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Introduction

Primarily, the purpose of this thesis is to provide an overview on some of the most familiar
techniques of QFT to calculate several quantities of interest for a given scattering process
of type e−+e+ −→ f+f in both the theory of Quantum Electrodynamics (QED) and the
Standard Model (SM). The first two chapters will be dedicated for the thorough study of
e−+e+ −→ µ−+µ+ in both QED and SM. Also, some comparisons will be made between
the results of the two theories to help clarify the differences and similarities between them.

Indeed, the need for comparing theoretical predictions and experimental data en-
couraged us to proceed further and consider also soft photon emission for the respective
scattering process in SM. Here, the term "soft photon" refers to real photons of low en-
ergy that could not be detected by the detectors in experiment. Since the observation of
photons at low energy is not possible, the process of type e−+ e+ −→ f + f +nγ (where
γ is a soft photon) is normally recorded as e− + e+ −→ f + f . The inclusion of photon
emission effects in theoretical predictions (also known as QED correction) is, therefore,
particularly important for comparison with experimental results.

In the final chapter, an overview will be provided for a better insight into QED correc-
tion and even higher-order QED correction. Moreover, the concentration will be placed
on the application of QED correction in calculating two of the most crucial quantities
of interest: the total cross-section and the forward-backward asymmetry. In the end, ex-
perimental results will be presented together with theoretical predictions to demonstrate
that they are in better agreement when QED correction is into account.
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Chapter 1

The scattering process
e− + e+ −→ µ− + µ+ in QED

1.1 An overview of QED
QED is a physics model used to describe phenomena involving electrically charged fermions,
photons, and their interactions. As we know, the QED Lagrangian is:

LQED = −1
4FµνF

µν − 1
2ξ (∂µAµ)2 + ψ(iγµDµ −m)ψ. (1.1.1)

The second rank tensor Fµν in (1.1.1) is called the electromagnetic field tensor which is
of the form:

Fµν = ∂µAν − ∂νAµ, (1.1.2)
With Aµ is a vector field. Here, we also have ψ and ψ which are correspondingly the
fermion field and its adjoint. More importantly, in (1.1.1) we have used the notation of
covariant derivative Dµ, which is:

Dµ = ∂µ − ieAµ. (1.1.3)
Also, ξ is real constant called the gauge fixing constant and the term with this constant is
the gauge fixing term. As we can see the Lagrangian in equation (1.1.1) is a combination
of three parts:
• The free electromagnetic Lagrangian with the gauge fixing term:

LE = −1
4FµνF

µν − 1
2ξ (∂µAµ)2, (1.1.4)

• The free fermionic Lagrangian:
LD = ψ(iγµ∂µ −m)ψ, (1.1.5)

• The interaction term, which is hidden in the covariant derivative:
Lint = eAµψγ

µψ. (1.1.6)

Each part plays an essential role in the construction of QED and should be thoroughly
discussed. However, we shall concentrate mostly on the free electromagnetic Lagrangian
and the interaction term. Since they could help to deepen our understanding of two of
the most crucial notations in QED relevant for the context of this thesis which are the
general photon propagator and the vertex factor of QED.
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The scattering process e− + e+ −→ µ− + µ+ in QED

1.1.1 The general photon propagator
By applying the principle of least action for the Lagrangian of the free electromagnetic
field in (1.1.4), we shall find the equation of motion of the form:[

�gµρ −
(

1− 1
ξ

)
∂µ∂ρ

]
Aρ = 0. (1.1.7)

As we know, the propagator of the vector field Dµν(x− y) is the solution of the inhomo-
geneous equation of motion (1.1.7) with a point-like source:[

�gµρ −
(

1− 1
ξ

)
∂µ∂ρ

]
Dρν(x− y) = gµν δ

4(x− y). (1.1.8)

Let’s now Fourier-transform both sides of the equation (1.1.8), we shall have:[
−q2gµρ +

(
1− 1

ξ

)
qµqρ

]
Dρν(q) = gµν . (1.1.9)

Now, Dρν(q) is actually the photon propagator that we wish to obtain. At this point,
we should notice that Dρν(q) has the form of a second rank tensor and also it must be
invariant so the most general form of it should be:

Dρν(q) = A(q2)qρqν +B(q2)gρν . (1.1.10)

Inserting the general form of D(q) in (1.1.10) into the equation (1.1.9), we have:

⇒
[
−q2gµρ +

(
1− 1

ξ

)
qµqρ

] [
A(q2)qρqν +B(q2)gρν

]
= gµν

⇒


−B(q2)q2gµν = gµν

−A(q2)q2qµqν + A(q2)
(

1− 1
ξ

)
q2qµqν +B(q2)

(
1− 1

ξ

)
qµqν = 0

⇒



B(q2) = − 1
q2

A(q2) = (1− ξ)
q4

(1.1.11)

So, the general photon propagator is of the form:

Dρν(q) = (1− ξ)
q4 qρqν −

gρν
q2 . (1.1.12)

For ease of calculation, we normally choose ξ to be 1 (this is called the Feynman gauge).
However, in next section where we discuss the Feynman amplitude which is of critical
importance for the calculation of many physical quantities of interest, we shall see that
the part involving the gauge fixing constant ξ does not contribute to the amplitude of
a scattering process. That is to say, it is independent of ξ, and hence the choice of the
gauge fixing constant could be arbitrary.
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The scattering process e− + e+ −→ µ− + µ+ in QED

1.1.2 The vertex factor of QED
The following method of pulling out the vertex factor from the interaction term of La-
grangian was properly introduced in [1], please refer to that document for a more detailed
discussion. Here, we shall apply the procedure for the case of QED for illustration. First,
we have to note that the interaction term Lint presented in the equation (1.1.6) corre-
sponds to the Feynman diagram as in figure (1.1).

Aµ

ψ

ψ
p1

p2

p3

Figure 1.1: A vertex in QED

Let’s now Fourier transform the three fields ψ, ψ, and Aµ, we have:

ψ(x) −→ e−ip1xψ̃(p1),

ψ(x) −→ e−ip2xψ̃(p2),

Aµ(x) −→ e−ip3xÃµ(p3).

(1.1.13)

Inserting this into (1.1.6):

LψψA = eψ̃(p2)γµψ̃(p1)Ãµ(p3)e−i(p1+p2+p3)x = eψ̃(p2)γµψ̃(p1)Ãµ(p3). (1.1.14)

Here, the exponential factor disappears because of the conservation of momentum at the
vertex, which means:

p1 + p2 + p3 = 0. (1.1.15)

Now, simply remove all the fields because, here, there are no identical fields. Also include
the imaginary unit i and we will have the popular QED vertex factor:

ψ

ψ

Aµ = ieγµ. (1.1.16)
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The scattering process e− + e+ −→ µ− + µ+ in QED

1.2 The Feynman amplitude
Before, we could actually write down the Feynman amplitude for the process e−+e+ −→
µ−+µ+ in QED, let’s just briefly review the Feynman rules in QED, notice that here we
concentrate on rules for diagrams at tree level only (for further reading, see [2]):

1. Each vertex in QED, for example the vertex µ, contributes a factor ieγµ.

2. Internal lines contribute a factor as follows:

Fermions:

(
/q +m

)
q2 −m2 , which is also the fermion propagator,

Photons: (1− ξ)
q4 qρqν −

gµν
q2 , which is also the general photon propagator.

3. External lines contribute a factor as follows:

• Fermions

Incoming: ur(p)

Outgoing: ur(p)

• Anti-fermions

Incoming: vr(p)

Outgoing: vr(p)

• Photons

Incoming: εrµ(p)

Outgoing: ε∗rµ(p)

Here the indices r indicate the spin states of the spinor fields or the polarization
states of the vector fields and p is the corresponding momentum of the fields.

4. The spinors are organised in a way that when we read from right to left they follow
the direction of the arrows on the external lines.
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The scattering process e− + e+ −→ µ− + µ+ in QED

5. The four-momentum of three fields at each vertex satisfy the energy-momentum
conservation law.

6. If we can interchange the external lines of two incoming (or outgoing) fermions
(or anti-fermions), or the external line of an incoming fermion with the one of an
outgoing anti-fermion (or vice versa) of one diagram to form another diagram, we
have to include a minus sign in one of the two Feynman amplitudes.

Now applying these rules for the scattering process of e−+e+ −→ µ−+µ+ in QED which
has the Feynman diagram as in figure (1.2).

γ

e−

e+ µ+

µ−

Figure 1.2: The Feynman diagram of e− + e+ −→ µ− + µ+ in QED

Let’s denote the four momenta and spin indices of e−, e+, µ−, and µ+ to be (p, s), (p′, s′),
(k, r), and (p′, r′) correspondingly. From the diagram in figure (1.2), we can write the
Feynman amplitude for this process as follow:

M = [vs′(p′)(ieγµ)us(p)]
[

(1− ξ)qµqν
q4 − gµν

q2

]
[ur(k)(ieγν)vr′(k′)]

= −(1− ξ)e2

q4 [vs′(p′)/qus(p)][ur(k)/qvr′(k′)] + e2

q2 [vs′(p′)γµus(p)][ur(k)γµvr′(k′)].

(1.2.1)

Let’s now focus on the term [vs′(p′)/qus(p)]:

vs′(p′)/qus(p) = vs′(p′)(/p+ /p′)us(p) = mevs′(p′)us(p)−mevs′(p′)us(p) = 0. (1.2.2)

In the calculation above, we have exploited the law of momentum conservation at the
vertex, which could be written as q = p+ p′. We also used these two identities:/pus(p) = meus(p),

vs′(p′)/p′ = −mevs′(p′).
(1.2.3)

From (1.2.2) we can see thatM does not depend on ξ as being stressed before. At this
point, we shall have:

M = e2

q2 [vs′(p′)γµus(p)][ur(k)γµvr′(k′)]. (1.2.4)

Now, we are in position to write down the squared amplitude:

|M|2 =M†M = e4

q4 [vs′(p′)γνus(p)][us(p)γµvs′(p′)][vr′(k′)γµur(k)][ur(k)γνvr′(k′)].

