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Introduction

A popular method to find new-physics effects is to use the Standard Model Effective Field Theory
framework, which has the same symmetries and fields as of the Standard Model, but with higher-
dimension operators included in the Lagrangian. In this thesis, from the measurements of Z-pole
data at LEP1, we constrain Wilson coefficients of dimension-six (D6) operators involving gauge
bosons and fermions.

In the gauge boson sector, using a different set of D6 operators (Warsaw’s basis in Ref. [I]), we
reproduce and make a comparison with the results from Ref. [2] by O. Nachtmann, F. Nagel, M.
Pospischil (NNP). Thenceforth, we expand the constraints by performing fits for Wilson coefficients
in fermion sector, first with only leptons, then with quarks included. Both the case of flavor
universal leptons and the general case of flavor non-universal leptons are investigated using the
relevant set of observables’ data. The quarks’ coefficients are always considered in flavor universal
case.

The thesis is presented in 5 Chapters:

e Chapter 1: Standard Model Effective Field Theory (SMEFT)
We introduce the formalism of SMEFT, with basic notation, conventions, and the set of D6
operators with related Wilson coefficients from Warsaw’s basis in Ref. [1].

e Chapter 2: Wilson coefficients fitting methodology
We provide the basic concepts and notation for the statistical fitting method of linear least
square (or x?). The data set of LEP1 observables for the fitting as well as the usage of x?
method in our problem is also discussed.

e Chapter 3: Constraints on gauge sector Wilson coefficients
We start with a simple case, considering only gauge sector and using Warsaw’s basis of D6
operators and Wilson coefficients. With a different approach in rescaling the Lagrangian, we
compare the results with NN'T's, and then improve the constraints using updated observables’
data.

e Chapter 4: Constraints on lepton sector Wilson coeffcients
New operators with two leptons are added to the Lagrangian. Flavor universal and various
assumptions for flavor non-universal fermions are investigated using the data of flavor non-
universal observables of A%’g’, Rgp.

e Chapter 5: Constraints on lepton and quark sector Wilson coefficients
With the relevant observables for quarks of A%%,, A%, RY R added, we investigate another
perspective of view that all relevant gauge sector Wilson coefficients are nulls. Fits for lepton
and quark sectors are performed using several lepton flavor non-universal and quark flavor

universal assumptions.



Chapter 1

Standard Model Effective Field Theory
(SMEFT)

1.1 Introduction to SMEFT

Standard Model (SM) of Particle Physics has been tremendously successful when describing the
electromagnetic, weak and strong interactions as gauge field theories, constructed from an under-
lying symmetry called local gauge symmetry. The SM interactions and perturbative predictions
have been tested and agreed to an amazing precision. Nevertheless, new physics beyond SM could
be hidden in the experimental or theoretical errors. To find new physics effects, we use the SMEFT
framework. This method can be used to compare theoretical predictions with measurements for
energies below a cut-off scale called A. In this thesis, we assume that A is much larger than the
electroweak scale of v =~ 246GeV. A field theory legitimate above that energy scale A should satisfy
the following requirements (Ref. [I]):

1. Tts group must satisfy gauge symmetries and contains SU(3)c X SU(2);, X U(1)y of SM.
2. Tt includes all SM degrees of freedom as either fundamental or composite fields.

3. It should reduce to SM at low energy scale, provided that no weakly coupled light particle
e.g. axions, sterile neutrinos,... exists.

The SMEFT leads to additional terms with higher-dimensional operators to the SM Lagrangian.
We have:

1 1 1
Lomerr = Ly + o cPQP + o cPQ% + o (F) (1.1.1)

For the consistence with the notation in ”Warsaw” basis in Ref. [1], we absorb the cut-off scale A
to the Wilson coefficients. We also absorb the Higgs field’s vacuum expectation value (vev) of v,
for convenience in comparison with the results in Ref. [2]

2
G e e (1.1.2)

These higher-dimensional operators must satisfy Lorentz and gauge invariance. Therefore, our C;
coefficients, which are constrained in this thesis, are dimensionless. They describe new physics
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fermions scalars
. Y . uhe ) SO-I—
fi 1d l/] — Lp / lag — Lp I d/a J —
e ip e, €rp | dp e, Upp | @Rp | ¥ o
hypercharge Y —3 —1 % % _% !

Table 1.1: The SM matter content in the gauge basis, taken from Ref. [I].

effects. We assume throughout this context that the scale A is far above the Electro-weak (EW)
scale of v ~ 246 GeV (A > v). Hence, the effects of the new operators are suppressed by the
powers of (v/A). Here, the operators in dimension five violate the lepton-number conservation,
therefore we consider only the leading order terms of dimension six (D6) operators in our analysis.

1.2 Notation and conventions

Our notation and conventions are basically based on the Warsaw’s basis in Ref. [I]. We summarize
SM matter content in Tab. with isospin, colour, and generation indices denoted by j =
1,2, a=1,2,3, and p =1,2,3, respectively. Here we specify also Chirality indices (L, R) of
the fermion fields. Complex conjugate of the Higgs field will always occur either as ' or @, where
@ = e1(p")*, and €4 stands for totally antisymmetric tensor with g1 = +1.

The SM Lagrangian [,gt\)/[ reads

4 1 v 1 v 1 v
£y =— A—leVGAﬂ - ZWL{VW’” — BB

1 2
+ (D) (D) +mPe"o — 2 (¢70)
+ifDf — (ITee + qT,u@ + §Tadp + hoc)

(1.2.3)

where f stands for fermion fields, for which the convention for their corresponding hypercharges
are mentioned in Tab. with the convention for Gell-Mann-Nishijima formula of Q@ = 7% + Y.
The Yukawa couplings I., ¢ are matrices in the generation space. Our convention for covariant
derivatives reads,

D, =0, +igB,Y +igW,T" +ig,G,T*, (1.2.4)

whereas, 74 = IA* and T/ = 177 are the SU(3) and SU(2) generators, while A* and 7/ are the
Gell-Mann and Pauli matrices, respectively.
We define Hermitian derivative terms as follows:
<>
I

15 - pay i ot T P
oD, o =ip (DM—DM><,0 and  @'iD, o =ip (7’ DM—D,ﬂ')(,O, (1.2.5)

(—
whereas, oD, o = (D,p)Tp.
The gauge field strength tensors and their covariant derivatives read

Gﬁu = aqu - a,/Gﬁ - gszBCGEG§> (DpG;u/)A - apGﬁu - gszBCG,]};GC

v
ij = E)qu—&,Wlf—ge”KWij, (D,,W,W)I = 8ijy—g5’JKWjW/ﬁ,
B, = 0,B,—0,B,, D,B,, = 0,B,.. (1.2.6)

Chapter 1. Standard Model Effective Field Theory (SMEFT)



1.2. Notation and conventions 7

Dual tensors are defined by qu = %EWWXPU (€0123 = +1), where X stands for G4, W' or B.
The Higg doublet is expanded arround vacuum as:

@) =)+ 0= (1, s 0 ) (127)

whereas,

{p) = % (2) : (1.2.8)

with v is the vev of Higgs field. Take into account the contribution from D6 operators in ¢° and
©*D? sector, the effective Higgs potential reads:

Vip) = —p(Te) + %(90*90)2 + Colpte)®. (1.2.9)

We assume p? > 0 and A > 0. The potential reaches its minimum when:

aV (p)
dp

— 0, (1.2.10)

or

A— /N = 122C
f Hoe (1.2.11)

oo = 6C,

To the first order in D6 Wilson coefficients, the vev reads:

i \/2_A50@. (1.2.12)

Note that when absorbed in to the D6 Wilson coefficients as Eq. (1.1.2)), to the linear order of the
Wilson coefficients, only the term 2u?/) of the vev contributes.

Chapter 1. Standard Model Effective Field Theory (SMEFT)



1.2. Notation and conventions 8
X3 o0 and 1D? 2P
Qe | [APeGiralarr | Q. (¢7p)? Qo | (20)lpere)
Qs | FAPCGIGTPG" | Qo | (ple)O(ete) Qug (0t 0) (@purP)
Qw | eEWIWIPW | Qup | (TD0)" (91 Due) | Qs (eT) (@pdre)
Qi EIJKWPILVWI;]PWPKN
X242 W2 X o W22 D
Qec ol GG Qew | (Gore ) oW, || Q1) (i Dy ) ("1
Q. ol GA,GAm Qen (lpo* er) B QY (soTiBJ @) (L' y"1;)
Qv | SloWLW | Qua | @ T )3, | Qee | (#1iDu0)Enter)
Qi | eleWLW™ | Quw | @ou)gWh, | Q% | (¢iDue)@n'e)
Qoz | ¢eBwB” | Que | @r"u)FBu | QF | (41D} Q)@ e
Qi | eeBwB” | Qi | @o"T4d)0Gh, || Quu | (e'iDye) (@)
Quws | o WLBY || Qv | @od)r oW, || Qe | (o1iDu o) dd,)
Quvp | STeWhLB™ || Qs | (30" d)¢Bu || Quua | (@ Dup)(wn"d,)
Table 1.2: D6 operators other than the four-fermion ones, taken from Ref. [I]. Here the indices “p",
“r" stand for generation indices, “A”, “B", “C" stand for SU(3) indices from 1 to 8, “I", “J", “K"

stand for SU(2) indices from 1 to 3.

