

PLu(p1, h1)
]
× −i
q2 −m2

W + iMWΓW

[
gµα1 − (1− ξW )

qµqα1

q2 − ξWM2
W

]
× −i
k2

[
gα3β − (1− ξA)

kα3kβ
k2

]
×
[
ū(p6, h6)(−i)e(−1)γβv(p5, h5)

]
× (−i)e

[
gα1α2(−l − q)α3 + gα2α3(−k + l)α1 + gα3α1(q + k)α2

]
.

(4.1.12)
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Figure 4.3: (Diagram 3) Z-boson radiated from W+.

The momenta are equal to Diagram 2.

M3 =
[
v̄(p2, h2)λµ

W+ud̄
u(p1, h1)

]
×DW+

µα1
(q)×

[
ū(p3, h3)λνW+e+νe

v(p4, h4)
]
×DW+

α2ν
(l)

×DZ
α3β

(k)×
[
ū(p6, h6)λβZµ+µ−v(p5, h5)

]
× λW+ZW+

α1α2α3

=
[
v̄(p2, h2)ieγµ

1√
2sW

PLu(p1, h1)
]
× −i
q2 −m2

W + iMWΓW

[
gµα1 − (1− ξW )

qµqα1

q2 − ξWM2
W

]
× −i
k2

[
gα3β − (1− ξA)

kα3kβ
k2

]
×
[
ū(p6, h6)(−i)e(−1)γβv(p5, h5)

]
× (−i)e

[
gα1α2(−l − q)α3 + gα2α3(−k + l)α1 + gα3α1(q + k)α2

]
.

(4.1.13)
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Figure 4.4: (Diagram 4) Photon radiated from e+.

In diagram 4, we have:

q = p1 + p2, (4.1.14)

k = p5 + p6, (4.1.15)

f4 = p3 + p5 + p6, (4.1.16)

=⇒ 6f 4 = /p3
+ /p5

+ /p6
, (4.1.17)

M4 =
[
v̄(p2, h2)λµ

W+ud̄
u(p1, h1)

]
×DW+

µν (q)

×
[
ū(p4, h4)λνW+e+νe

DF (−f4)λαAe+e−v(p3, h3)
]

×DA
αβ(k)×

[
ū(p6, h6)λβAµ+µ−v(p5, h5)

=
[
v̄(p2, h2)ieγµ

1√
2sW

PLu(p1, h1)
]
× −i
q2 −M2

W + iMWΓW

[
gµν − (1− ξW )

qµqν
q2 − ξWM2

W

]
×
[
ū(p4, h4)ieγν

1√
2sW

PL
−6f 4

f 2
f

[−ie(−1)γα]v(p5, h5)
]

× −i
k2

[
gαβ − (1− ξA)

kαkβ
k2

]
×
[
ū(p6, h6)[ieγβ

Iµ3 (1− γ5)− 2s2
WQµ

2sW cW
v(p5, h5)].

(4.1.18)
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Figure 4.5: (Diagram 5) Z-boson radiated from electron neutrino.

In diagram 5. we have:

q = p1 + p2, (4.1.19)

k = p5 + p6, (4.1.20)

f5 = p4 + p5 + p6, (4.1.21)

=⇒ 6f 5 = /p4
+ /p5

+ /p6
, (4.1.22)

M5 =
[
v̄(p2, h2)λµ

W+ud̄
u(p1, h1)

]
×DW+

µν (q)

×
[
ū(p4, h4)λαZνν̄DF (f5)λνW+e+νe

v(p3, h3)
]

×DZ
αβ(k)×

[
ū(p6, h6)λβZµ+µ−v(p5, h5)

]
=
[
v̄(p2, h2)ieγµ

1√
2sW

PLu(p1, h1)
]
× −i
q2 −M2

W + iMWΓW

[
gµν − (1− ξW )

qµqν
q2 − ξWM2

W

]
×
[
ū(p4, h4)ieγα

Iνe3 (1− γ5)− 2s2
WQνe

2sW cW
DF (f5)ieγν

1√
2sW

PLv(p3, h3)
]

× −i
k2 −M2

Z + iMZΓZ

[
gαβ − (1− ξZ)

kαkβ
k2 − ξZM2

Z

]
×
[
ū(p6, h6)ieγβ

Iµ3 (1− γ5)− 2s2
WQµ

2sW cW
v(p5, h5)

]
.