(1.2.5)
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The scattering process e− + e+ −→ µ− + µ+ in QED

Besides, we have to notice that if we ignore the spin states of both the incoming and
outgoing beams, we have to average the square of the amplitude |M|2 in (1.2.5) on initial
spin indices and sum over subsequent spin indices. Thus, the squared amplitude is:

|M0|2 = 1
4

∑
s,s′,r,r′

MM† = e4

4q4Tr((/p
′ −me)γµ(/p+me)γν))Tr((/k′ −mµ)γµ(/k +mµ)γν).

(1.2.6)

Notice that to actually derive the formula (1.2.6), we have used:

∑
s

us(p)us(p) = /p+me,∑
s′
vs′(p′)vs′(p′) = /p

′ −me,∑
r

ur(k)ur(k) = /k +mµ,∑
r′
vr′(k)vr′(k) = /k

′ −mµ.

(1.2.7)

We should also notice these identities for ease of calculation:

Tr(γσγµγλγν) = 4(gσµgλν − gσλgµν + gσνgµλ), (1.2.8)
Tr(γµγν) = 4gµν . (1.2.9)

Similarly, we have:

Tr(γσγµγλγν) = 4(gσµgλν − gσλgµν + gσνgµλ), (1.2.10)
Tr(γµγν) = 4gµν . (1.2.11)

Applying the identities above, we will be able to obtain the results for the two traces in
(1.2.6) as follow:Tr((/p′ −me)γµ(/p+me)γν)) = 4(pµp′ν − pp′gµν + pνp′µ −m2

eg
µν),

T r((/k′ −mµ)γµ(/k +mµ)γν) = 4(k′µkν − k′kgµν + k′νkµ −m2
µgµν).

(1.2.12)

We now insert (1.2.12) in (1.2.6):

|M0|2 = 8e4

q4 [(p · k′)(p′ · k) + (p′ · k′)(p · k) +m2
µ(p · p′) +m2

e(k · k′) + 2m2
em

2
µ].

(1.2.13)

Then, let’s choose to work specifically in CM frame. Also we have to assign the energy
and momentum of each particles in the process as drawn in figure (1.3). Now, in order to
further proceed with the calculation using of |M0|2, it is better to make an approximation.
From now on, we shall set me = 0 (this approximation is appropriate in this case because
mµ � me), we, therefore, have |~p|2 = E2. That leads to several kinematic relations as
presented below:

⇒



p · k = p′ · k′ = E2 − ~p~k = E2 − E|~k| cos θ
p · k′ = p′ · k = E2 + ~p~k = E2 + E|~k| cos θ
q2 = (p+ p′)2 = 4E2

p · p′ = 2E2

k · k′ = E2 + |~k|2

(1.2.14)
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The scattering process e− + e+ −→ µ− + µ+ in QED

Figure 1.3: The scattering process e− + e+ −→ µ− + µ+ in CM frame

Inserting relations in (1.2.14) into (1.2.13), we shall have:

|M0|2 = e4

E2

[
(E2 +m2

µ) + (E2 −m2
µ) cos2 θ

]
.

1.3 Several physical quantities of interest

1.3.1 The differential cross-section and the total cross-section
For scattering process e− + e+ −→ µ− + µ+, we have the differential cross section to be
of the form:

dσ

dΩ = 1
64π2

|M0|2

(Ee− + Ee+)2
|~k|
|~p|

= |~k|e4

256π2E5

[
(E2 +m2

µ) + (E2 −m2
µ) cos2 θ

]
, (1.3.1)

Physically speaking, the differential cross-section would allow us to find the probability
that µ− (or µ+) would have the spatial momentum ~k (or −~k) in the direction with angular
coordinate (θ,ϕ) after pair creation. Now, in order to deduce the total cross-section, we
could simply integrate the differential cross-section over every directions in space. We
have:

σT =
∫ dσ

dΩdΩ⇒ σT = |~k|e4

256π2E5

∫ [
(E2 +m2

µ) + (E2 −m2
µ) cos2 θ

]
dΩ

= |~k|e4

48πE5

(
E2 + 1

2m
2
µ

)
(1.3.2)

This total cross-section would allow us to know on average the total number of muons
that are generated after the annihilation of a pair of electron and positron. It is because
number of muons Nµ is proportional to σ with the factor of proportionality to be L-the
luminosity of the beam of incident particles.

The figure (1.4) illustrates the dependence of the total cross-section on
√
s = 2E

which is the total energy of the scattering process in CM frame. We could see that the
total cross-section graph begins at the total energy of about

√
s = 2mµ ' 0.21 GeV. This

feature is what we have expected, since the threshold energy for pair creation must be
two times of the mass of muon.
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The scattering process e− + e+ −→ µ− + µ+ in QED
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Figure 1.4: Total cross-section of muon

1.3.2 Angular distribution of muon
The angular distribution of muon is of critical importance, since it allows us to seek
for direction with high probability of getting muon. This distribution is nothing but the
integration of the differential cross-section with regards to ϕ, we have:

dσ

dθ
=

∫ 2π

0

|~k|e4

256π2E5

[
(E2 +m2

µ) + (E2 −m2
µ) cos2 θ

]
sin θdϕ

= |~k|e4

128πE5

[
(E2 +m2

µ) + (E2 −m2
µ) cos2 θ

]
sin θ. (1.3.3)

Figure (1.5) shows the angular distribution of muon in the case that CM energy of elec-
tron is 10 GeV. As could be seen, there are two peaks in this distribution corresponding
to θ ' 0.95 rad and θ ' 2.19 rad. That means if we are looking for muon of this scat-
tering event in the range of total energy at about 20 GeV, it is more sensible to look for
detectors in those angles.

Besides, we could see that this distribution is essentially zero at θ = 0 and θ = π.
This means that there is no event of pair creation in which muon has velocity parallel to
the electron beam axis.

1.3.3 Transverse momentum and longitudinal momentum dis-
tributions of muon

Another quantity of interest is the transverse momentum distribution of muons after pair
creation. The distribution should be a function of kt-the transverse momentum and to
deduce the analytical form of this distribution means to find dσ/dkt. Our task now is
simply to switch from angular distribution to momentum distribution. In general, if we
want to switch from distribution p(x) to pF (f) with f = F (x), we could simply use the
follwing formula:

pF (f) =
∑
i

p(xi)Ji =
∑
i

p(xi)
dx

dF

∣∣∣∣∣
x=xi

. (1.3.4)
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The scattering process e− + e+ −→ µ− + µ+ in QED
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Figure 1.5: Angular distribution of muon with
√
s = 20 GeV

The factor Ji is called the Jacobians associated with the change of variables from x to F
(further discussion could be found in [3]). Now, for the transverse momentum, we have:

kt = |~k| sin θ ⇒


θ1 = arcsin kt

|~k|

θ2 = π − arcsin kt

|~k|

(1.3.5)

Also, we have the Jacobians are:∣∣∣∣∣ dθdkt
∣∣∣∣∣ = 1
|~k|| cos θ|

⇒
∣∣∣∣∣ dθdkt

∣∣∣∣∣
θ=θ1

∣∣∣∣∣ =
∣∣∣∣∣ dθdkt

∣∣∣∣∣
θ=θ2

∣∣∣∣∣ = 1√
|~k|2 − k2

t

(1.3.6)

Now, we shall use the formula (1.3.4) presented above:

dσ

dkt
=
∑
i

dσ

dθ

∣∣∣∣∣
θ=θi

∣∣∣∣∣∣ dθdkt
∣∣∣∣∣
θ=θi

∣∣∣∣∣∣⇒ dσ

dkt
= kt (2E2 − k2

t ) e4

64πE5
√
|~k|2 − k2

t

. (1.3.7)

With the formula (1.3.7), we are able to plot the transverse momentum distribution of
muon with CM energy of about 10 GeV (figure (1.6a)) for ilusstration.
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The scattering process e− + e+ −→ µ− + µ+ in QED
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Figure 1.6: Transverse and longitudinal momentum distributions with
√
s = 20 GeV

In the same manner, we could find the longitudinal momentum distribution of muon,
for the longitudinal momentum we have:

kl = |~k| cos θ ⇒


θ1 = arccos kl

|~k|

θ2 = − arccos kl
|~k|

(1.3.8)

We only take the solution θ1 since θ ∈ [0;π]. The associated Jacobian is:∣∣∣∣∣ dθdkl
∣∣∣∣∣ = 1
|~k|| sin θ|

⇒
∣∣∣∣∣ dθdkl

∣∣∣∣∣
θ=θ1

∣∣∣∣∣ = 1√
|~k|2 − k2

l

. (1.3.9)

Now, to switch from θ distribution to kl distribution, we have:

dσ

dkl
= dσ

dθ

∣∣∣∣∣
θ=θ1

∣∣∣∣∣ dθdkl
∣∣∣∣∣
θ=θ1

∣∣∣∣∣ = e4

128πE5

(
E2 +m2

µ + k2
l

)
(1.3.10)

Figure (1.6b) depicts the graph of the longitudinal momentum distribution of muon with
CM energy of about 10 GeV.