Chapter 1. Standard Model Effective Field Theory (SMEFT)




1.2. Notation and conventions 9

(LL)(LL) (RR)(RR) (LL)(RR)
Qu (Lpyudr) (Is7"12) Qee (epyuer)(Esv*er) Qie (Ipvuly) (B er)
W @) @) || Qu | @) @atu) | Qu | Gyl ()
D @)@ T a) || Qu | (dyd)(dotd) | Q| Gyl (diyy)
Qz(;) (LYl ) (@57 qe) Qeu (epyuer) (s uy) Qe (Tpyuar) (Esyer)
Ql(j) (v 1) (@ T @) || Qed (epyuer)(dsy*dy) ét) (Tpypuar) (s uy)
o (et ) (dsyPdy) 1 (@yuTAq) (@ Ty
Q) | @ T u)(deyTAde) || QY | (@uar)(dsrtdy)
QW | (@ TAa) (dey*TAdy)
(LR)(RL) and (LR)(LR) B-violating
Qledq (Ber)(dsal) Qdug ePVey, [(dg‘)TC’uﬂ [(qgj)TClﬂ
QUri | (@un)ejn(@idy) Qqqu ePUe [(qgﬂ')Tquk} [(u)T Cey]
QW | (@Tu)ejn(@ETAdy) || Quag Ve jnerm [(qgj )TquBk} [(@d™TCy]
Qi (Bher)ejn(@ur) Qaun B [(dg)Tcuﬂ [(u2)7 Cey]
Qlequ (Bhopwer)ein(@oru)

Table 1.3: Four-fermion operators, taken from Ref. [1]. The conventions for indices are the same with
Table [1.2] appart from the indices “s” and “t”, which also stand for generation indices.

Chapter 1. Standard Model Effective Field Theory (SMEFT)



Chapter 2

Wilson coefficients fitting methodology

2.1 Input data and observables

We introduce the P; scheme with a set of EW input parameter, including Z boson’s mass (my),
Fermi’s constant (Gp) and the fine structure constant at Z scale [a(mz)]. Numerical values of
these parameters are obtained from Ref. [3]:

Input parameters Value Ref.
mz|[GeV] 91.1876 + 0.0021 [, 5], 6]
Gr[GeV™ 1.1663787(6) x 10~° | [5l 6]
a(my) 1/128.886 + 0.090 [4]

Table 2.1: Input parameters values, taken from Ref. [3].

Here, the masses of leptons and light quarks (u,d,c,s,b) are neglected.
The physical positron charge (e) at my is determined as:

e = +/4ra(myz). (2.1.1)

The experimental and theoretical values for these observables are also obtained from Ref. [3], and
showed in Table [2.21

Apart from the observables in Table 2.2 we also get the data of T} [GeV] = 2.085 & 0.042
from Ref. [12] and ' [GeV] = 2.0896 +0.0032 from Ref. [13] for the constraints, with correlation
between 'y and myy is —6.7% from Ref. [4].

We got the correlation matrix for these observables from Ref. [4]. To constrain the D6 Wilson
coeficients, we define the observables and pseudo-observables obtained from Z-pole data at LEP1
as follows.

The decay width of Z-boson to two fermions:

2 2 2
ree g mZ
555 = Tia VX, X = (c€> + (cﬁ) : (2.1.2)

The hadronic pole cross section, and RY, RY, R2:

0 . 1271' Fethad
Ohad =

i 2.1.3

10



2.1. Input data and observables 11

Observable | Experimental Value | Ref. | SM Theoretical Value | Ref.
Tz |GeV] 01.1876 + 0.0021 [ - -
My |GeV] 80.385 +0.015 [ 80.365 + 0.004 [8]

o9 [nb] 41.540 + 0.037 [4] 41.488 + 0.006 ]
['z[GeV] 2.4952 + 0.0023 [4] 2.4943 £ 0.0005 [9]
RY 20.767 £ 0.025 [4] 20.752 4+ 0.005 [9]
RY 0.21629 + 0.00066 [4] 0.21580 4 0.00015 [9]
RY 0.1721 4+ 0.0030 [4] 0.17223 4+ 0.00005 [9]
Al g 0.0171 £ 0.0010 [4] 0.01626 4+ 0.00008 [10]
A%y 0.0707 £ 0.0035 [4] 0.0738 4 0.0002 [10]
Ab g 0.0992 £+ 0.0016 [4] 0.1033 4+ 0.0003 [10]

Table 2.2: Experimental and theoretical values of the LEPI observables used in constructing the
x? constraint functions. The results are grouped in terms of the precision of the measurements
made. The entries above the double line are measured to better than percent accuracy, the entries
below the double line are measured to an accuracy of a few percent, taken from Ref. [3]. The
observables on the table are indirectly derived from the following input: 7, = 125.09+£0.21 £0.11
from Ref. [11]; /n; = 173.21 £0.51+0.71 and &, = 0.1185 from Ref. [5]; Ad = 0.0590 from Ref. [9]

R) = Thaa/Tee, RY = T5/Thad; R =T /Thad, (2.1.4)

with the hadronic decay width, implied by quark universal assumption,

Fhad - 3 : FbB + 2 : FC(_:' (215)
The forward-backward asymmetries:
3
£
A = 1AAS, (2.1.6)
whereas,
A =2cl¢ 1\ (2.1.7)

The W-boson decay width into two fermions, with the quark flavor-universal assumption, and
rejecting the case of decay into top and bottom quarks:

2
_ gwmw

r
W 487

(X + xi7 + X0 + X)) S (2.1.8)
where as, xff = (fy)? + (cf ).

Noticing that the formulas above for those observables and pseudo-observables remain unchanged
when we take into account the D6 operators with only gauge boson or with two fermions.

Chapter 2. Wilson coefficients fitting methodology



2.2. x? fitting method 12

] Without lepton universality H Correlations \
x?/dof = 32.6/27 my Iz oby R R, RY AYG AR, AVL
myz [GeV] 91.1876+ 0.0021 1.000
'z [GeV]  2.4952 + 0.0023 || —0.024 1.000
ol 4 [nb] 41.541 £ 0.037 || —0.044 —0.297 1.000
RY 20.804 + 0.050 0.078 —0.011 0.105 1.000
Rg 20.785 + 0.033 0.000 0.008 0.131 0.069 1.000
R? 20.764 £ 0.045 0.002 0.006 0.092 0.046 0.069 1.000
A%% 0.0145 £ 0.0025 || —0.014 0.007 0.001 —0.371 0.001 0.003 1.000
A%‘é 0.0169 +£ 0.0013 0.046 0.002 0.003 0.020 0.012 0.001 —0.024 1.000
A%E 0.0188 + 0.0017 0.035 0.001 0.002 0.013—-0.003 0.009 —0.020 0.046 1.000
’ With lepton universality H Correlations ‘
x%/dof = 36.5/31 my Ty ody R) AVL

my [GeV] 91.1875+ 0.0021 || 1.000

T, [GeV]  2.4952 4 0.0023 || —0.023 1.000

o0 . [nb]  41.540 & 0.037 || —0.045—0.297 1.000

RY 20.767 + 0.025 |  0.033 0.004 0.183 1.000

A%E 0.0171 + 0.0010 | 0.055 0.003 0.006 —0.056 1.000

Table 2.3: Combined results for the Z parameters of nine pseudo-observables. The errors include
all common errors except the parametric uncertainty on myz due to the choice of my, taken from
Ref. [4].

2.2 ? fitting method

We introduce a statistical fitting method of linear least-squares fit, or x? fit, which is mentioned
in Ref. [14].
Provide that A (x;0) is a linear function of parameters 6,

Ax:0) = Ayb;, (2.2.9)
j=1

where A;; = a;(x;) are linearly independent functions of x.