(4.1.23)
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Figure 4.6: (Diagram 6) Z-boson radiated from e+.

In diagram 6, we have:

q = p1 + p2, (4.1.24)

k = p5 + p6, (4.1.25)

f6 = p3 + p5 + p6, (4.1.26)

=⇒ 6f 6 = /p3
+ /p5

+ /p6
, (4.1.27)

M6 =
[
v̄(p2, h2)λµ

W+ud̄
u(p1, h1)

]
×DW+

µν (q)

×
[
ū(p4, h4)λνW+e+νe

DF (−f6)λαZeev(p3, h3)
]

×DZ
αβ(k)×

[
ū(p6, h6)λβZµ+µ−v(p5, h5)

]
=
[
v̄(p2, h2)ieγµ

1√
2sW

PLu(p1, h1)
]
× −i
q2 −M2

W + iMWΓW

[
gµν − (1− ξW )

qµqν
q2 − ξWM2

W

]
×
[
ū(p4, h4)ieγν

1√
2sW

PL
−6f 6

f 2
6

ieγα
Ie3(1− γ5)− 2s2

WQe

2sW cW
v(p3, h3)

]
× −i
k2 −M2

Z + iMZΓZ

[
gαβ − (1− ξZ)

kαkβ
k2 − ξZM2

Z

]
×
[
ū(p6, h6)ieγβ

Iµ3 (1− γ5)− 2s2
WQµ

2sW cW
v(p5, h5)

]
.

(4.1.28)
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Figure 4.7: (Diagram 7) Photon radiated from d̄.

In diagram 7, we have:

q = p3 + p4, (4.1.29)

k = p5 + p6, (4.1.30)

f7 = p2 − p5 − p6, (4.1.31)

=⇒ 6f 7 = /p2
− /p5

− /p6
, (4.1.32)

M7 =
[
v̄(p2, h2)λαAdd̄DF (−f7)λµ

W+ud̄
u(p1, h1)

]
×DW+

µν (q)×
[
ū(p4, h4)λνW+e+νe

v(p3, h3)
]

×Dγ
αβ(k)×

[
ū(p6, h6)λβAµ+µ−v(p5, h5

]
=
[
v̄(p2, h2)(−i)eQdγ

α−6f 7

f 2
7

ieγµ
1√
2sW

PLu(p1, h1)
]

× −i
q2 −M2

W + iMWΓW

[
gµν − (1− ξW )

qµqν
q2 − ξWM2

W

]
×
[
ū(p4, h4)ieγν

1√
2sW

PLv(p3, h3)
]

× −i
k2

[
gαβ − (1− ξA)

kαkβ
k2

]
×
[
ū(p6, h6)(−i)eQµv(p5, h5)

]
.

(4.1.33)
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Figure 4.8: (Diagram 8) Photon radiated from u.

In diagram 8, we have:

q = p3 + p4, (4.1.34)

k = p5 + p6, (4.1.35)

f8 = p1 − p5 − p6, (4.1.36)

=⇒ 6f 8 = /p1
− /p5

− /p6
, (4.1.37)

M8 =
[
v̄(p2, h2)λµ

W+ud̄
DF (f8)λαAuūu(p1, h1)

×DW+

µν (q)×
[
ū(p4, h4)λνW+e+νe

v(p3, h3)
]

×Dγ
αβ(k)×

[
ū(p6, h6)λβAµ+µ−v(p5, h5

]
=
[
v̄(p2, h2)ieγµ

1√
2sW

PL
6f 8

f 2
8

(−i)eQuγ
αu(p1, h1)

]
× −i
q2 −M2

W + iMWΓW

[
gµν − (1− ξW )

qµqν
q2 − ξWM2

W

]
×
[
ū(p4, h4)ieγν

1√
2sW

PLv(p3, h3)
]

× −i
k2

[
gαβ − (1− ξA)

kαkβ
k2

]
×
[
ū(p6, h6)(−i)eQµv(p5, h5)

]
.