1.3.4 Rapidity and pseudo-rapidity distributions of muon
Let’s first discuss the necessity of rapidity distribution. Basically, rapidity is defined as:

y = 1
2 ln

(
E + kl
E − kl

)
. (1.3.11)

From this definition we can see that if kl −→ ±E, i.e. ~k ‖ Oz (notice that here we
assigned Oz to be the direction of the electron beam), the rapidity, in this case, goes to
infinity meaning y −→ ±∞. On the other hand, if ~k ⊥ Oz, we, then, have y −→ 0 since

13
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kl = 0. From that we could see that there should be a relation between the outgoing
angle θ = (~k,Oz) and the rapidity of a particle. Hence, rapidity is often paired with
the azimuthal coordinate ϕ as a spatial coordinate for particles analysis in accelerator
physics. For simplicity, we shall present another way to write the rapidity of a particle
that is exactly equivalent to the original definition:

y = arctanhkl
E
. (1.3.12)

This would allow us to find the rapidity distribution from the longitudinal distribution
deduced in equation (1.3.10). We could simply repeat the procedure of changing variable.
From (1.3.12) we could see that:

kl = E tanh y ⇒

∣∣∣∣∣∣ dkldy
∣∣∣∣∣
kl=E tanh y

∣∣∣∣∣∣ = E(1− tanh2 y) (1.3.13)

From the longitudinal momentum distribution in (1.3.10) and the formula (1.3.4), we
have:

dσ

dy
= dσ

dkl

∣∣∣∣∣
kl=E tanh y

∣∣∣∣∣∣ dkldy
∣∣∣∣∣
kl=E tanh y

∣∣∣∣∣∣ = e4

128πE4 cosh2 y

[
m2
µ + E2(1 + tanh2 y)

]
.

(1.3.14)

A plot of rapidity distribution of muon with energy in CM frame of about 10 GeV is
presented in figure (1.7a).
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Figure 1.7: Rapidity and pseudo-rapidity distribution for
√
s = 20 GeV

Besides, accelerator physicists also use another quantity that is actually not much
different from rapidity for ultra-relativistic particles. It is called pseudo-rapidity and it is
defined as:

η = 1
2 ln

 |~k|+ kl

|~k| − kl

 (1.3.15)
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It is not quite hard to prove that for ultra-relativistic particles, which have very large
energy compared to its mass, rapidity is approximately equal to pseudo-rapidity. In ad-
dition, we could also express pseudo-rapidity as a function of θ:

η = − ln
(

tan θ2

)
. (1.3.16)

Since measurement of θ could be done quite straightforward, the distribution of pseudo-
rapidity might be easier to be obtained in experiment. Now, we shall deduce the pseudo-
rapidity distribution theoretically. Because of the relation between pseudo-rapidity and
polar angle, we would rather choose to deduce the distribution of pseudo-rapidity from
the angular distribution. From the formula of pseudo-rapidity in (1.3.16), we have:

θ = 2 arctan(e−η) (1.3.17)

Also, it is clearer to explicitly point out several identities related to η and θ:

tan θ2 = e−η ⇒


sin θ = 1

cosh η

cos2 θ = 1− sin2 θ = tanh2 η

(1.3.18)

The corresponding Jacobian for changing variable is:∣∣∣∣∣∣ dθdη
∣∣∣∣∣
θ=2 arctan(e−η)

∣∣∣∣∣∣ =
∣∣∣∣∣ −2e−η
1 + e−2η

∣∣∣∣∣ =
∣∣∣∣ −2
eη + e−η

∣∣∣∣ = 1
cosh η . (1.3.19)

Once again we will use the usual technique of changing variable to deduce the pseudo-
rapidity distribution. From (1.3.3), (1.3.18), and (1.3.19), we have:

dσ

dη
= dσ

dθ

∣∣∣∣∣
θ=2 arctan(e−η)

∣∣∣∣∣∣ dθdη
∣∣∣∣∣
θ=2 arctan(e−η)

∣∣∣∣∣∣
⇒ dσ

dη
= |~k|e4

128πE5 cosh2 η

[
(E2 +m2

µ) + (E2 −m2
µ) tanh2 η

]
.

(1.3.20)

From this result we could see that if muon has relatively high energy which means
E2 − m2

µ ' E2, then the pseudo-rapidity distribution will be approximately equal to
the rapidity distribution. For illustration, the plot of the pseudo-rapidity distribution of
muon with CM energy of about 10 GeV is presented in figure (1.7b). As we can see, the
two plots are exactly the same since mµ is quite small compared to E, the two peaks at
y = η = 0.
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Chapter 2

The scattering process
e− + e+ −→ µ− + µ+ in SM

2.1 An overview of SM
SM is a physics model dealing with elementary particles using QFT and group theory
as a mathematical framework. In SM, there are three generations of elementary particles
which are presented in the table (2.1).

First Generation Second Generation Third Generation
Leptons

νeνeνe νµνµνµ ντντντ
eee µµµ τττ

Quarks
uuu ccc ttt
ddd sss bbb

Table 2.1: Elementary particles

SM allows us to describe a wide range phenomena relating to those elementary parti-
cles. Essentially, particle physicists consider only strong and electroweak interactions be-
tween elementary particles (gravitational interactions has not yet been included in SM).
Those interactions are mediated by gauge vector bosons which are photon, Z-boson, and
W -boson for electroweak interaction and gluon for strong interaction. As we know, the
Lagrangian of SM is of the form:

L = Lfermion + Lgauge + LHiggs + LY ukawa + Lgf + Lghost (2.1.1)

Indeed, the first two term (Lfermion and Lgauge) in (2.1.1) will be studied further in the
following subsections. The other terms which are the Higgs term (LHiggs), the Yukawa
term (Lyukawa), the gauge fixing (Lgf ), and the Fadeev-Popov ghost term (Lghost) might
be omitted from our discussion since they are not quite relevant in the context of this
thesis. At this moment, the most essential point to note is that the SM Lagrangian is
set to be invariant under the transformation of the group SU(3)C ⊗ SU(2)L ⊗ U(1)Y .
However, the concentration of this thesis will be on the behaviour of particles around the
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The scattering process e− + e+ −→ µ− + µ+ in SM

range of Z-peak (
√
s is aroundmZ ' 91 GeV) when we consider also effects of soft photon

emission, we shall confine ourselves mainly to SU(2)L ⊗ U(1)Y . Another thing to point
out is that in this model, left-handed and right-handed fields transform differently, since
we organise left-handed fields into doublet and right-handed ones into singlet. Notice that
only doublets are affected by element of SU(2)L which means:

L −→ L′ = exp
{
ig
σi

2 αi(x)
}
L

R −→ R′ = R

(2.1.2)

Where σi are three Pauli matrices and they are also generators of SU(2)L. As for the
group U(1)Y , the transformations are:

L −→ L′ = exp
{
ig′
Y

2 β(x)
}
L

R −→ R′ = exp
{
ig′
Y

2 β(x)
}
R

(2.1.3)

In the law of transformation above, we have introduced the weak hypercharge Y . It is
also important to note that the values of Y are different for different particles. The weak
hypercharges of each elementary particles could be evaluated by Gell-Mann–Nishijima
formula, that is:

Q = I3 + Y

2 . (2.1.4)

With Q is the charge of the particle and I3 is the isospin defined as eigenvalue of σ3/2
for doublets and I3 = 0 for singlets.

Before proceeding further, we should notice that from now on the fields will be denoted
by the symbols of the corresponding particles. For example, left-handed and right-handed
fermionic fields of electrons will be represented by eL and eR respectively.

2.1.1 The fermionic term of SM Lagrangian
The first term of the SM Lagrangian in equation (2.1.1) is:

Lfermion =
∑
f

iLf /DLf + iRf /DRf . (2.1.5)

The sum is taken over all species of fermions in the SM. Now, notice that in equation
(2.1.5), we also used the covariant derivative. However, for the left-handed and right-
handed fermionic fields, the covariant derivatives are different due to their distinct laws
of transformation under SU(2)L ⊗ U(1)Y presented in equation (2.1.2). We have:

DµLf =
(
∂µ − ig

σi

2 W
a
µ − ig′

Y

2 Bµ

)
Lf

DµRf =
(
∂µ − ig′

Y

2 Bµ

)
Rf

(2.1.6)
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Here, W a
µ (a = 1, 3) are the three gauge fields of SU(2)L and Bµ is the corresponding

gauge field of U(1)Y . We can probably see that it is quite similar to the case of QED, by
inserting (2.1.6) into (2.1.5) we could deduce several terms that look like interaction terms
of the fermionic fields with the gauge fields. Nevertheless, it is crucial to note that the
gauge fields introduced here are not physical fields, but rather their linear combinations
are. The physical fields could be written as:

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ)

Zµ = W 3
µcW +BµsW

Aµ = −W 3
µsW +BµcW

(2.1.7)

Here, we have cW = cos θW and sW = sin θW , where θW is the famous weak mixing angle
defined as θW = arctan(g′/g)1. In fact, a more thorough study of the Higgs term of SM
Lagrangian will reveal that by applying the linear combinations in (2.1.7) we will be able
to find the masses of Z-boson, W -boson, and photon (represented by Zµ, W±

µ , and Aµ
respectively).

2.1.2 The gauge fields in SM
The next term to be analysed in the SM Lagrangian is the gauge field Lagrangian. It is
of the form:

Lgauge = −1
4FµνF

µν − 1
4W

a
µνW

aµν . (2.1.8)

In equation (2.1.8), W a
µν and Fµν are called the field tensors corresponding to the gauge

fields of SU(2)L and U(1)Y respectively. Their explicit form could be written as:
W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW
b
µW

c
ν

Fµν = ∂µBν − ∂νBµ

(2.1.9)

We could see that for the non-Abelian group SU(2)L, there is a term containing the
structure constant which appears in the field tensor. In the case of the group SU(2)L,
the structure constant is nothing but the familiar Levi-Civita tensor.