With the value of A;; obtained, we now fit for the estimator 6, from the data set of measured
values y; and predicted values )\;. The estimators are best fitted when the following quantity of x?
is minimized:

X’=@-N"V1y-A) (2.2.10)
=(y— A9)"V iy — A), (2.2.11)

whereas, ¥y = (y1,...,yn) is the measured-value vector, while A = (Aq, ..., Ay) is predicted-value
vector with the components of \; = A(z;;0).
The x? reaches minimum values when its derivatives with respect to parameters 6; equals to zero:

Vx? = 24TV ly — ATV 1 A6) = 0. (2.2.12)

Chapter 2. Wilson coefficients fitting methodology



2.3. Usage in our model 13

Providing that the (ATV~1A)~! is not singular, we can solve for the estimators 6
6= (ATVTA) ATV 'y = By. (2.2.13)
The covariance matrix for the estimators can be derived by using error propagation:
U= BVBT = (ATv-1A)"! (2.2.14)

whereas Uy, = cov[f;, 6]

2.3 Usage in our model

For the observable O;, with Oe,; stands for experimental value and Oipeo,i for theoretical value

O theoz <1 + Z Cj ) + AO’L? (2315)

whereas, C; stand for estimators of Wilson coefficients, ¢; are their corresponding constants depend-
ing on the input parameters given in Sectlonn OSM stands for complete SM result (with higher
order corrections), AO contains the radiative corrections to the dimension six Wilson coefficients.
In this context, AO is neglected as we assume it is very small. We have:

Y = O — O (2.3.16)

The matrix element A;; corresponds for Otheoz cj, where the covariance matrix V' = Vi + Vineo,
with Vi, is the experimental covariance matrix obtained from Table [2.2 Table and Vipeo iS
the diagonal matrix of theoretical variances obtaining from Table [2.2}

V V” + Vheo = Uexpp J + O-theo(;“o—thew (2317>

exp

where p¥ stands for correlation between two observables O; and O;; 6% = 1 when i = j and 6 = 0
when i # j.

2.4 P-value of the fit

An alternative way to evaluate the goodness-of-fit test results is to used P-value, or sometime
called “observed significance level” or “confidence level” of the test (Ref. [14]).
First, considering the probability distribution function of y? distribution:

fOGv) = !

2\v/2-1,_-x2/2

where as v is the degrees of freedom (d.o.f) and equals the difference between the number of
observables and number of Wilson coefficients, v = Nops. — Nwilson coeft.; L (/2) is the Euler
Gamma function, I" (2 fo ez dy.

P-value is deﬁned as Ref. [14]: The probability, under assumption of the null hypothesis Hy, of
obtaining a result as compatible or less with Hy than the one actually observed and calculated as
follow:

o0

P-value = / FOC;v)dx* (2.4.19)
Xr2nin

Chapter 2. Wilson coefficients fitting methodology



2.5. Pull of the observables 14

2.5 Pull of the observables

Obtained the central values for D6 operators, we calculate the “pull” for the observables, compared
to the experimental data,

Oﬁt,i - Oexp.,i

Pullp, =
\/((5()1%,1')2 + (5Oexp.,i ) 2

, (2.5.20)

whereas Oy ; is the fitted observables,

Ofiti = Ot (1 +) cﬁ@) . (2.5.21)
J

We define:

X'=1+) dC; (2.5.22)
J

Now, in order to find §Og; ;, we use the propagation of uncertainty formula, given in Ref. [14]:

" [y Oy
’y)~ ) [%a—%] Vij, (2.5.23)
(2 le,ll

1,j=1

where the function y(z) is expanded to the first order about the mean value p of z.

T=p

y(x) ~ (1) + Z {gx} (@i — pa)- (2.5.24)

Applied to our problem, assume there is no correlation between the Otsﬁ\edo_J and the Wilson coeffi-
cients C’j. We can obtain the 0Og;; by the propagation of uncertainty:

(60616)* = (Ofes.)” - (6X7)* + (004neo i) - (X)?, (2.5.25)
with the (6X%)? reads:
(6X)* = Diag (Mcoet. * Moy, - Moeqt) - (2.5.26)

where as, (6X)* is a vector with components (6X*)?. The matrices Mcoesr., Mcoy. respectively
stands for coefficient matrix (Mg q = ¢;) and covariance matrix (between D6 Wilson coefficients),
with “Diag()” stands for taking the diagonal elements of a matrix.

Chapter 2. Wilson coefficients fitting methodology



Chapter 3

Constraints on gauge sector Wilson
coeflicients

3.1 Gauge sector Lagrangian

In this chapter, we consider only D6 operators related to boson fields, i.e. gauge boson and scalar
boson fields. Operators with fermionic fields will be added in the next chapters.
The Lagrangian for the gauge boson propagation:

1 y 1 v
Low = =W W™ = 1 BuB" + (Dug) (D)

1
+ 5 | Cow (D" OWa W 4 Cop(0) B B + Cow (7 o)Wy, B

+ CwD(sOTDusO)*(sOTD“sO)] , (3.1.1)
1 1
Lqcp = —ZGZ‘VGA“” + EC“”G(@T@)G;‘VGAW , (3.1.2)

Note that since the operators EW, W,{V and é;‘u influence only CP-violating vertices and their
bilinear terms are total derivatives and do not affect propagators (Ref. [15]). We shall neglect
them in our discussion here.

Now consider:

2
v
(Dup) ' (D) D g% (W, W+ W) (3.1.3)
,02 2 WSM
oW B (_g@ , gg%) ( BM) (3.1.4)
* U2 2 _qd W3H
(' D) (o' D) D 5 (W2 By (_g%, Z%) ( B”>. (3.1.5)

The EW term is rewritten as:

1 v 1 v 1 v
Low == (1 =207 W, WY = (1= 207 By B = 5 CHREW, B!

2 2 2 / 3
oV 115/1 21172 v l _.p g —g9 Wwenr
+g g(W#W B4 WMW )+ 5 (1 + 56"" ) (I/Vj’ Bu) <—gg' 9,2) ( B ) )
(3.1.6)

15



3.1. Gauge sector Lagrangian 16

Now we rescale our gauge fields and couplings as:

Wi=1-20"W,~ (1-C™")W/., g=1+Cc""g, (3.1.7)
B,=+V1-20%BB, ~ (1-C*")B, , 7= (1+CB)y, (3.1.8)
G =1 -20%0G] ~ (1 — C¥9)GY, gs = (1+C*%yg, , (3.1.9)

with the symbol “~” standing for approximation to the linear order of Wilson coefficients. The

gauge invariance is preserved in that such transformation, and also the form of the covariant
derivative, which now reads,

D, =D, =08, +igB.Y +igW.T' +ig,G,T", (3.1.10)

while the field strength tensors rescale the same way as their respective fields. Furthermore, we
have G;‘gs R~ G;‘gs, which makes QCD Lagrangian terms unchanged compared to SM.
The bilinear part of the EW Lagrangian reads:

‘CLBZ‘ié‘i/near —

_ _ _ _ 1, - _ 1 € ﬁfS/u/
1 v 2 2uy
(W WH - W, W) = 3 (W B ( 1) <B>

|

921}2 o o
+ T(Wgwlﬂ + W22 (3.1.11)
2 C D B _ §2 _ggl W3u
s () o s (5 ) ()
1 o 1 e\ (W3
= —sWu W -4 (W2, Bu) (6 1) (BW)

LI tyn (3.1.12)

where we have defined,
e=Cowp . (3.1.13)

In Eq. (3.1.12), we have identified the physical charged gauge bosons let as:

+ _ Tl T2
Wi = —2(WM FiWy), (3.1.14)
with,
222

2, = %. (3.1.15)

Now considering the Lagrangian of the form:

| IUURRREE BSURRUUR [ D
L=— EWMVWHV — ZWMVW#V — ZB‘“’B’“’ — égWWBW

) (3.1.16)

R 5 A 8 7
+ iy WIW, 4 omsW Wi+ Smi BB, — mipy Wi B,.

Chapter 3. Constraints on gauge sector Wilson coefficients



3.1. Gauge sector Lagrangian 17

where G, m¥,, m3 and m% are free parameters and m%, = mpms.
The Lagrangian can be diagonalized and normalized by the transformation:

<g?):x<i3, (3.1.17)

where the matrix X expresses the transformation of a rotation, a rescaling, and another rotation

as Ref. [16]:

DT s D (i) e

with
tangoz(m3+m3)/ L9~ (ms —mp)/v1—9 (3.1.19)
(s + ) VTG + (5 — mi) VTG
We obtain the Lagrangian with canonical kinetic terms and diagonal masses:
- 2 - L L o5 1
L= _§W#VWHV + mWW# W,u — ZZNVZ/-“’ —+ §mZZ“Zu — ZA“VAMV, (3120)
whereas,
2 2
o m3z+mp—2Gmamp
my = 1 —¢ (3.1.21)
With G = —e, taking all terms to the linear order of Wilson coefficients, the matrix X becomes:
1 -£ cosf sinf
_ 2 _ 7
X ( —5 1 ) ( —sinf cosf > ' (3.1.22)
The mixing angle now reads:
g9 . € 7’
t ==4+-|1-= 3.1.23
- §+2< f>’ (3:1:23)
so that:
B . _ B gl € g g2 _ g/2
SWZSIDQ{/[/—W (14_55‘@24—@& 5 (3124)
~ - _ B g € g/ g2 _ glz
CWZCOSQW—W<1—§.E.§2+§/2 . (3.1.25)
For the Z boson mass we obtain
2 ==/
—o Vo p 1 299
my = Z (g +g ) <1 + §C¢D + —§2 n §/20¢WB) . (3126)

Chapter 3. Constraints on gauge sector Wilson coefficients
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The photon remains massless since the determinant of the mass matrix in Eq. (3.1.12) vanishes.