(4.1.38)
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Figure 4.9: (Diagram 9) Z-boson radiated from d̄.

In diagram 9, we have:

q = p3 + p4, (4.1.39)

k = p5 + p6, (4.1.40)

f9 = p2 − p5 − p6, (4.1.41)

=⇒ 6f 9 = /p2
− /p5

− /p6
, (4.1.42)

M9 =
[
v̄(p2, h2)λαZdd̄DF (−f9)λµ

W+ud̄
u(p1, h1)

]
×DW+

µν (q)×
[
ū(p4, h4)λνW+e+νe

v(p3, h3)
]

×DZ
αβ(k)×

[
ū(p6, h6)λβZµ+µ−v(p5, h5

]
=
[
v̄(p2, h2)ieγα

Id3 (1− γ5)− 2s2
WQd

2sW cW

−6f 9

f 2
9

ieγµ
1√
2sW

PLu(p1, h1)
]

× −i
q2 −M2

W + iMWΓW

[
gµν − (1− ξW )

qµqν
q2 − ξWM2

W

]
×
[
ū(p4, h4)ieγν

1√
2sW

PLv(p3, h3)
]

× −i
k2 −M2

Z + iMZΓZ

[
gαβ − (1− ξZ)

kαkβ
k2 − ξZM2

Z

]
×
[
ū(p6, h6)ieγβ

Iµ3 (1− γ5)− 2s2
WQµ

2sW cW
v(p5, h5)

]
.

(4.1.43)
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Figure 4.10: (Diagram 10) Z-boson radiated from u.

In diagram 10, we have:

q = p3 + p4, (4.1.44)

k = p5 + p6, (4.1.45)

f10 = p1 − p5 − p6, (4.1.46)

=⇒ 6f 10 = /p1
− /p5

− /p6
, (4.1.47)

M10 =
[
v̄(p2, h2)λµ

W+ud̄
DF (f10)λαZuūu(p1, h1)

×DW+

µν (q)×
[
ū(p4, h4)λνW+e+νe

v(p3, h3)
]

×DZ
αβ(k)×

[
ū(p6, h6)λβZµ+µ−v(p5, h5

]
=
[
v̄(p2, h2)ieγµ

1√
2sW

PL
6f 10

f 2
10

ieγα
Iu3 (1− γ5)− 2s2

WQu

2sW cW
u(p1, h1)

]
× −i
q2 −M2

W + iMWΓW

[
gµν − (1− ξW )

qµqν
q2 − ξWM2

W

]
×
[
ū(p4, h4)ieγν

1√
2sW

PLv(p3, h3)
]

× −i
k2 −M2

Z + iMZΓZ

[
gαβ − (1− ξZ)

kαkβ
k2 − ξZM2

Z

]
×
[
ū(p6, h6)ieγβ

Iµ3 (1− γ5)− 2s2
WQµ

2sW cW
v(p5, h5)

]
.

(4.1.48)
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4.2 Results at one phase space point

In experiments, we don’t know the helicity of the incoming particles. We also don’t know the color
of the incoming quarks. Because of these reasons, we have to average over the helicities and colors
over the incoming quarks. We than have

|M̄|2 =
1

2
× 1

2
× 1

3
× 1

3
×

3∑
i,j=1

δijδij ×
1∑

h1,h3,h5=−1

M†M

=
1

12

1∑
h1,h3,h5

M†M,

(4.2.49)

which
(h1, h3, h5) = ±1, (4.2.50)

and the helicity condition for each vertex:
h2 = −h1,

h4 = −h3,

h6 = −h5.