2.2 The vertex factor of Z-boson
In this chapter, we will try to re-deduce all the distributions as in the first chapter but
more precisely by applying SM. Here, we shall consider only two diagrams (presented in
figure (2.1)) for muon pair creation in the scattering process of e− and e+. In fact, there
are more than just two mediators for such process meaning more diagrams should be
considered for more precise calculation. However, the contribution of such diagrams are
relatively small and hence could be ignored.

1In this thesis, if not indicated, we will take cW = mW /mZ . Here, mW and mZ are correspondingly
W -boson and Z-boson mass from experiment (mW ' 80.385 GeV and mZ ' 91.1876 GeV).
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γ Z

e+

e− µ−

µ+

e+

e− µ−

µ+

Figure 2.1: The Feynman diagrams of e− + e+ −→ µ− + µ+ in SM

Regarding the process mediating by photon, it is nothing but the same process that
was closely studied in the first chapter. Hence, we could re-use the result of the amplitude
deduced in equation (1.2.4). Nevertheless, the second diagram involves Z-boson as a
mediator. Thus, the vertex factor and also the propagator for that case have to be derived.

2.2.1 The neutral part of the covariant derivative
First, we have to notice that the weak interaction of both left-handed and right-handed
fermions mediating by Z boson only appears in the kinetic term of the fermionic La-
grangian in (2.1.5). Also, we should note that to see the coupling constants of fermions
in weak interaction mediated by Z bosons, we have to seek for the part of the covari-
ant derivative that contains Zµ. However, Zµ does not appear explicitly in (2.1.6), it is
rather a linear combination of W 3

µ and Bµ. We shall, therefore, work with the part that
involves the gauge fields W 3

µ and Bµ only. Let’s call it DN
µ which corresponds to the weak

interaction mediated by neutral particles like Z bosons or photons. We have:
DN
µ Lf =

(
−igσ

3

2 W
3
µ − ig′

Y

2 Bµ

)
Lf

DN
µ Rf =

(
−ig′Y2 Bµ

)
Rf

(2.2.1)

From (2.1.7), we could deduce the inverse transformation:W 3
µ = cWZµ + sWAµ

Bµ = −sWZµ + cWAµ
(2.2.2)

Now, inserting (2.2.2) into (2.2.1), we have:
DN
µ Lf =

[
− ig

cW

(
c2
W

σ3

2 − s
2
W

Y

2

)
Zµ − igsW

(
σ3

2 + Y

2

)
Aµ

]
Lf

DN
µ Rf =

(
ig

cW
s2
W

Y

2 Zµ −
ig

cW
sW cW

Y

2 Aµ
)
Rf

(2.2.3)

2.2.2 Left-handed electrons
Let’s first focus on the the left-handed term of the neutral part of the covariant derivative:

DN
µ Lf =

[
− ig

cW

(
c2
W

σ3

2 − s
2
W

Y

2

)
Zµ − igsW

(
σ3

2 + Y

2

)
Aµ

]
Lf . (2.2.4)
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Now, we shall first concentrate on the doublet of left-handed νe and e, the corresponding
Lagrangian could be written as:

Leγ
µDN

µ Le = i
(
νe e

)
L
γµ
[
− ig

cW

(
c2
W

σ3

2 − s
2
W

Y

2

)
Zµ − igsW

(
σ3

2 + Y

2

)
Aµ

](
νe
e

)
L

= iνeLγ
µ

[
− ig

cW

(
c2
W

σ3

2 − s
2
W

Y

2

)
Zµ − igsW

(
σ3

2 + Y

2

)
Aµ

]
νeL

+ieLγµ
[
− ig

cW

(
c2
W

σ3

2 − s
2
W

Y

2

)
Zµ − igsW

(
σ3

2 + Y

2

)
Aµ

]
eL

(2.2.5)

Besides, we should bear in mind that:

σ3

2 νeL = I3
ννeL = 1

2νeL

σ3

2 eL = I3
e eL = −1

2eL

(2.2.6)

Inserting (2.2.6) into (2.2.5), we have:

iLeγ
µDN

µ Le = g

cW

(
c2
W I

3
ν − s2

W

Y

2

)
Zµ(νeLγµνeL) + gsWQνAµ(νeLγµνeL)

+ g

cW

(
c2
W I

3
e − s2

W

Y

2

)
Zµ(eLγµeL) + gsWQeAµ(eLγµeL)

(2.2.7)

In the first term of (2.2.5), we can see the coupling constant of left-handed e in weak
interaction mediated by Z bosons is:

gL = g

cW

(
c2
W I

3
e − s2

W

Y

2

)
= g

cW

(
−1

2 + s2
W

)
. (2.2.8)

In (2.2.8), we have inserted the numerical values of weak isospin of left-handed electron
which is I3

e = −1/2 and the weak hypercharge of left-handed doublet of νe and e which
is Y = −1.

2.2.3 Right-handed electrons
For the right-handed electron. As could be seen from (2.2.3), the corresponding La-
grangian is written as:

ieRγ
µDN

µ eR = ieRγ
µ
(
ig

cW
s2
W

Y

2 Zµ −
ig

cW
sW cW

Y

2 Aµ
)
eR

= − g

cW
s2
W

Y

2 Zµ(eRγµeR) + g

cW
sW cW

Y

2 Aµ(eRγµeR). (2.2.9)

From (2.2.9), we could pull out the coupling constant of right-handed electron in weak
interaction mediated by Z bosons, which is as the following:

gR = − g

cW
s2
W

Y

2 = g

cW
s2
W (2.2.10)

Again in (2.2.10), we have used the numerical value of the weak hypercharge in the case
of right-handed electrons Y = −2 (because I3

e = 0 for right-handed electrons).
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2.2.4 The vertex factor of eeZ
Now, as we have proven in the last two sections (see the first terms of equation (2.2.7)
and (2.2.9)), the interaction term of e− and e+ mediated by Z boson could be written as:

LeeZint = gLZµ(eLγµeL) + gRZµ(eRγµeR). (2.2.11)

If we want to find the vertex factor, we should be able to re-write the current in terms
of the fields e and e. In order to do so, we should notice that:

eL = 1− γ5

2 e

eR = 1 + γ5

2 e

(2.2.12)

Inserting the identities in (2.2.12) into (2.2.11), we will have:

LeeZint = 1
2Zµ

[
(gL + gR) (eγµe)− (gL − gR)

(
eγµγ5e

)]
= Zµ

[
gV (eγµe)− gA

(
eγµγ5e

)]
(2.2.13)

With gL and gR deduced in (2.2.10) and (2.2.8), the coupling constants gV and gA are
known. At this point, we could actually apply the same procedure as being used in
subsection 1.1.2 for the interaction term (2.2.13) to find the vertex factor and the result
is as follows:

ψ

ψ

Zµ

= i

2
(
gV γ

µ − gAγµγ5
)

(2.2.14)

In fact, this result holds for all other species of fermions with the corresponding coupling
constants gV and gA provided in table (2.2).
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Fermions gV gA

νe νµ ντ
g

2cW
g

2cW

e µ τ − g

2cW
(1− 4s2

W ) − g

2cW

u c t
g

cW

(1
2 −

4
3s

2
W

)
g

2cW

d s b
g

cW

(
−1

2 + 2
3s

2
W

)
− g

2cW

Table 2.2: Coupling constants of weak interaction mediated by Z boson

2.3 The propagator of Z-boson
The next thing to do is to find the propagator of Z-boson. Now, we have to first go back
to insert (2.2.2) into the gauge field Lagrangian in equation (2.1.8) and try to pull out
the kinetic term for Zµ. Notice that since we are interested in the Lagrangian of free Zµ
only, any interaction terms that contain products of two gauge fields and their derivatives
or four gauge fields should be excluded. That will leave us with:

LkinZ = −1
4(∂µZν − ∂νZµ)(∂µZν − ∂νZµ). (2.3.1)

However, this is not yet the complete Lagrangian of free Zµ, since there is a mass term of
Zµ hidden in the kinetic part of the Higgs Lagrangian and also we have the gauge fixing
term: 

LmassZ = 1
2m

2
ZZµZ

µ

LgfZ = 1
2ξ (∂µZµ)2

(2.3.2)

From (2.3.1) and (2.3.2), we have:

LZ = −1
4(∂µZν − ∂νZµ)(∂µZν − ∂νZµ) + 1

2m
2
ZZµZ

µ + 1
2ξ (∂µZµ)2. (2.3.3)

The corresponding Euler-Lagrange equation for (2.3.3) will be:[
(� +m2

Z)gµρ −
(

1− 1
ξ

)
∂µ∂ρ

]
Dρν(x− y) = gµν δ

4(x− y). (2.3.4)

By switching into using the propagator in phase space Dρν(k), we will have:[
(−q2 +m2

Z)gµρ +
(

1− 1
ξ

)
qµqρ

]
Dρν(q) = gµν . (2.3.5)

22



The scattering process e− + e+ −→ µ− + µ+ in SM

At this point, we could repeat the procedure that has been introduced in subsection
(1.1.1) since the form of (2.3.5) is quite similar to the form of (1.1.9), we shall have:

Dρν(q) = 1
q2 −m2

Z

[
−gρν + qρqν

q2 − ξm2
Z

(1− ξ)
]
. (2.3.6)

Essentially, we have to note that the gauge fixing constant of Z-boson propagator in
(2.3.6) is actually the same as the one of the photon propagator in (1.1.12). Previously
in QED, we proved that the amplitude is independent to the gauge we used, this feature,
however, only stay true for SM in case we consider also the amplitude of diagrams with
H and χ3. Fortunately, by setting me = 0, the diagrams involving H and χ3 vanish, and
therefore we have the cancellation of ξ as in the case of QED. Nevertheless, from now on,
we shall choose to work specifically in Feynman gauge where ξ = 1.