Now for convenience, we introduce some conventions:

=/ =2
- € g € g 2
= + -y —— 1+ ==
Sw Sw 20W \/m ( 2 g/ 92 _|_g/2>
o= sy ey~ 9 (1.8, 2"
W 2 §/2+g2 2 g §2+g’2 )
- - —2
gt a9 (€9 %
CW_CW+28W 9'2—1-92( +2 g ?+g%)’
ooy Csym I (1 €T %
W= 2 /5% 1 2 27 #+3%)’

We rewrite the EW covariant derivative in term of physical fields:

DEV =, + z‘%(ﬁwj T W)+ (g T — 955V ) Z, + (35T + 98 Y) A,
=0+ igw(T"W, +T W, ) +igz(T° — 53,Q) Z, + ieQA,,
whereas we redefine the effective electric charge and couplings:

|99
92+gl2 ’

e 99
e =ay = =

5. ot =1 5t > =2 =12 popt}
_ _9-Cy 9 Sy € g +g - - €99
= R~ 1+ VPP 1+ =",
ETE T TR swaw ( 299 6) oy ( 7+

We can now derive the neutral gauge boson - fermions interation Lagrangian:

LA =—g,2,74,

int

with the neutral current,

T = SF[(T% - 25,Q) v — Th7) £

N | —

3.2 Comparing with NNP approach

(3.1.27)
(3.1.28)
(3.1.29)

(3.1.30)

(3.1.31)

(3.1.32)

(3.1.33)

(3.1.34)

(3.1.35)

(3.1.36)

(3.1.37)

(3.1.38)

Now we compare the rescaling method above with NNP approach in Ref. [2]. In our approach, our
basis of D6 operators in the sectors of EW gauge boson fields and gauge boson fields combined
with the SM Higgs fields differs from Ref. [2]. We exclude the operator Q% of (") (D) (DH )
and add two additional terms: @, of (¢'p)® and Q.o of (pT¢)T(pip). The two operators Quw,
Q.5 are also taken into account with the difference of an additional factor 1/2 in Ref. [2].

Chapter 3. Constraints on gauge sector Wilson coefficients



3.2. Comparing with NNP approach 19

With the following notation for D6 operators terms:

a=1-2cs.Cowp — 2Cw — 8,2C,p, (3.2.39)

b= (df —82) Cown + 5l (Cop — Cow) (3.2.40)

d=1 + 2C<VS<;VCQOWB — S;,QCSDW — C;\?C‘pB, (3241)

t=ad— b, (3.2.42)

the fields and field strengths,
T

V,=(2,4,)", (3.2.43)

Vi =0V, -0,V (3.2.44)

Wi, = 0w, —0,W.*, (3.2.45)

where the prime denotes physical gauge-boson fields if all D6 terms vanish. The physical gauge-
boson fields of the full Lagrangian are without the prime, namely A,, Z,, W,,. Their approach is
to rotate and rescale directly the physical gauge boson fields by the transformation:

Vi =CV,, (3.2.46)

whereas,

AN
C— ( RO ) (3.2.47)

and by the relations of:

m2 0
T=C'T'C=1, M=CTM'C = ( oZ 0 ) : (3.2.48)
whereas,
a b 1 1 0
T’:(b d>, M':mg(1+§(h§;>+h§§’>)><0 0), (3.2.49)
with
mz = (¢* + g*)v?/4, mp = g*v?/4, (3.2.50)

to simultaneously rescale the kinetic terms and diagonalize the mass terms of the effective La-
grangian:

Lo = — iv;ﬁ T V™4 %Vf M v (3.2.51)
— % (1= hyw) Wi W' +mig (1 + bl /2) WiEw' =+ (3.2.52)
into the standard form of:
Lo = — i(ZWZ’“’ + A, AP + %mQZZMZ“ (3.2.53)
- %W;VWW— +my WIWe, (3.2.54)

Chapter 3. Constraints on gauge sector Wilson coefficients



3.3. Pz scheme 20

with:

1+hg'2

2 _
WS Ty W
-

mZ = %l (1 + %(hfﬁ + hf))) -m/2. (3.2.55)
This is also a beautiful approach. Within the approximation to the first order of D6 Wilson
coefficients, all the physical results derived by the two approaches, such as effective EW gauge
boson masses of myz, my, effective couplings gz, gw, effective electric charge e, and even the
effective 5%, (as we shall see in the next section) are exactly the same. It is important to note
that the D6 operator basis in Ref. [2] is wrong as we have mentioned earlier, however since the
operators of Qg), Qo, QS% does not contribute to the physical results above, the final results in
the two approach should be the same.

3.3 P, scheme

The Py, scheme is defined in Ref. [2]. Here we use this scheme for our rescaling method with
Warsaw basis.
We expand the gauge boson masses to the first order in the Wilson coefficients:

2 ——/
o R S 1 299
my = Z (g + g’ ) (1 + §O¢D + WOSOWB) (3356)
1
~m% (1 + 263, Cow + 255,Cop + 5(1@ + 2chWc¥,WB) , (3.3.57)
=2,,2
iy = % (3.3.58)
~miy (14 2C,w). (3.3.59)
whereas,
/
ew = s sy = ——2 (3.3.60)

/g2 + g/z'
Substitute Eq. (3.3.57) and Eq. (3.3.59) into the equation m%, = ¢ m?%, we obtain:

(1 + 20@/{/) 2 =2
cyymy. 3.3.61
1+ 2c2,Cow + 25%Cop + 2Cop + 2swewCowp - ( )

_92
my, =

The charge reads,

~— ~—
=9 (1 - %) (3.3.62)
VG%+ g7 g°+g
~ e? (1 + 28%[1090‘/[/ + 2012,‘/0903 — 2SWCWC¢WB) , (3363)

and charged current coupling reads:

_ g
G =% (3.3.64)
=2
e
= 5 (1= 253 Coaw — 263 Coop + 2swew Cowp) (1+ 2Cow) (3.3.65)
w
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In the low energy limit, where the propagator of W boson become point-like, Fermi’s constant is
given by interactions of two charged-current, (see Sect. 22.3 of Ref. [17]), including all possible
Wilson coefficients, we have:

Vu
e "
-
4 o gw (Bee | @) " Gy
=G =T (1 C C ““)— W Tu 3.3.66
V2 F m%v +Cu + 0y 02 02 ( )
For lepton flavor universality:
4 o Gy ) _ 2
T30 =i (1 + 20 ) ~ 5Ca, (3.3.67)
g ®
=y <1+2C¢l —C”>. (3.3.68)
w

In this analysis, we assume that all the four-fermion contributions are nulls. We have:

- V205 (3)
Gr =g (1 +208 ) . (3.3.69)

V2 e 1
:TFW 1 + 2(0%/‘/ — 8%{/>C<pW + 2(8%,‘/ — C%/‘/)C@B
w=w'tz

) (3.3.70)
+ §C¢D -+ 45WCWC¢WB + QCS):| .
From Eq. (3.3.70)), we obtain an equation for s, in quadratic form:
2
Sty — S+ % {1 +2(cy — sty ) Cow + 2(s3y, — i) Coop
A2Gpmy (3.3.71)
1
+§C@D + 45WCWC¢WB + 20;3)1 = 0.
Solving for the Eq. (3.3.71)):
z 1{11{1 ¢ {1+2(2 2)C.
Sw =5 T T AA -9 Cw — Sw)ew
2 V2G pin?
ez (3.3.72)

1 2

[

For the two solutions above, we adopt only the one, since the “+” is far from the physical
value. For the case of all Wilson coefficient are set to zero, we denote:

2 1
2_ 1—(1—f—> } 3.3.73
=34 NI s (33.73)
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3.4. Comparing with NNP results 22

To the first order in Wilson coefficient, the un-rescaled weak mixing angle reads,

4s¢c3 c2
8%,[/ ~ 5(2) |:1 + 20(2)(0901/[/ - Cch) + FOE%O@WB + Wisg) (O@D + 40;?) :| s (3374)
and the rescaled one:
2oaslle— O O <C p+ 40(?;)) . (3.3.75)
so(cp —s5) ” 2cg—sg) \ 7 ’

This quantity of 5%, is equivalent, and exactly the same with the sin; in Ref. [2], expressed in Py
scheme.