(4.2.51)

Using the Monte Carlo method, we can generate any phase space point. In the following, we
provide the results for the squared amplitudes at the following phase space point given in the GeV
unit

u(p1):


Eu = 5461.2201615056129

pux = 0.0

puy = 0.0

puz = 5461.2201615056129

(4.2.52)

d̄(p2):


E d̄ = 0.29329208900798337

pd̄x = 0.0

pd̄y = 0.0

pd̄z = −0.29329208900798337

(4.2.53)

e+(p3):


Ee+ = 92.789966932159857

pe
+

x = 3.5926921940028631

pe
+

y = 9.5831433076758099

pe
+

z = 92.223824960880648

(4.2.54)

νe(p4):


Eνe = 5120.8512713042473

pνex = −3.2928507598614218

pνey = −10.537695392820094

pνez = 5120.8393703501388

(4.2.55)
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µ+(p5):


Eµ+ = 143.54763095164728

pµ
+

= −0.051940546572615778

pµ
+

= −0.32652450618650886

pµ
+

= 143.54725018528501

(4.2.56)

µ−(p6):


Eµ− = 104.324584406575

pµ
−
x = −0.24790088756886308

pµ
−
y = 1.2810765913309128

pµ
−
z = 104.3164239203093

(4.2.57)

From this phase space point, using our C++ code, we can compare with Madgraph. The results
has provied in Table 4.1.

Diagram C++ code Madgraph

Diagram 1: |M1|2 1.81793816613e-10 1.81793816649e-10

Diagram 2: |M2|2 0.00905783314712 0.00905783314638

Diagram 3: |M3|2 1.73049375779e-09 1.73049375759e-09

Diagram 4: |M4|2 0.0288615815437 0.0288615815705

Diagram 5: |M5|2 1.70721007491e-11 1.70721007492e-11

Diagram 6: |M6|2 7.04347938134e-10 7.04347938151e-10

Diagram 7: |M7|2 0.000484856100443 0.000484856100374

Diagram 8: |M8|2 0.000316121834019 0.000316121834025

Diagram 9: |M9|2 2.50977685423e-10 2.50977685417e-10

Diagram 10: |M10|2 2.84419700355e-11 2.84419700389e-11

All diagrams 0.00689708013746 0.00689708013886

Table 4.1: Total Feynman amplitudes for each and all diagrams.

These results agreed with Madgraph, which is needed for our calculation of the total cross
section and kinematical distributions in the future.
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Conclusion

Based on what we have done so far in this thesis, we can draw some important conclusion for the
calculation techniques in proton-proton collision:

• The helicity amplitude method, which we used to calculate the Feynman amplitudes in
Chapter 3 and Chapter 4, is very powerful compared to the squared amplitude method.

• The Monte Carlo method is used to calculate cross sections. Moreover, it can generate any
kinematical distributions. We have successfully used this method to calculate polar angle
and transverse momentum distributions for e+νe and µ+µ− production processes at the LHC.
Our results agree well with Madgraph. To reduce integration errors, we have changed the
integration variables to smooth out the Breit-Wigner propagator of the W and Z bosons.
This makes the integration more efficient.

• When calculating proton-proton cross sections, we must include parton distribution func-
tions. They are provided by the LHAPDF library. The order of the PDF set should match
with our calculation order to give a consistent result.

• For the e+νeµ
+µ− production, the 3-gauge boson coupling diagrams must be included. All

helicity amplitudes for this process has been calculated and cross checked against Madgraph.

I would like to note that I have written a C++ code to implement the Monte Carlo integration
method. The helicity amplitudes are calculated using a self-made FORM code. The input of this
code is the amplitude expressions as given by the Feynman rules without any simplification. The
output is written in terms of simple functions, which are scalar products of two spinors, ready for
numerical calculations. Dirac equations and on-shell condition for external particles are used in
the process. Finally, Feynman diagrams are made using JaxoDraw and plots are produced using
Python.

Outlook

As explained in Chapter 4, the cross section and kinematical distributions for the process pp −→
e+νeµ

+µ− + X ill be calculated in the future. From there, we will upgrade our result to compare
with experimental results provided in Ref. [12] for polarization observables. We expect that, for
these special observables, the LO results are not so far from the full results.
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Appendix A

Lorentz transformations

Consider a proton-proton scattering into leptons, we have three frame to work with:

• The propagator (vector boson frame).

• The Partonic center of mass frame.

• The laboratory frame.