Let’s now discuss the Z-boson propagator a bit in details. As could be seen, there
is the factor 1

q2−m2
Z
, this pattern is actually a general feature of all the vector fields and

even scalar field propagators. That is to say there is always a factor of the form 1
s−m2 for

the scattering process of type e− + e+ −→ f + f (notice that q2 = s for the respective
process) with m is the mass of the corresponding fields. It is however more important to
note that this factor would guarantee a peak at the point where

√
s = m in the plot of

total cross-section with respect to energy in CM frame if m > 2mf , since the propagator
contributes directly to the squared amplitude and hence to the total cross-section itself.
Unfortunately, that will lead to a divergence in the total cross-section since m is real,
this feature is unexpected and could not be realistic. The reason for such divergence is
because we have considered only the lowest order of approximation for the propagators
(using only the Lagrangian of free Zµ). If higher order terms are taken into account, we
will then have the so-called Breit-Wigner propagator. In Feynman gauge, for Z-boson,
the corresponding Breit-Wigner propagator is:

Dρν(q) = −gρν
q2 −m2

Z + iΓZmZ

(2.3.7)

Here, ΓZ is the decay width of Z boson, the calculation of ΓZ could be done theoretically,
but it is not really necessary here. Thus, we will just take the experimental value of ΓZ
(ΓZ ' 2.4952 GeV) for later calculation.

2.4 The Feynman amplitude
With the propagators and the vertex factors obtained we are now able to write down
the Feynman amplitude for the scattering process e− + e+ −→ µ− + µ+. The Feynman
rules are essentially the same as before, but for the internal lines of Z-boson, we need
to replace the photon propagator by the new Z-boson propagator as in equation (2.3.7).
Also, in the case of processes mediated by Z-boson, the vertex factor in the case of QED
in (1.1.16) must be replaced by the one for weak interaction in (2.2.14). Now, looking at
the two diagrams in figure (2.1) and applying the rules in Feynman gauge, we shall have:

M = Mγ +MZ . (2.4.1)
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WhereMγ andMZ are:

Mγ = [vs′(p′)(ieγµ)us(p)]
(
−gµν
q2

)
[ur(k)(ieγν)vr′(k′)], (2.4.2)

MZ =
[
vs′(p′)

i

2(gV γµ − gAγµγ5)us(p)
] (
− gµν
q2 −m2

Z + iΓZmZ

)

×
[
ur(k) i2(gV γν − gAγνγ5)vr′(k′)

]
. (2.4.3)

Again, we have to stress that there should be more mediators for such process. In Feynman
gauge, we have also H-the Higgs particle and χ3-the neutral Goldstone boson. However,
the vertex factor of both eeH and eeχ3 are proportional to me and in our calculation we
normally set me = 0. Hence, diagrams involving those mediators could be omitted.

Now, with the formula (2.4.1), (2.4.2), and (2.4.3), we are able to write down the squared
amplitude:

|M0|2 = |M1|2 + |M2|2 + |M3|2, (2.4.4)

In which we have

|M1|2 = 1
(s−m2

Z)2 + Γ2
Zm

2
Z

[1
2g

4
V (p′ · k)(p · k′) + 1

2g
4
V (p · k)(p′ · k′)

+3g2
Ag

2
V (p′ · k)(p · k′)− g2

Ag
2
V (p · k)(p′ · k′) + 1

2g
4
A(p′ · k)(p · k′)

+1
2g

4
A(p · k)(p′k′) + 1

2m
2
µg

4
V (p · p′)− 1

2m
2
µg

4
A(p · p′)

]
,

(2.4.5)

|M2|2 = e2

s(s−m2
Z + iΓZmZ) [2g2

V (p′ · k)(p · k′) + 2g2
V (p · k)(p′ · k′)

+2g2
A(p′ · k)(p · k′)− 2g2

A(p · k)(p′ · k′) + 2m2
µg

2
V (p · p′)]

+ e2

s(s−m2
Z − iΓZmZ) [2g2

V (p′ · k)(p · k′) + 2g2
V (p · k)(p′ · k′)

+2g2
A(p′ · k)(p · k′)− 2g2

A(p · k)(p′ · k′) + 2m2
µg

2
V (p · p′)],

(2.4.6)

|M3|2 = e4

q4

[
8(p′ · k)(p · k′) + 8(p · k)(p′ · k′) + 8m2

µ(p · p′)
]
. (2.4.7)

Now, notice that we use the symbol M0 instead of M, this is because to derive the
formula (2.4.4) we have to take the average over the initial spin indices and sum over the
final spin indices. In mathematical language, it means:

|M0|2 = 1
4

∑
s,s′,r,r′

MM†, (2.4.8)

Furthermore, we have to stress that the calculation above was done with aid of FORM2.

2FORM is a symbolic manipulation system that could help to perform trace calculation which is of
great help for calculating the Feynman amplitude. In this thesis, most of the amplitude calculations were
done using FORM version 4.1 (for further reading, see [4]).
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At this point, we could simply choose to work specifically in CM frame like what we
have done in chapter 1 and insert the kinematic relations in (1.2.14) into (2.4.4) to obtain
the squared amplitude as a function of θ, we shall have:

|M1|2 = E2

(s−m2
Z)2 + Γ2

Zm
2
Z

[
(g2
V + g2

A)2(E2 + |~k|2 cos2 θ)

+(g4
V − g4

A)m2
µ + 8g2

Ag
2
VE|~k| cos θ

]
, (2.4.9)

|M2|2 = 8e2(s−m2
Z)E2

s[(s−m2
Z)2 + Γ2

Zm
2
Z ] [g

2
V (E2 +m2

µ + |~k|2 cos2 θ) + 2g2
AE|~k| cos θ],

(2.4.10)

|M3|2 = 16e4E2

s2 (E2 +m2
µ + |~k|2 cos2 θ). (2.4.11)

Because the formula of |M0|2 is quite lengthy to be written down repeatedly, we will
transform it a bit. Let’s first denote µ = m2

µ/E
2 and then introduce the factor χ0:

χ0(s) = s

4e2(s−m2
Z + iΓZmZ) ⇒



1
(s−m2

Z)2 + Γ2
Zm

2
Z

= 16e4

s2 |χ0(s)|2

s−m2
Z

(s−m2
Z)2 + Γ2

Zm
2
Z

= 4e2

s
Reχ0(s)

(2.4.12)

With these factors we could actually simplify (2.4.9), (2.4.10), and (2.4.11) into:

|M1|2 = 16e4E2

s2 |χ0|2
[
(g2
V + g2

A)2(E2 + |~k|2 cos2 θ) + (g4
V − g4

A)m2
µ + 8g2

Ag
2
VE|~k| cos θ

]
(2.4.13)

|M2|2 = 16e4E2

s2 Reχ0[2g2
V (E2 +m2

µ + |~k|2 cos2 θ) + 4g2
AE|~k| cos θ] (2.4.14)

|M3|2 = 16e4E2

s2 (E2 +m2
µ + |~k|2 cos2 θ) (2.4.15)

Now, we could write down a more compact form of |M0|2:

|M0|2 = 16e4E2

s2

[
G1(s)|~k|2 cos2 θ +G2(s)E2 +G3(s)4E|~k| cos θ

]
(2.4.16)

In which we have:

G1(s) = (g2
V + g2

A)2|χ0(s)|2 + 2g2
VReχ0(s) + 1 (2.4.17)

G2(s) =
[
(g2
V + g2

A)2 + (g4
V − g4

A)µ
]
|χ0(s)|2 + 2g2

VReχ0(s)(µ+ 1) + µ+ 1
(2.4.18)

G3(s) = 2g2
Ag

2
V |χ0(s)|2 + g2

AReχ0(s) (2.4.19)

The formula (2.4.16) is not only a more compressed expression mathematically but also
present more clearly the symmetric and antisymmetric parts of |M0|2 with respect to
cos θ. In the following subsections where some quantities of interest are studied, we shall
see that the asymmetry of |M0|2 emerging from the approach of SM which adopt also
Z-boson as a mediator will lead to some very profoundly different features between QED
and SM.
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2.4.1 The forward-backward asymmetry
The very first quantity we would like to analyse is the total cross-section. For muon pair
creation in electron positron scattering process, we have:

dσ

dΩ = 1
64π2

|M0|2

(Ee− + Ee+)2
|~k|
|~p|

⇒ dσ

d(cos θ) = − e4|~k|
8πEs2

[
G1(s)|~k|2 cos2 θ +G2(s)E2 +G3(s)4E|~k| cos θ

]
.