Our observables of interest now can be rewritten in terms of 53

The Z-boson decay width to two fermions:

_2 —
T gzmz
riree = 222 Ny f 3.3.76
T gy X ( )
with,
v_ 1 ! A 22 1
X'= 3 X =45y — 255, + 3 (3.3.77)
. 16 4 1 4 2_ 1
The forward-backward asymmetries:
3
A% = TAAT (3.3.79)
whereas,
Ay =26,¢ /X7, (3.3.80)
with,
1 22
-Ay = 1, .Ag = 5 - 2SW /Xg, (3381)
1 4. 1 2.
Au = (5 — 55124/) /Xua .Ad = (5 — 58124/) /Xd- (3382)
Beside the 5%, we also have these quantities modified:
2
_ 50Co &) (3)
mw = Cony |:]_ + HCS@WB —|— m <O¢D —f- 4C<pl >:| . (3383)
_ 2
_ € S0Co Co (3)
- 1 C ot (Cop + 40| 3.3.84
= o (1 g g g (G402 .
_ €2 mycy 50Co 2 3 0 en T
FW = 18+ 23(2) |:1 8(2) — 0(2) CchB + WO—C%) <C¢D + 4C;l)>:| (GX?/V + XWE + XleV =+ XWT)‘

(3.3.85)

For the case of Wilson coefficients only from gauge sector, we neglect the contribution from C’gz).
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3.4 Comparing with NNP results

Obtaining the observable data from Ref. [2], the set of theoretical values depending on Higg masses
because higher-order corrections to the SM prediction are included. Note that Ref. [2] was done
when the Higgs mass was not known.

The set of experimental values:

= 91.1875 + 0.0021, ( )
= 2.4952 + 0.0023, ( )
o004 [nb] = 41.540 & 0.037, (3.4.88)
RY = 20.767 + 0.025, ( )

A% = 0.0171 £ 0.0010, (3.4.90)

55y = 0.23148 +0.00017, ( )

my = 80.449 =+ 0.034, ( )

Tw = 2.136 + 0.069. ( )

Here, NNP use the same correlation matrix with ours in Table 2.3 From that matrix, we keep
only the 3 x 3 correlations between 'z, opaq, R? and drop the rest. By adding an additional row
and column for 53, with no correlation to the other observables, we have for [['z, 00,4, R}, Siy/]-

1 —0.279 0.004 0
1 0183 0
g (3.4.94)
1

In this derivation, we need the SM predictions including higher-order effects as explained in Section
[2.3] They are provided in Table[3.1] Adding the theoretical uncertainty to the diagonal components
of the covariance matrix coming from (3.4.94)), using x? method, we derived the results in Table
3.2k

We now include the data of W mass and width in our analysis. With their error correlation of

My 120 GeV 200 GeV 500 GeV 0X

52 0.23156  0.23180  0.23230 0.00030
Iy [GeV] 24952 24938  2.4902  0.0026
o0 nb] 41484 41485 41489  0.015
RY 20.737 20732 20723 0.018
my [GeV] 80.374  80.341  80.269  0.041
Ty [GeV]  2.0896  2.0380  2.0832  0.0032

Table 3.1: Values of various observables O predicted by the SM for different Higgs masses. The
dependence of their uncertainties 60 on mpy is negligibly small, taken from Ref. [2].
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0 0 =2
FZ? Ohads RZ? Sy

my 120 GeV 200 GeV 500 GeV  §C x 10°
Cown x 103 —0.0619 —0.2421 —0.5027 0.8138
CLpD x 103 0.4147 —1.0225 —2.8197 2.8187
o 55205 25440  2.4012

P-value (d.o.f =2) 0.2833 0.2803 0.3010

Table 3.2: Our results computed for Higgs mass of 120 GeV, 200 GeV, 500 Gev repectively, with
the correlation between Cu,wp and C,p is —85.8094%. Note that the dependence of §C and the
correlation on my is very weak and not visible in this table.

Observables H Iy ol RY) 5%
120 GeV 0.169 —1.410 —0.893 —0.077
200 GeV 0.168 —1.402 —0.921 —0.081
500 GeV 0.159 —1.337 —0.934 —0.085

Table 3.3: The pull for observables following the results in Table [3.2]

M 120 GeV 200 GeV 500 GeV 6C x 103
Cowp x10° —0.26 —0.44 —0.68 0.81
C,p x10° 0.38 —0.24 —2.08 2.81

Table 3.4: Same as Table [3.2] but this is the result of Ref. [2]. The correlation is —86%.

’ Observables H Lz op R} 5%y ‘
120 GeV —0.021 —-1.412 —0.880 —0.127
200 GeV —0.019 —1.404 —0.907 —0.135
500 GeV —0.022 —1.338 —0.925 —0.120

Table 3.5: The pull for observables following the results in Table [3.4]

—6.7% (Ref. [4]), we get the correlation matrix for [['z, op. 4, RY, 5%, mw, Dw]:

1 —0.279 0004 0 0 0O
1 018 00 0
1 00 0
o o (3.4.95)
1 —0.067
1

We obtain the results:

Comparing to NNP, our results well agree with the error values, however, the central values are
totally different. The pulls in both case are acceptable since they are smaller than 20. NNP results
yvield better pull for I'z, while our results yield better pulls for 5%, and myy.

The reason that we do not agree with Ref. [2] for the central values may be that they have used
a non-trivial method to project the 5 x 5 correlation matrix of Table on to the [I'z, 00,4, RY)
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0 0 =2
Iz, Ohaas Rza Sy, mw, I'w

my 120 GeV 200 GeV 500 GeV  §C x 10°
Cown x 103 0.1282 0.2286 0.4478 0.7856
Cop x 103 —1.7508 —2.4559 —3.9967 2.3900
% 36637 3.7782  3.7322

P-value (d.o.f =4) 0.4534 0.4369 0.4435

Table 3.6: The same as Table [3.2] but with the additional observables of my, and I'y included.
The correlation is —87.9195%.

’ Observables H Ty ol RY s, my Ty
120 GeV 0.609 —1.415 —0.855 —0.229 —0.517 —0.624
200 GeV 0.635 —1.408 —0.880 —0.243 —0.556 —0.612
500 GeV 0.652 —1.343 —0.891 —0.256 —0.593 —0.603

Table 3.7: The pull for observables following the results in Table [3.6]

mpy 120 GeV 200 GeV 500 GeV  §C x 103
Cown x10° —0.04 —0.20 —0.43 0.79
CgoD x10° —1.17 —1.88 —3.81 2.39

Table 3.8: Same as Table [3.6] but this is the result of Ref. [2]. The correlation is —88%.

Observables H Ty  opg RY s, mw Ty
120 GeV 0.466 —1.418 —0.835 —0.303 —0.614 —0.630
200 GeV 0.494 —1.410 —0.862 —0.309 —0.654 —0.619
500 GeV 0.479 —1.340 —0.915 —0.161 —0.776 —0.616

Table 3.9: The pull for observables following the results in Table |3.8]

sub-space. This is not clear from the writing in Ref. [2] and we have contacted the authors without
success. It may be that they have used the profiling method (see e.g. Ref. [3]), but we have not
yet tried this.ﬂ

Now we consider the results for our input values:

[Cor o)
Central Val. x10° || 0.3996 —1.5490
Errors x 103 0.3945 1.8093

Table 3.10: The same approach as Table using our input values given in Section (without
mw and Iy ). The correlation is —98%., with x2. = 2.0630, d.o.f = 2 and P-value = 0.3565.

'We thank Ian Lewis and Julien Baglio for pointing out this method to us.
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’ Observables H r, P 4 Ry Siy ‘

[Pull [ 0271 —1.383 —0.627 —0.007 |

Table 3.11: The pull for observables following the results in Table [3.10

| [T o)
Central Val. x10° 0.4043 —1.5720
Errors x 103 0.2289  0.9166

Table 3.12: The same approach as Table but with my, and 'y, included in the list of observ-
ables. The correlation is —95%, with x2, = 2.0831, d.o.f =4 and P-value = 0.7205.