Kinematical distributions are measured in the laboratory frame, but our calculation is often do
in the Vector boson frames and the Partonic Center of mass frame (momentum). To match our
calculation with the experiment result, we must have momentum transformation like these step:

Momentum: Vector boson frame −→ PCMs −→ Laboratory frame.

The tranformation from Partonic center of mass frame to laboratory frame is boosting along
z-axis. The transformation from Vector boson frames to PCMs is boosting along the direction
with the momentum of that vector boson (in PCMs).

The general Lorentz transformations (Ref. [13]) are:

p′ = p + γv
(γv · p
γ + 1

− E
)
c−2, (A.0.1)

E ′ = γ(E − v · p), (A.0.2)

with the velocity and γ factor of a particle are related to its energy and momentum by the equation:

v = c2p/E, (A.0.3)

γ(v) = E/mc2, (A.0.4)

vγ(v) = p/m. (A.0.5)
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Appendix B

Helicity amplitude method

B.1 Chiral presentation

e using the chiral representation, which have the gamma matrices as:

γ0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ; γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ;

γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 ; γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 ;

γ5 = iγ0γ1γ2γ3 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 .

(B.1.1)

The Projection operators:

PL =
1− γ5

2
=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ; PR =
1 + γ5

2
=


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 . (B.1.2)

B.2 Weyl and Dirac spinors

The Weyl spinors are:

χ(p,+) =
1√

2|~p|(|~p|+ pz)

(
|~p|+ pz
px + ipy

)
; χ(p,−) =

1√
2|~p|(|~p|+ pz)

(
−px + ipy
|~p|+ pz

)
. (B.2.3)

Then the Dirac spinors can be constructed from the Weyl spinors:

u(p, λ) =

(√
p0 − λ|~p|χ(p, λ)√
p0 + λ|~p|χ(p, λ)

)
; v(p, λ) =

(
−λ
√
p0 + λ|~p|χ(p,−λ)

λ
√
p) − λ|~p|χ(p,−λ)

)
. (B.2.4)
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For the massless fermions, they have:

p0 = |~p|. (B.2.5)

Therefore, the massless fermion’s spinors are:

u(p,+) =

(√
p0 − |~p|χ(p,+)√
p0 + |~p|χ(p,+)

)
=

1√
|~p|+ pz


0
0

|~p|+ pz
px + ipy

 , (B.2.6)

u(p,−) =

(√
p0 + |~p|χ(p,−)√
p0 − |~p|χ(p,−)

)
=

1√
|~p|+ pz


−px + ipy
|~p|+ pz

0
0

 , (B.2.7)

v(p,+) =

(
−
√
p0 + |~p|χ(p,−)√
p0 − |~p|χ(p,−)

)
=

−1√
|~p|+ pz


−px + ipy
|~p|+ pz

0
0

 , (B.2.8)

v(p,−) =

( √
p0 − |~p|χ(p,+)

−
√
p0 + |~p|χ(p,+)

)
=

−1√
|~p|+ pz


0
0

|~p|+ pz
px + ipy

 , (B.2.9)

We using the Spherical coordinates system for:

p = −q. (B.2.10)

In this system, we have:
px = |~p| sin θ cosφ,

py = |~p| sin θ sinφ,

pz = |~p| cos θ,

=⇒


qx = −|~p| sin θ cosφ,

qy = −|~p| sin θ sinφ,

qz = −|~p| cos θ.

(B.2.11)

Then the fermion’s spinors are:

u(p,+) =
1√
|~p|+ pz


0
0

|~p|+ pz
px + ipy

 =

√
|~p|√

1 + cos θ


0
0

1 + cos θ
sin θ(cos +i sinφ)

 , (B.2.12)

u(p,−) =
1√√
|~p|+ pz


−px + ipy
|~p|+ pz

0
0

 =
|~p|√

1 + cos θ


sin θ(− cosφ+ i sinφ)

1 + cos θ
0
0

 , (B.2.13)

v(q,+) =
−1√
|~q|+ qz


−qx + iqy
|~q|+ qz

0
0

 =
−
√
|~p|√

1− cos θ


sin θ(cosφ− i sinφ)

1− cos θ
0
0

 , (B.2.14)
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v(q,−) =
−1√
|~q|+ qz


0
0

|~q|+ qz
qx + iqy

 =
−
√
|~p|√

1− cos θ


0
0

1− cos θ
− sin θ(cosφ+ i sinφ)

 . (B.2.15)

Based on these forms of the spinor, we can easily do the numerical calcualtion due to the fact
we can generate random events with a set of momentum.