(2.4.20)

Thus, the total cross-section will be:

σT =
∫ −1

1

dσ

d(cos θ)d(cos θ) = |~k|e4

4πEs2

G1(s) |
~k|2

3 +G2(s)E2

 . (2.4.21)

In figure (2.2), we could see that in low energy range the total cross-section in case
of SM seems to be not much different from that of QED. However, at higher energy
range, we could see a very sharp peak at roughly about 90 GeV. This is definitely the
sign of Z-boson since there are terms with factors of the form 1

(s−mZ)2+ΓZmZ within |M0|2.
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Figure 2.2: Total cross-section

Now, let’s continue with the angular distribution with the formula presented in equa-
tion (2.4.20). The difference we will see here is even more profound. The plots for the
angular distribution in both cases QED and SM with total energy in CM frame as about
200 GeV are shown in figure (2.3a). The red line is the original result of QED and as we
have discussed before it is perfectly symmetric. As for the green line which is the angular
distribution in the case of SM, the pattern of asymmetry has been depicted very clearly.
From this we can say that when we consider also Z-boson as a mediator at high CM
energy, muons are more likely to come out forward.
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Figure 2.3: The angular distribution

To evaluate how asymmetric it is, physicists introduced a quantity called the forward-
backward asymmetry denoted as AFB and defined as:

AFB = σF − σB
σF + σB

= σFB
σT

. (2.4.22)

Here we have: 
σF =

∫ π
2

0

dσ

dθ
dθ

σB =
∫ π

π
2

dσ

dθ
dθ

(2.4.23)

Let’s now deduce the explicit form of σF , σB, and AFB, we have:

σF =
∫ π

2

0

dσ

dθ
dθ = |~k|e4

8πEs2

G1(s) |
~k|2

3 +G2(s)E2 +G3(s)2E|~k|


σB =
∫ π

π
2

dσ

dθ
dθ = |~k|e4

8πEs2

G1(s) |
~k|2

3 +G2(s)E2 −G3(s)2E|~k|


⇒ σFB = σF − σB = |~k|e4

8πEs2G3(s)4E|~k| = |
~k|2e4

2πs2 G3(s) (2.4.24)

From (2.4.24) and (2.4.21), we have:

AFB = σFB
σT

= 6G3(s)
√

1− µ
G1(s)(1− µ) + 3G2(s) (2.4.25)

From the formula above, we could actually plot AFB with respect to
√
s (see figure

(2.4)). Generally speaking, it seems that the results in (2.4) matched with the physical
interpretation seen from figure (2.3). At high energy range, with

√
s = 200 GeV (figure

(2.3a)), for example, we could clearly see that AFB > 0.
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However, when we set it back to low energy scale where QED phenomena dominate.
As we put

√
s = 20.0 GeV, we will have the plots in figure (2.3b), the angular distribution

of SM seems to present quite the same pattern as that of QED since we also have two
peaks at around θ = 0.95 rad and θ = 2.19 rad. This again confirms our understanding
that QED is actually just a special case of SM at low energy scale. Nevertheless, the
forward-backward asymmetry is still there in the distribution in figure (2.3b) and we
could see that in this case AFB < 0.
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2.4.2 Transverse momentum and longitudinal momentum dis-
tributions and rapidity distribution of muon

The transverse momentum distribution could be derived by following the same procedure
used in subsection 1.3.3, we shall have:

dσ

dkt
= dσ

dkt
=
∑
i

dσ

dθ

∣∣∣∣∣
θ=θi

∣∣∣∣∣∣ dθdkt
∣∣∣∣∣
θ=θi

∣∣∣∣∣∣ (2.4.26)

With θi (i = 1, 2) provided in (1.3.5). For the transverse momentum distribution in the
case of SM, the main features are essentially the same as in the case of QED as could be
seen in figure (2.5a).

Another quantity of interest is the longitudinal momentum distribution. The longitu-
dinal momentum distribution will take the form:

dσ

dkl
= dσ

dθ

∣∣∣∣∣
θ=arccos kl

|~k|

∣∣∣∣∣∣∣
dθ

dkl

∣∣∣∣∣
θ=arccos kl

|~k|

∣∣∣∣∣∣∣ (2.4.27)

Again, the forward-backward asymmetry-a profound difference between SM and QED
has been depicted in the plots of longitudinal momentum distributions in figure (2.5b).
The distribution at

√
s = 200 GeV is higher in the range of positive values of longitudinal
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Figure 2.5: Transverse and longitudinal momentum distributions with
√
s = 200.0 GeV

momentum. This feature is exactly in accordance to what we have seen in the angular
distribution.

Last but not least, we shall have a look at rapidity distribution as being discussed in
subsection 1.3.4, rapidity is preferable by experimentalists due to its law of transformation
under boosts. We have:

dσ

dy
= dσ

dkl

∣∣∣∣∣
kl=E tanh y

∣∣∣∣∣∣ dkldy
∣∣∣∣∣
kl=E tanh y

∣∣∣∣∣∣ . (2.4.28)

With the formula (2.4.28) we have the resulting plot of the rapidity distribution illustrated
in figure (2.6). Here, we could see that the forward-backward asymmetry causes a shift
toward positive values of rapidity and again this means we have greater probability to
see muon coming out forwards.
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Figure 2.6: The rapidity distribution with
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s = 200.0 GeV
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Chapter 3

Initial state QED correction

So far, we have been studying the scattering process e− + e+ −→ µ− + µ+ quite inten-
sively. However, what we have done is just simply the lowest order of approximation. To
be more precise we need to consider also some higher-order diagrams for example second
order vertex modification at initial state or electron and positron self-energy loop. More
importantly, we do have to consider also the phenomena of soft photon emission from
both electron and positron in order to compare the theoretical results obtained with the
experimental ones.

In SM, those corrections at next-to-leading-order correspond to 10 diagrams presented
in figure (3.1). Considered together, they are called initial state QED correction and in
this final chapter we shall take into account this correction1.

e+
γ

f

f

e− e− e−

γ

γ/Z

γ/Z γ/Z γ/Z

f f f

f ffe+ e+ e+

e+ f

fe−

γ/Z

e−

(a) Real photons

(b) Virtual photons

Figure 3.1: Feynman diagrams of initial state QED correction in SM
1In fact, there are also final state and initial-final interference QED corrections (see [5] for further dis-

cussion). It is, however, more preferable to first concentrate on initial state correction as its contribution
to the reduction of the height of the Z-boson peak is more prominent (roughly 40%).
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Nevertheless, at the beginning of this chapter, let’s first generalise the analytical
formulas of several quantities of interest obtained in the previous chapter by considering
a more general scattering process e− + e+ −→ f + f (f 6= e). Those formulas will indeed
allow us to provide a more general results with QED correction for later analysis of some
interesting cases like f = c or f = b.

3.1 The scattering process e− + e+ −→ f + f

As being discussed in chapter 2, we will particularly concentrate on the two diagrams
with photon and Z-boson as mediators only.

γ Z

e+

e− f

f
e+

e− f

f

Figure 3.2: The Feynman diagrams of e− + e+ −→ f + f in SM

Again, let’s denote the momenta and the spin indices of e−, e+, f , and f to be (p,s),
(p′,s′), (k,r) and (k′,r′) correspondingly and then write down the Feynamn amplitude for
this process with the choice of gauge is again the Feynman gauge:

M =Mγ +MZ . (3.1.1)

Here, we have:

Mγ = vs′(p′) (iQeeγ
α)us(p)

(
−gµν
q2

)
ur(k)

(
iQfeγ

β
)
vr′(k′), (3.1.2)

MZ =
[
vs′(p′)

i

2(geV γν − geAγνγ5)us(p)
] (
− gµν
s−m2

Z + iΓZmZ

)

×
[
ur(k) i2(gfV γν − gfAγνγ5)vr′(k′)

]
.

(3.1.3)

Here, we have Qf , gfV , and gfA are respectively the charge and the coupling constants
of the particle f . Now, we shall take the square of M, average over the initial states,
sum over the final states, and finally insert the kinematic relations for this process in CM
frame (presented in (1.2.14)). The procedure is quite similar to the one presented in the
previous chapter. Thus, we shall write down the result directly:

|M0|2 = 16e4E2

s2

[
G1(s)|~k|2 cos2 θ +G2(s)E2 +G3(s)4E|~k| cos θ

]
, (3.1.4)
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In which we have:

G1(s) = Nc

[
(g2
eV + g2

eA)(g2
fV + g2

fA)|χ0(s)|2 + 2QeQfgeV gfVReχ0(s) +Q2
eQ

2
f

]
,

(3.1.5)
G2(s) = Nc

{[
(g2
eV + g2

eA)(g2
fV + g2

fA) + (g2
eV + g2

eA)(g2
fV − g2

fA)µ
]
|χ0(s)|2

+2QeQfgeV gfVReχ0(s)(µ+ 1) +Q2
eQ

2
f (µ+ 1)

}
,

(3.1.6)
G3(s) = Nc

[
2geV geAgfV gfA|χ0(s)|2 +QeQfgeAgfAReχ0(s)

]
. (3.1.7)

Notice that we have introduced a new factor Nc (Nc = 1 for leptons and Nc = 3 for
quarks since they have three possible color states). Also, we have used the conventions
µ = m2

f/E
2 and the factor χ0(s) set in (2.4.12). At this point, we could see that the

squared amplitude |M0|2 in the formula (3.1.4) is different from the one (2.4.16) since
the three functions G1(s), G2(s), and G3(s) are now generalised. However, they both have
the same form, we could, therefore, reuse the results of σT , σFB, and AFB at lowest order2

derived in section 2.4 (formula (2.4.21), (2.4.24), and (2.4.25) correspondingly):

σ
(0)
T = |~k|e4

4πEs2

G1(s) |
~k|2

3 +G2(s)E2

 , (3.1.8)

σ
(0)
FB = |~k|2e4

2πs2 G3(s), (3.1.9)

A
(0)
FB = σFB

σT
= 6G3(s)

√
1− µ

G1(s)(1− µ) + 3G2(s) . (3.1.10)

The results of σ(0)
T (s) and A

(0)
FB(s) have been checked and perfectly matched the ones

presented in [5]. Besides, we should notice that from now on the results at lowest order
and the ones with initial state QED correction will be respectively labelled with the upper
indices (0) and (1).