’ Observables H Iy od 4 R 54, mw Dy ‘

| Pull | 0350 —1.383 —0.626 —0.008 —0.015 0.141 |

Table 3.13: The pull for observables following the results in Table |3.12

Using the new data, our constraints for the errors are 1.5 to 3.6 times better for C g and Cy,p
than using the data of Ref. [2], respectively.
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Chapter 4

Constraints on lepton sector Wilson
coeflicients

4.1 Feynman rules for SMEFT

In this chapter, compared to Chapter 3, we have operators with two fermionic fields in addition.
Due to our limited number of observables, and also the appearance of tensor basis ¢*, which
would make the problem much rather complicated, we shall drop all the D6 terms in 12X ¢ sector.
Considering for the weak boson - fermion vertices, we add to the SM Lagrangian the following
D6-operator terms for the sector of @Z)2 2D and ¢?X ¢ in Table [I.2}

£Weak Boson—ff — Zf@f + O 1) 0(3)Q + O(pthpe
+ C Q + C 3)Q<pq + Cgoquou + CLde(,Dd + Ccpungoud

Assuming no flavor mixings in the Yukawa sector, the fermionic fields in this Lagrangian are the
physical fields, i.e. they are mass eigenstates. The right-handed neutrinos are absent in this work.
We reproduce the Lagrangian for following vertices and confirmed with the Feynman rules in
Ref. [15]:
1. Zvv vertex

(4.1.1)

v
Z
v
_ g +3” 99
Ly, =vV|— _ - C _
’ [ N R "
G +3” () B 42
PYTET (0 o |2
whereas, the left- and right-handed projection operator:
1—7° 1+9°

w_ = 27 , wy = +27 . (4.1.3)

27
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2. Zee vertex

v (8% = 9°) w- +25"%w,)

+ WC@/{/B’V“ ((§'2 — 92) w_ — 2§2w+) (4.1.4)

1 = 1 3
+ 5 g2 + 9/2’}/“ [(Cg(al) + ngal)> w- + Cgoew+:| Zﬂe'
3. Wtev vertex
e
W+
v
Lorr = 7| = I (14 CD) yrw_ | Whe (4.1.5)
W+er \/5 @l 7 - o= e
4. Zuu vertex
U
Zy
U
L _ = 1 n —12 372 47/2
Zuu — U WW ((9 - g)w_+ g w+>
99’ w2 =2 2
- Cows (357 - ) v — Agw,) (4.0.6)

6(g2+g/2>3/2 ¥

+ % 7+ 72" [(CY — CENw_+ Cwy] | Zu.

5. Zdd vertex
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d
Zy
d
- 1
Lo = | e (& 4 38°) w- — 25",
gg/ “w —/12 —2 —2
CownY ((39 +g )w_ — 29 w+) (4.1.7)

6(g2 + §2)3/? ®

1 =
+3 72+ 329" [(C8) + CEN w_ + Cqwy] | Z,.d.

6. Wtdu vertex

d
W
U
Lw+aa = U [ — % (1+ Cgsq))’y“w, — ;ﬁ’y“de’y“er] W.d. (4.1.8)

Now for conveniences in constraining, we rewrite the Lagrangian above in the basis of vector and
axial vector couplings, and make non-universality assumptions only for D6 operators in ?¢*D
sector. Rewrite it in the vector, axial-vector basis:

9z = gw =
Lyps = —7Zuf cl " — CQ,Z’V‘WS] fo Lwegr= TWJJCI [0{2557“ - Cfi]vc?/y”f’] f2, (4.1.9)

where gz and gy are defined in Eq. (3.1.35) and Eq. (3.1.36]) respectively.

1. For the Zvv vertex:

1 3

v pr— v == — . 4.1'10
vz = Caz = 5 + 5 ) ( )
v b A0
X~ = Oyl + O (4.1.11)
2. For the Zee vertex:
(1) (3) (1) (3)
1 —cY_c® _¢ 1 —cY_c® 4o
Gz =28y — 5+ — St = A (4112)
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_ _ 1 _ 1 3 _
X' A Asly — 25h + o+ (285 + 1)(Cy) + ) - 2830, (4.1.13)

3. For the Wtev vertex:

Sy =y =1+ C%, (4.1.14)
X7~ 2(1+209). (4.1.15)
4. For the Zuu vertex:
. 4 1 - +cl)—c,., . 1 =W +c®+c,,
Cvz = —55%1/ tot 5 Y 5t = 2@(1 =, (4.1.16)
L, 16, 4, 1 (4 4
R L (gsa, ) (€~ €) + 53,0 (41.17)
5. For the Zdd vertex:
2, 1 —C%)—C8) —Cp . 1 —C%) — C8) + C
CC\Z/,Z _ 58% -5 i ®q 2s0q wd =5 + ®q 2soq od (4.1.18)
4 2., 1 2 2
X~ 5° 5t — 35% +35+ (—gsiv + 1) (cl)+cl) - gsivqad. (4.1.19)
6. For the W™du vertex:
C ud m C ud
ety =1+C% + o dw=1+ c — — (4.1.20)
X" r2(1+209). (4.1.21)

Here we observe that the Cy,q appears only in the W*du vertex. However, since it vanishes in
X = (c)? + (¢Hy)?, the Cpyug does not contribute hence cannot be constrained by our set of
observables.

4.2 Universal lepton assumption

From now on, we no longer use the pseudo-observables 5%, since, firstly, its experimental value
is derived by combining the other pseudo-observables, which contain many assumptions, therefore
should not be “clean” data; secondly, more important, these assumptions usually do not take into
account the effects of SMEFT. To the best of my knowledge, many groups have performed the
fitting without using the data from 5%,.

From Table we observe that the new D6 two-lepton operators enter into most of the ob-
servables T'z, op.4, RY, A(F)’g, 'y, and dilute the contribution from D6 gauge-sector operators,
especially for the oy, and R).

Our fit results are shown in Tables [4.2] [4.3] and 4.4, Compared to the errors in Table the

new operators weaken the constraints on D6 gauge-sector operators Cy g and C,p to fifteen times

Chapter 4. Constraints on lepton sector Wilson coefficients



4.2. Universal lepton assumption 31

1 3
Cown Cep cy) cy) Coge
T, || —2055 —1.68 —0474 —0.157 —0.474

o 2309 0487 104491  38.256 —60.522
RO |[—13506 —2.847 —44.383 —55.770  38.155
AT —1336 —0282 0394 —0.733  0.458
my || —63.003 —28.727 0. —114.909 0.
Ty || —4915 —2241 0. —7.570 0.

Table 4.1: Coefficient matrix for the case of universal leptons. Analytical results are given in

Appendix

| | cows Cop €Y Y C

ol ol
Central Val. x103 2.82 —5.77 2.72 —0.27 3.72
Errors x10° 3.56 6.26 2.33 0.58 3.51

Table 4.2: Results for the case of universal leptons with x2, = 0.0187, d.o.f = 1 and P-value
= 0.8911.

| | Cows Cop  CY  CY  C.

pl
Cows || 1.000
Cop || —0.972  1.000
ct) 0.937 —0.920  1.000
o) | —0723 0549 —0.647  1.000
Cloe 0.932 —0.942 0986 —0.561 1.000

Table 4.3: Correlation matrix for the case of universal leptons.

’ Observables H Iy opa RY AL mw  DTw ‘
Pull [ 010" 0107° O(10°) —0.001 O10 ") 0137

Table 4.4: Pull values for the case of universal leptons.

(3.56/0.23) and seven times (6.26/0.92) respectively. However, all the D6 operators deviate less
than 1.50 from 0. The P-value (of 0.8911) is very high, which means our null hypothesis is pretty
extremer than what was actually observed, the results are strongly statistically insignificant.

Correlations are provided in Table [4.3

All the recalculated observables deviate much less than 1o from experimentals, implying that
our fitting results are good.

Now we shall consider the non-universal lepton case.
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4.3 Non-universal C,. assumption

Now we consider the non-universal lepton case. For the three types of D6 lepton-operators of CS)p P

CS)p P (@ (where p = e, pu, 7), generally, with 3 flavors for each type (assuming no lepton-flavor
violation e.g. [.y*l, is forbidden), we can assume 9 operators, adding up the two gauge-sector
ones, we have in total 11 operators in our set. However, since there are only 10 components in our
set of observables, we must make some additional assumptions to reduce the number of Wilson
coefficients. Firstly, for a simple case we consider the non-universality for only operators of the
type CPL.
We rewrite the vector and axial-vector couplings for the involving vertices,

1. For the Zvv vertex:

(1) (3)
1 -CV+C
=y == —L (4.3.22)
2 2
v o1 L) A0
X~ = O+ Oy (4.3.23)
2. For the Zee vertex:

(1) 1 3
1 =G = Clap — O3 1, oy - o

l _ l l
c&:25%v—§+ 2 5 . =gt 5 : (4.3.24)
_ _ 1 _ 1 3 _
X' Ay = 288 + 5 + (—285 + 1)(CY) + ) — 283, (4.3.25)
3. For the Wer vertex:
ev __ev _ (3)
Fw =Gw=1+Cy, (4.3.26)
ev o (3)
X =2(1+20))). (4.3.27)

Our fit results are shown in Tables [4.6] and [1.8] As we observed, the constraints on gauge-sector
operators are slightly weakened. Considering lepton-sector, the C(S), CS) are slightly weakened,
the CT? are also weaker constrained than the C,, in the universal case.

The P-value (of 0.5289) is high, which means our null hypothesis is much extremer than what
was actually observed, the results are strongly statistically insignificant.