B.3 Chisholm identity

Based on Ref. [14], we can transform our helicity amplitude into products of spinors such as the
helicity amplitude could be written like a product uū with the possible insertion of γ5’s in the
string. The different u, ū in the string we have written have of course, in general, different ar-
guments. Nonetheless one can turn each spinor product of two adjacent ūu, etc into a complex
number written in terms of the momenta in our problem as we will see.

In the first step, for the momentum /pi with p2
i = m2

i = 0 we use:

/pi = u(pi,−)ū(pi,−) + u(pi,+)ū(pi,+). (B.3.16)

Then we can use the so-called Chisholm identity, which can be proved by the Dirac spinor:

ū(p, λ)γµu(q, λ)γµ = 2
[
u(p,−λ)ū(q,−λ) + u(q, λ)ū(p, λ)

]
. (B.3.17)
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Appendix C

Monte Carlo method

C.1 Principles of Monte Carlo integration

By far the most common way to carry out phase space integration is the Monte Carlo method.
This is due to following properties of Monte Carlo methods (Ref. [13]):

• Within the domain of application the rate of convergence is faster that that of other methods.
The error decreases proportionally to 1/

√
N or even better, where N is the number of points

at which the integrand is evaluated.

• The method is very general in the sense that it can be made reasonably efficient for all matrix
elements occuring in practice.

• The method give many distributionat essentially the same expense as a single distribution;
the same events need only be histogrammed in different ways.

• Monte Carlo computer programs can be made very simple for the general user.

• The Monte Carlo method treats events exactly as they are treated. The method thus resem-
bles the way in which data are handled in experimental particle physics.

Now, consider a integral:

m =

∫ 1

0

dxf(x), (C.1.1)

the Monte Carlo method give the mean of m is

m̄ =
1

N

N∑
k=1

f(rk). (C.1.2)

The deviation of m̄ from its most probable value is measured by the quantity:

σ̄2 =
1

N − 1

N∑
k=1

[
f(rk)− m̄

]2

. (C.1.3)

The result of the Monte Carlo integration can thus be expressed as:

m = m̄± σ̄√
N
. (C.1.4)
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C.2 Reduction of the statistical error

The statistical error of the crude Monte Carlo described above depends on two factors:

• The variance σ2 of the function to be integrated.

• The number of randompoints at which the function is sampled.

The Monte Carlo method vecomes more efficient when the random points are generated so
that their density is closer to |f(x)|. This method is called importance sampling (Ref. [13]).
To apply it, we need a way to generater random numbers distributed according to a given density
g(x). The density g(x) is defined so that the probability that a vaue between x and x + dx is
obtained is given by (1/G)g(x)dx where G = G(+∞) and

G(x) =

∫ x

−∞
d tan(t). (C.2.5)

Consider then the integral

I =

∫ xmax

xmin

dxf(x), (C.2.6)

taking the new variable:

r =
G(x)−G(xmin)

G(xmax)−G(xmin)
, (C.2.7)

which varies between 0 and 1 and has the differential

dr =
g(x)dx

G(xmax)−G(xmin)
, (C.2.8)

then we have the integral:

I =

xmax∫
xmin

dxf(x)

=

xmax∫
xmin

dxg(x)
f(x)

g(x)

=
[
G(xmax)−G(xmin)

] 1∫
0

dr
f(x)

g(x)
,

(C.2.9)

where
x = G−1

{
G(xmin) + r

[
G(xmax)−G(xmin)

]}
. (C.2.10)

For particle physics, we have the Breit-Wigner distribution:

g(x) =
b2

(x− a)2 + b2
, (C.2.11)

G(x) =
π

2
b+ b arctan

x− a
b

, (C.2.12)

G−1(y) = a+ b tan
y − (π/2)b

b
. (C.2.13)
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