3.2 Initial state QED correction
Normally, we have to deduce the Feynman amplitude for 10 diagrams in figure (3.1)
before calculating all the quantities of interest. However, that would require an extensive
amount of calculation with advanced mathematical techniques. Thus, in this section,
what we would like to do is to exploit the analytical formulas of the total cross-section
and the forward-backward asymmetry derived in [5] for our calculation. This means that
we only have to understand those results and then keep on with numerical evaluation
using tools like Mathematica or C++. Now, as we know, charged particles could radiate
photons at various frequencies while accelerating, that will cause energy loss and hence:

s −→ s′ = zs, (3.2.1)

With z must be in the range
[
4m2

f/s, 1
]
. We could see that z = 1 corresponds to the case

with no emission at all since
√
s′ =

√
s. As for z = 4m2

µ/s, it is actually the situation
2In this case, the term "lowest order" used to refer to results with the contribution of only two diagrams

in figure (3.2)
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when muons have no kinetic energy after pair creation (
√
s′ = 2mµ). With the above

definition of z, we have the so-called radiator function H(1)
e (z) in the case of initial state

QED correction as follows:

H̃(1)
e = δ(1− z) + α

π

{
δ(1− z)

[(
2 ln ε+ 3

2

)
(Le − 1) + π2

3 −
1
2

]

+θ(1− ε− z)1 + z2

1− z

[
Le − 1− ln 4z

(1 + z2)

]}

= H(1)
e (z)− θ(1− ε− z)1 + z2

1− z ln 4z
(1 + z2) . (3.2.2)

With formula (3.2.2), we have the total cross-section and the forward-backward asymme-
try with QED correction are:

σ
(1)
T (s) =

∫ 1

z0
dzH(1)

e (z)σ(0)
T (zs)

= σ
(0)
T (s) + α

π

[(
2 ln ε+ 3

2

)
(Le − 1) + π2

3 −
1
2

]
σ

(0)
T (s)

+α
π

(Le − 1)
∫ 1−ε

z0
dz

1 + z2

1− z σ
(0)
T (zs), (3.2.3)

A
(1)
FB(s) = 1

σT (s)

∫ 1

z0
dz

4z
(1 + z)2 H̃e(z)σ(0)

FB(zs)

= 1
σT (s)

{
σ

(0)
FB(s) + α

π

[(
2 ln ε+ 3

2

)
(Le − 1) + π2

3 −
1
2

]
σ

(0)
FB(s)

+α
π

∫ 1−ε

z0
dz

4z(1 + z2)
(1 + z)2(1− z)

[
Le − 1− ln 4z

(1 + z)2

]
σ

(0)
FB(zs)

}
.

(3.2.4)

Here, we have introduced Le = ln(s/m2
e) and a dimensionless parameter ε (let’s call it

the cut-off parameter). Notice that in the final terms of the formulas above z must satisfy
1 − ε ≥ z ≥ 4m2

µ/s. Also, as could be seen in (3.2.3) and (3.2.4), the initial integrals
are finite and independent of the cut-off parameter. Therefore, ε could be understood
as a technical parameter and the limit ε −→ 0 should be taken in the end (this is also
known as the no-cut case). Unfortunately, in the limit ε −→ 0, the terms with ln ε in
(3.2.3) and (3.2.4) diverge, a closer look at those formulas will, however, reveal that such
divergence would eventually cancel out with another one hidden in the integration term.
For instance, let’s consider the integration term of σ(1)

T (s), we have:

I =
∫ 1−ε

z0
dz

1 + z2

1− z σ
0
T (zs) =

∫ 1−ε

z0
dz

f(z)
1− z

⇒ I =
∫ 1−ε

z0
dz

f(z)− f(1)
1− z + f(1) [ln(1− z0)− ln ε] . (3.2.5)

Notice that the new integrand in (3.2.5) converge as z −→ 1 or equivalently ε −→ 0.
More importantly, by inserting (3.2.5) into (3.2.3), we will see that the divergent factor
ln ε disappears. That is to say σ

(1)
T remains finite even in the limit ε goes to zero. In

fact, the same technique could be applied for A(1)
FB(s) to prove that it also converges in
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the case of soft photon inclusion. Besides, it is not really necessary to find the complete
analytical form of both σ(1)

T (s) and A(1)
FB(s) in such limit, later for ease of calculation, we

shall simply choose ε to be small enough (ε� 1).

Another point to note is that in some cases for simplicity the formula (3.2.4) could
be replaced by an approximated one (for further discussion, see [5]):

AapproxFB (s) ' 1
σT (s)

∫
dzH(1)

e (z)σ0
FB(zs). (3.2.6)

Up to this point, the formulas for the total cross-section and the forward-backward asym-
metry with initial state QED correction have been properly introduced. Let’s now proceed
with numerical evaluation3.

3.2.1 Result comparison for the case of muon
First, we would like to make a comparison between the numerical results for the no-cut
case of f = µ obtained here with the one presented in [5] (notice that from now on our
results will be referred to as [0]). Moreover, because the input parameters set in [5] were
not quite complete, we took also some constants needed for numerical evaluation like the
Fermi constant Gµ or the fine structure constant α from [6]. For the input parameters:

mµ ' 0.0 GeV, mZ = 93.0 GeV, ΓZ = 2.5 GeV,

Gµ = 1.166344.10−5 GeV−2, α = 1
137.03604 , sin2 θW = 0.23.

The corresponding results are provided in table (3.1) with A
(0)
FB(s) and A

(1)
FB obtained

using (3.1.8) and (3.2.4) respectively. Essentially, even though we chose mµ = 0 for ease
of calculation, z0 was still set to be non-zero as z0 = 4m2

µ/s with the value of mµ taken
from experiment (this is called massless fermion approximation). Besides, we should note
that the coupling constants here are calculated in a slightly different way:

gV =
√

4
√

2Gµm2
Z(I3

µ − 2Qµs
2
W ) (3.2.7)

gA =
√

4
√

2Gµm2
ZI

3
µ (3.2.8)

With I3
µ is the isospin of left-handed muons. Basically, what we did for A(1)

FB is to perform
calculation using different input values of ε so as to see the numerical limits of the results.
It seems that it is adequate to take ε = 10−8 since the numerical values of A(1)

FB(s) started
to converge with that choice of ε. Thus, in later calculation, we shall stick with this choice.
Also, we could see that the values of A(1)

FB(s) presented here are slightly different from
those in the reference material [5]. The results are however acceptable to some extent,
but it is worth making another comparison to see that our calculation is actually reliable.
For the input parameters:

mµ ' 0.0 GeV, mZ = 92.6 GeV, ΓZ = 2.6 GeV, α = 1
137.03604 , sin2 θW = 0.229.

3All the final integration terms in the formulas (3.2.3), (3.2.4), and (3.2.6) were numerically calculated
utilizing function "NIntegrate" of Mathematica 10.
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The numerical values of AFB(s) could be found in table (3.2). Here, the results A(0)
FB,

AapproxFB , and A
(1)
FB are evaluated using formulas (3.1.9), (3.2.6), and (3.2.4) respectively.

Again, massless fermion approximation was applied, but the coupling constants gV and
gA here were calculated as usual4. Once more, we could see that the agreement between
the two results was not perfect. This might suggest that due to not-the-same input pa-
rameters or some other unknown reasons. Nevertheless, the two results are close enough
for us to actually proceed further.

Energy\Cases A
(0)
FB(s) A

(1)
FB

√
s [0] [5] [0] (ε = 10−2) [0] (ε = 10−4) [0] (ε = 10−6) [0] (ε = 10−8) [5]

82.0 −69.854 −69.99 −55.767 −55.782 −55.783 −55.783 −53.08

92.5 −2.220 −2.221 −3.747 −4.355 −4.362 −4.362 −4.009

93.0 1.887 1.887 0.157 −0.422 −0.428 −0.428 −0.403

93.5 5.924 5.923 3.484 2.988 2.984 2.984 2.920

100.0 47.326 47.28 19.360 19.399 19.399 19.399 19.36

Table 3.1: Comparison with table 9 of to [5]
for e− + e+ −→ µ− + µ+ with QED correction in percent

Energy\Cases A
(0)
FB AapproxFB A

(1)
FB

√
s [0] [5] [0](ε = 10−8) [5] [0] (ε = 10−8) [5]

mZ − 5 GeV −0.4225 −0.4225 −0.4235 −0.4242 −0.4218 −0.4226

mZ GeV 0.0207 0.0207 −0.0056 −0.0056 −0.0055 −0.0055

mZ + 5 GeV −0.4028 −0.4028 0.1859 0.1860 0.1867 0.1868

Table 3.2: Comparison with table 8 of to [5]
for e− + e+ −→ µ− + µ+ with QED correction

Let’s keep on with a more complete picture of the case e− + e+ −→ µ− + µ+ with
QED correction for ε = 10−8. In this case, we have Qf = Qµ = −1 and the values of

4With the input parameter s2
W and α, the numerical values for g and cW could be deduced. Then,

we shall apply the formulas in table (2.2) to get the corresponding values of gV and gA in this case.
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gfV = gµV and gfA = gµA are provided in table (2.2) in section 2.2.4. After taking into
account the effect of radiation, the plot of total cross-section with respect to

√
s has

changed significantly as could be seen in figure (3.3). In fact, the peak for Z-boson is now
lower as being stressed before in the footnote (1) on page 30.
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Figure 3.3: Total cross-section of e− + e+ −→ µ− + µ+ with QED correction

At this point, we would like to actually include the experimental results for com-
parison. In fact, the scattering process of e− and e+ has been experimentally analysed
at the Large Electron Positron Collider (LEP). The LEP was one of the most powerful
accelerators at the end of the 20th century. The data introduced here are the total cross-
section and the forward-backward asymmetry from the process e− + e+ −→ µ− + µ+

taken from [7] and [8] respectively. They are, in fact, the combined results from several
detectors of the LEP.

Let’s first concentrate on figure (3.3b) which illustrate σ(0)
T and σ

(1)
T in comparison

with the experimental data (Exp Data) from [7]. As expected, the theoretical predictions
of the total cross-section with initial state QED correction seems to perfectly match the
experimental results.

Regarding the forward-backward asymmetry, we could see in the plot in figure (3.4a)
that the differences between A(1)

FB and A(0)
FB results are quite profound, but the patterns

are essentially the the same. More importantly, we could notice that again the results
with QED correction are closer to the experimental results from [8]. Besides, there is one
thing that we have to stress at this point is that to get the experimental results of AFB
from [8] we used a program called EasyNData5.