For the pull, all the fitted observables greatly agree with the experimentals values.
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Cowp Cep cl) cy) Coe Gt CU
'z —2.055 —1.68 —-0.474 —-0.157 —-0.158 —0.158 —0.158
Ugad 2.309 0.487 104.491 38.256 —71.028 5.253 5.253
Rg —13.506 —2.847 —44.383 —55.770  38.155 0. 0.
Rg —13.506 —2.847 —44.383 —55.770 0. 38.155 0.
Rg —13.506 —2.847 —44.383 —55.770 0. 0. 38.155
A%’E —1.336 —0.282 0.394 —-0.733 0.458 0. 0.
A%’g —1.336 —0.282 0.394 —-0.733 0.229  0.229 0.
AOF’]; —1.336 —0.282 0.394 —-0.733 0.229 0. 0.229
my || —63.003 —28.727 0. —114.909 0. 0. 0.
Ty || —4.915 —2.241 0. —7.570 0. 0. 0.

Table 4.5: Coefficient matrix A;; for the case of non-universal Cy.. Analytical results are given in

Appendix [B.3.1}

Covp  Cep CY CY Cux cm Ci
Central Val. x10° 4.08 —7.93 3.58 —0.42 5.12 5.24 4.89

Errors x 103 5.28 9.02 3.67 0.77 5.65 4.70 4.74

Table 4.6: Results for the case of non-universal C. with x2,, = 2.2154, d.o.f = 3 and P-value
= 0.5289.

| | Cows Cop CY Y cx o crn

ol

Cows || 1.000

Cop || —0.987  1.000

cl) 0.974 —0.963  1.000

) | —0.855 0764 —0.826  1.000

e 0.972 —0.972  0.994 —0.787 1.000

e 0.958 —0.962 0.977 —0.758 0.980 1.000

cr 0.945 —0.951  0.962 —0.744 0.966 0.955 1.000

Table 4.7: Correlation matrix for the case of non-universal Cl,.

’ Observables H I'y Opad R? R, R) Aps Aph AlL mw  Tw ‘

| Pull | 0.003 O(107°) —0.026 —0.001 0.007 1.046 0.186 —1.022 O(10~*) 0.132 |

Table 4.8: Pull values for the case of non-universal C,..
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4.4 Non-universal CS) and CS? assumption

We now make the non-universality assumption for C’E), C’S) and consider Uy, as universal.
For the Zvv vertex:

1) ®3)
_Ccpl pp + O<pl pp

ar=cdl =<+ 5 (4.4.28)
v 1 1 3
X" =5 - C;l)pp + C((pl)pp' (4.4.29)
For the Zee vertex:
(Lpp (3)pp (Lpp (3)pp
! _ 1 —Cm =0y =C, ! 1 —C, Com +C
c§:23'€v—§+ 2 2%” . cA=—5+ 2 2“" . (4.4.30)
_ _ ]- _ 1 3 _
X = 48l — 283 + 5 + (=25 + D(CH” + ey — 28,0, (4.4.31)
For the Wer vertex:
S = Aw = 1+ CH™, (4.4.32)
X7~ 2(1+2057). (4.4.33)

We obtain the coefficient matrix as in Table Due to the numerical issues, the final results

C@WB Cch Céll)ee Cg(p?l))ee CS)HM CS;)MH Cg(oll)TT C;?Z)TT Ctpe
r'y —2.055 —1.680 —0.158 —0.341 —-0.158 —0.341 —0.158 0.525 —0.474
Ugad 2.309 0.487 93.985 72.231 5.253 —16.501 5.253 —17.474 —60.522
Rg —13.506 —2.847 —44.383 —50.076 0. —5.693 0. 0. 38.155
Rg —13.506 —2.847 0. —5.693 —44.383 —50.076 0. 0. 38.155
RE —13.506 —2.847 0. —5.693 0. —5.693 —44.383 —44.383 38.155
AOF’E —1.336 —0.282 0.394 —0.169 0. —0.563 0. 0. 0.458
AOF’g —1.336 —0.282 0.197 —0.366 0.197 —0.366 0. 0. 0.458
A%’g —1.336 —0.282 0.197 —0.366 0. —0.563 0.197 0.197 0.458
mw || —63.003 —28.727 0. —57.455 0. —57.455 0. 0. 0.
I'w —4.915 —2.241 0. —-3.685 0. —3.685 0. 0.464 0.

Table 4.9: Coefficient matrix A;; for the case of non-universal C;ll) and CSI’). Analytical results are
given in Appendix [B.4]

diverges. We are not be able to constrain the D6 Wilson coefficients using this assumption.
However, as we shall see in the Appendix [A.T], there is a trick to handle these issues, maintaining
the number of 9 variables of the Wilson coefficients set.
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Chapter 5

Constraints on lepton and quark sector
Wilson coefficients

Now we consider the contributions of quarks. We include four additional observables of RY, R,
Al ASy. Since we could not obtain these type information for up, down, and strange quarks, we
use the assumption of quark-flavor universality. We add for each of the assumptions in Chapter
the quark contributions to relevant observables using vertices in Eq. - BEq. ({#.1.21).
However, as we will see later that gauge, lepton and quarks can not be constrained simultaneously,
an alternative assumption that gauge sector’s Wilson coefficients are null could be implied, and
the fits are performed solely for lepton and quark sector.

5.1 Universal lepton and quark assumption

Simply adding quark observables and coefficients to Table 5.4} we got the Coefficient matrix A;;:

C<pWB C@DD Céll) Cg(o?l)) Ccpe C&I) ng) Ccpu Csod
' —2.055 —1.68 —0.474 —0.157 —-0.474 1.183 4.019 0.632 —0.474
Uﬂad 2.309 0.487 104.491 38.256 —60.522 —10.886 —36.99 —5.814 4.361
R? —13.506 —2.847 —44.383 —55.770 38.155 14.234 48.365 7.602 —5.702
A%’é —1.336 —0.282 0.394 —0.733 0.458 0. 0. 0. 0.
mwy || —63.008 —28.727 0. —114.909 0. 0. 0. 0. 0.
'y —4.914 —-2.241 0. —7.570 0. 0. 2.786 0. 0.
Rg 0.031 0.007 0. 0.026 0. 0.346 —0.009 —-0.079 -0.031
RS —0.048 —0.01 0. —0.040 0. —0.534 0.014 0.122 0.047
A%’g —4.300 —0.906 1.251 —2.374 1.456 0.016 0.016 0. 0.089
A%’g —-3.331 —0.702 0.894 —1.915 1.04 —0.088 0.088 —0.198 0.

Table 5.1: Coefficient matrix A;; for the case of universal leptons and universal quarks. Analytical
results are given in Appendix [B.2.2]

Here, although the number of observables is more than Wilson coefficients’, the results diverge
for Table [5.1, and all of the cases including gauge, non-universal lepton and universal quarks
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5.2. Non-universal C,. and universal quark assumption 36

Loy O Co CH  CH Coi  Cu

ol
Central Val. x103 || 1.02 —0.18 0.59 —1.04 —10.52 1850 —71.36
Errors x10° 0.81 0.13 1.11  3.73 5.44 16.01  32.11

Table 5.2: Results for the case of universal leptons and universal quarks with y2. = 0.4331, d.o.f
= 3 and P-value 0.9333.

’ ‘ ‘ C ) C ® Ogoe CG(D%I) CS(D? CSOU C‘Pd

@l pl
¢ 1.000
¢ | 0074 1.000

Coe || 0894 0.161  1.000
¢l | —0.243 —0.022 —0.253  1.000

c® | —0.673 0024 —0.703 —0.212  1.000
Cou | 0406 —0.021 0406 0.566 —0.857  1.000
Coq | —0.803  0.001 —0.813 0.363 0.805 —0.410 1.000

Table 5.3: Correlation matrix for the case of universal leptons and universal quarks.

| Observables | Ty ol R) AW, mw Ty RY RY  AYL AV
[ Pull [ 0.060 —0.005 —0.009 —0.033 0.001 —0.443 —0.046 —0.192 0.077 0.136 |

Table 5.4: The “pulls” of the observables for the case of universal leptons and universal quarks.

contemporaneously. Therefore, from now on, we make an assumption that coefficients in gauge
sector vanish and exclude their contribution in all of our fits.

The results are presented in Table [5.4] using universal lepton and quark assumption,
with the two first columns in Table [5.1] vanish.
All the central values still lie in the range 20 from 0, except for the C,4, which deviates about
2.20 from 0. The P-value (of 0.9333) is very high, which mean our null hypothesis is pretty more
extreme than what was actually observed, the results are strongly statistically insignificant.

The “Pull” for the observables well agree with the experimental values.