3.2.2 Application for the cases of b-quark and c-quark
Let’s now keep on to apply the results we have obtained for the general process e−+e+ −→
f + f to the two cases of b-quark and c-quark. Here, the experimental results of the

5EasyNData is particularly designed to help extract numerical values from published plots. In fact,
many sets of experimental data in this thesis were collected this way (for discussion regarding the precision
of such program see [9])
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Figure 3.4: Forward-backward asymmetry

forward-backward asymmetry from LEP are also included in figure (3.5b) and (3.5d).
Essentially, the pole masses of b-quark and c-quark were chosen to be mb = 4.78 GeV
and mc = 1.78 GeV for numerical calculation. Nevertheless, it seems that for these two
cases the theoretical predictions and the experimental results do not well match. Since
for quark particles, the situation is more complicated. For more precise results, strong
interaction effects may be important, it is, however, beyond the scope of this thesis.

Another interesting quantity we would like to discuss is the total cross-section of
processes of type e− + e+ −→ hadrons around Z-peak since we also have experimental
data from LEP for comparison. Those processes are mostly contributed by e− + e+ −→
q + q (where q = u, d, s, c, b since we consider only the region where

√
s ∈ [87; 95]-around

Z-peak). Hence, the total cross-section might be calculated as the following:

σhad(s) '
∑

q=u,d,s,c,b
σq(s) (3.2.9)

In fact, formula (3.2.9) could be applied for both cases of the result at lowest order σ(0)
q (s)

and the one with QED correction σ(1)
q (s)6. With the formula above, we have the plot for

both σ(0)
had and σ

(1)
had in comparison with experimental data in figure (3.6). It seems that the

experimental results are in good agreement with the theoretical predictions of σ(1)
had(s) at

most energy points except for the point of Z-resonance. Once again, for better agreement,
QCD correction should be included.

6Notice that in the calculation for e− + e+ −→ q + q, we used mu = 2.3 MeV, md = 4.8 MeV,
ms = 95.0 MeV, mc = 1.67 GeV, and mb = 4.78 GeV.
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Figure 3.5: Results for the case of b-quark and c-quark
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3.3 Higher-order QED correction
Before moving on to the conclusion, let’s have a very brief discussion concerning higher-
order QED correction. The analytical formulas for σT and AFB have been again taken
directly from the consulting material [10] and [5] with the radiators G(z) and H̃e(z) are
respectively:

G(z) = 2α
π

(Le − 1)(1− z) 2α
π

(Le−1)−1 (1 + δa1 + δa2)− α

π
(1 + z)(Le − 1)

+ α2

2π2

{
X(z)− (1 + z)

[
2 ln(1− z)(Le − 1)2 + (Le − 1)

(3
2Le + 2ζ(2)− 2

)]}
(3.3.1)

δa1 = α

π

(3
2Le + 2ζ(2)− 2

)
δa2 = α2

π2

[(9
8 − 2ζ(2)

)
L2
e +

(
−45

16 + 11
2 ζ(2) + 3ζ(3)

)
Le

−6
5ζ(2)2 − 9

2ζ(3)− 6ζ(2) ln 2 + 3
8ζ(2) + 19

4

]
X(z) =

(
−1 + z2

1− z ln z + 1 + z

2 ln z + z − 1
)
L2
e +

[
1 + z2

1− z

(
Li2(1− z)

+ ln z ln(1− z) + 7
2 ln z − 1

2 ln2 z
)

+ 1 + z

4 ln z2 − ln z + 7
2 − 3z

]
Le

+(1 + z)
[3
2Li3(1− z)− 2S1,2(1− z)− ln(1− z)Li2(1− z)− 1

2

]
+1 + z2

1− z

(
−1

6 ln3 z + 1
2 ln zLi2(1− z) + 1

2 ln2 z ln(1− z)− 3
2Li2(1− z)

−3
2 ln z ln(1− z) + ζ(2) ln z − 17

6 ln z − ln2 z
)

He(z) = 2α
π
Le(1− z) 2α

π
Le−1δb − α

π
Le(1 + z)

+α
2

π2L
2
e

{
−1 + z2

1− z ln z − 1 + z

2 ln
[
z(1 + z)4

]
− 5z + 1

2

+(1− z)3

2z + (1− z)2
√
z

(
arctan 1√

z
− arctan

√
z

)}
(3.3.2)

δb = 1 + 3α
2πLe + α2

π2L
2
e

(9
8 − 2ζ(2)

)
Here, we have introduced ζ(n), Lin(x), and Sn,p(x) which are respectively the Riemann
zeta function, the polylogarithm (also known as Jonquière’s function), and the Nielsen
generalized polylogarithm.
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With the formulas of the radiators in (3.3.1) and (3.3.2), we have the forward-backward
asymmetry and the total cross-section are:

σ
(2)
T (s) =

∫ 1

z0
dzG(z)σ(0)

T (zs) (3.3.3)

A
(2)
FB(s) = 1

σT (s)

∫ 1

z0
dz

4z
(1 + z)2 H̃e(z)σ(0)

FB(zs) (3.3.4)

Notice that higher-order QED correction formulas were labelled with the upper index
(2). Now, we could see that there is no cut-off parameter ε within the formulas of the
radiators. However, for numerical evaluation, if we leave the upper limit of the integral to
be z = 1, the results may converge very slowly. Hence, we shall utilize the strategy used
in the previous subsection which is to change the upper limit of the integral from z = 1
to z = 1− ε and again choose ε to be small enough (ε� 1). For the input parameters:

mµ ' 0.0 GeV, mZ = 93.0 GeV, ΓZ = 2.5 GeV,

Gµ = 1.166344.10−5 GeV−2, α = 1
137.03604 , sin2 θW = 0.23,

We have the numerical results with higher-order QED correction in comparison with
those in [5] presented in table (3.3). Once again, we have the input parameter mµ = 0
GeV, it means that massless fermion approximation was utilized. Also, in this case we
used the coupling constants as indicated in formulas (3.2.7) and (3.2.8).

√
s [0] (ε = 10−2) [0] (ε = 10−4) [0] (ε = 10−6) [0] (ε = 10−8) [5]

82.0 −30.840 −41.598 −44.129 −44.373 −54.63

92.5 −12.847 −5.019 −3.930 −3.511 −3.643

93.0 −8.817 −1.518 −0.554 −0.261 0.289

93.5 −5.166 1.387 2.339 2.569 3.760

100.0 7.064 12.613 14.786 15.592 20.49

Table 3.3: Comparison with table 9 of to [5] for e− + e+ −→ µ− + µ+

with higher-order QED correction in percent

Unfortunately, in this case, we are not able to see the limit as the numerical results
oscillate slightly for small values of ε. This might be due to the incapability of the program
chosen to perform numerical integration (Mathematica 10). In figure (??), we could also
see the numerical results do not well converge in the case of higher-QED correction
comparing to the one for QED correction.
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Figure 3.7: The numerical values of AFB with respect to log(ε) in two cases

Nevertheless, we could still see that the results are mostly of the same scale and the
differences between our numerical results are not quite large. Hence, we chose ε = 10−8

to plot some of the results to see the difference between QED correction and higher-order
QED correction as in figure (3.8).

Although, the two results still does not match for the cases of figure (3.8b), (3.8c),
and (3.8d), the theoretical results with higher-order QED correction seem to be in better
agreement with experimental ones particularly for the forward-backward asymmetry of
b-quark and c-quark.

Here, we have to stress that our results for higher-order QED correction (σ(2)
T (s) and

A
(2)
FB(s)) are likely to be wrong since they did not well converge. The pattern of the

results is, however, consistent with the ones presented in [8] where significant differences
between the theoretical predictions and the experimental data were observed for the case
of b-quark.
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Figure 3.8: Results for higher-order QED correction with ε = 10−8 GeV
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Conclusion
From what we have done so far, some important conclusions could be drawn for the
scattering process of type e− + e+ −→ f + f (f 6= e):

• First, for f = µ− as could be seen from the calculation in the first two chapters
with the inclusion of Z-boson (in addition to photon) as a mediator-a profound dif-
ference between SM and QED, we could theoretically predict the forward-backward
asymmetry of muon in pair creation which does not appear in QED.

• Also, in the case f = µ− but at low energy scale, results of the two theories come
close to each other as presented in chapter 2. This confirms that QED is in fact an
approximate theory of SM in the range of low energy.

• Regarding initial state QED correction, it significantly affects the results of all the
quantities of interest. Particularly, it contributes to the 40%-reduction in the height
of Z-peak for muon.

• Finally, we could see that by considering also effects of soft photon emission using
initial state QED correction (and even higher-order QED correction), our theo-
retical predictions seem to be in better agreement with the experimental results
especially for the case f = µ−. This means that for a more precise comparison
with experimental data, initial state QED correction should definitely be taken
into account.

Outlook
For further development, there are some crucial improvements required:

• In order to make better progress, it is crucial to increase the accuracy of the nu-
merical integration with better strategy. In particular, the results of higher-order
QED correction have to be re-examined.

• For cases where f = b or f = c, a more thorough final state QCD corrections might
be needed so as to enhance the matching between theoretical and experimental
results.

• Another fascinating direction of development is to proceed with higher energy range.
In that case, we will be able to consider also heavier quarks like f = t for instance.
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• More interestingly, we could actually go beyond the SM for example to demanding
the Lagrangian to be symmetric under an extra group U(1)′. As a result, a new
term with an associated gauge boson mediator called Z ′-boson should be added to
the Feynman amplitude for all the results to be re-deduced.

44



Bibliography
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