5.2 Non-universal C,. and universal quark assumption

Our results are presented in Table [5.6, 5.7, [5.8 using non-universal C,. and universal quark
assumption.
We consider the first non-universal lepton case for C,., with the added quark-sector operators.
Here, the results stay consistent with the universal case above. With the CTZ are little weaken
constrained. The most deviation is less than 20 from 0, except for C 4, differing nearly 2.10 from
0. The P-value (of 0.7464) is high, which mean our null hypothesis is much more extreme than
what was actually observed, the results are strongly statistically insignificant.
The Pull of the observables are still well agreed with the experimental values.
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cil ol cx ow cp W Gl G Cu
T, —0474 —0.157 —0.158 —0.158 —0.158  1.183 4.019 0.632 —0.474
ol || 104491 38256 —71.028 5253 5.253 —10.886 —36.99 —5.814 4.361
RY —44.383 —55.770  38.155 0. 0. 14.234 48365 7.602 —5.702
RY —44.383 —55.770 0. 38.155 0. 14.234 48365 7.602 —5.702
RY —44.383 —55.770 0. 0. 38.155 14.234 48365 7.602 —5.702
Aps 0.394 —0.733  0.458 0. 0. 0. 0. 0. 0.
AT 0394 —0.733 0229 0.229 0. 0. 0. 0. 0.
AVE 0394 —0.733  0.229 0. 0.229 0. 0. 0. 0.
mw 0. -114.909 0. 0. 0. 0. 0. 0. 0.
Ty 0. -7.570 0. 0. 0. 2.786 0. 0.
RY 0.  0.026 0. 0. 0. 0346 —0.009 —0.079 —0.031
RY 0. -0.04 0. 0. 0. —0.534 0014 0122 0.047
AP 1251 —2.374 1456 0. 0. 0016 0.016 0. 0.089
A% 0894 —1915  1.040 0. 0. —0.088 0.088 —0.198 0.

Table 5.5: Coefficient matrix A;; for the case of non-universal Cy. and universal quarks. Analytical
results are given in Appendix [B.3.2

o 9 cx o oo cl) CN Co Cu
Central Val. x10° 1.00 —0.18 0.58 1.06 0.73 —1.02 —10.45 18.45 —71.03

Errors x10° 087 013 1.22 124 144 3.76 5.67 16.34 34.45

Table 5.6: Results for the case of non-universal C\,. and universal quarks, with x2, = 2.6983, d.o.f
= 5 and P-value 0.7464.

] D c® ce  cm o ol CR Ca Cu

©l

¢l 1.000

o | 0050  1.000

e 0.910 0125  1.000

Cie |l 0567 0156 0.614  1.000

Crr || 0465 0135 0521 0456 1.000

Cie || —0.264 —0.016 —0.273 —0.173 —0.145  1.000

Ci || —0.705  0.037 —0.731 —0.464 —0.388 —0.171  1.000

Cie |l 0444 —0.030 0444 0264 0221 0530 —0.862  1.000
Ciu || —0.830  0.019 —0.840 —0.509 —0.426 0376 0.882 —0.446 1.000

Table 5.7: Correlation matrix for the case of non-universal Cy, and universal quarks.
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Observables I'y Opad RY R) RY Al AYL
Pull 0.063 —0.005 —0.072 —0.002  0.007 1.022 0.204
Observables Ag my I'w R} RY  AYL AMS
Pull —1.005  0.001 —-0.432 —-0.045 —-0.192 0.076 0.134

Table 5.8: The “pull” of observables for the case of non-universal C,. and universal quarks.

5.3 Non-universal C’((pll), ng) and universal quark assump-
tion

For the second case of lepton non-universality, as we easily predicted, the added quarks does not
solve the numerical-divergence issue of the results.
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Conclusion and outlook

Conclusion

Based on what we have done so far in this thesis, we can draw some important conclusions for the
constraints on D6 Wilson coefficients:

Foremost, in the first two Chapters, we have introduced the formalism of SMEFT, the
rescaling of the Lagrangian and the methodology for fitting the D6 Wilson coefficients.

For the gauge sector, in comparison with NNT’s results, our central values for the coefficients
differ, however, the errors well agree. The differences are still in 1 ¢ and may come from their
non-trivial method of projecting the 5 X 5 correlation matrix onto 3 dimensional subspace.
The updated set of observables’ values improves the errors significantly.

Regarding the lepton sector, we have performed the fitting for both cases of lepton flavor
universal and non-universal, and compared their results. For the non-universal case, we
have made several assumptions on the coefficients’ universality due to the limited number of
observables. The assumption of non-universal C, yields good fits.

Adding the quark sector, we can see the fact that fitting can not be done simultaneously
for all three sectors. The fits are performed using different perspective of views that gauge
sector’s Wilson coefficients are nulls. The constrains are good as desired and there is great
consistent between results for non-universal C,. and universal case.

Finally, besides the fitting results, sensitivity of Wilson coefficients towards LEP1 Observ-
ables can be evaluated through theirs contributions in the Coefficient matrices A;;.

I would like to note that all results presented in Chapters 4, 5 are my own results. To the best of
my knowledge, they are new results. However, it is not excluded that similar fits have been done
elsewhere by other groups. I plan to search in the literature for similar works and compare my
results with those of the others, especially for the case including fermionic operators. This has not
yet been done due to time constraints.

Outlook

To make further development on the constraints, some augmentations to the observables can be
carried out:

Combining more observables at Z-pole energy.

Adopting observables at different energy scales.

40



Appendix A

Non-universal Z:;l and Cye assumption

A.1 Non-universal Z:;za Cye without quark

To get rid of the numerical issues appearing in the non-universal C’él, C’il assumption in Section
4.4 we now redefine our variables as:

sh= cf+0, (A1)
S, =-CY+C%. (A.12)

We shall apply the non-universal assumptions for E;l and C,,,
Considering the vertices involved,
1. For the Zvv vertex:

but treat E;l as flavor universal.

1 Xy,
V=) = -+ % A.1.3
4 1 —
2. For the Zee vertex:
e _ 1 _Ep;[l)+ - CPZ; e 1 _ZPIZ’JF + C’PI;
=2y - ot L, =gt (A.1.5)
1
X = 458 — 255, + 5+ (—253 + 1) — 253,02 (A.1.6)
3. For the Wev vertex:
B B pr-i- + »-
cf/p;{} = ciﬁl‘/,(”, =142 e 5 wl, (A.1.7)
X7 =21+ 50+35). (A.1.8)
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Cown Cup net cee s Cr ot co o
Iy —2.055 —1.680 —0.249 —0.158 —0.249 —-0.158 0.184 —0.158 0.159
op 4 2.309 0.487  83.108 —71.028 —5.624 5.253 —6.111  5.253 —33.118
R? —13.506 —2.847 —47.230  38.155 —2.847 0. 0. 0. —5.693
Rﬂ —13.506 —2.847 —2.847 0. —47.230 38.155 0. 0. —5.693
RY —13.506 —2.847 —2.847 0. —2.847 0. —44.383 38.155 —5.693
AOF’]; —1.336 —0.282 0.112 0.458 —0.282 0. 0. 0. —0.563
A%{g‘ —1.336 —0.282 —0.085 0.229 —0.085  0.229 0. 0. —0.563
Ag’g —1.336 —0.282 —0.085 0.229 —0.282 0. 0.197  0.229 —0.563
mw || —63.003 —28.727 —28.727 0. —28.727 0. 0. 0. —57.455
Iy —4.915 —2.241 —1.843 0. —1.843 0. 0.232 0. —3.453

Table A.1: Coefficient matrix A;; for the case of non-universal Z:gl and Cy.. Analytical results are

given in Appendix [B.5.1]

| Cows  Cep 5" Cg ST CQ ST Cpp 3y
Central Val. x10° 680 —12.39 1.88 479 7.29 1059 11.66 1512 —6.19
Errors x10° 559 956 3506 582 554 730 651 838 4.65

Table A.2: Results for the case of non-universal E;fl and C,. with x2. = 0.1159, d.o.f = 1 and
P-value = 0.8841.

| | Cows Cop  XF Ce xo*  cm  yot Cr %,
Cown 1.000
Cyp —0.986  1.000
Zf;f’ 0.669 —0.657  1.000
Coe 0.862 —0.850  0.947  1.000
Egﬁ” 0.698 —0.732 0.060 0.352  1.000
cry 0.776 —0.803 0.164 0.451 0.985  1.000
Zg* 0.714 —-0.707 0.179 0412 0.724 0.750  1.000
crr 0.776 —0.770  0.251  0.488 0.745 0.780  0.984  1.000
EE{’F —0.972 0955 —-0.619 —0.830 —0.782 —0.842 —0.710 —0.767 1.000
Table A.3: Correlation matrix for the case of non-universal E;fl and Ci..
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A.2. Non-universal ZZZ, Cye and universal quark 43

| Observables || Iy o4 RY RS RV A AW AN my T |
| Pull [ —0.001 O(107%) O(10~*) O(10°) O(10~°) 0.001 —0.002 —0.003 O(10~*) 0.145 |

Table A.4: Pull values for the case of non-universal EL and Ci..

The great advantage of this redefinition is to eliminate the divergence in Sect. and retain also
the non-universality of Cy. as in Sect. so that we can make comparisons.

Our fit results are shown in Tables[A.2] [A.3land [A.4] Comparing to Sect. [£.3] this assumption
yields weaker constraints. For D6 coefficients in gauge-sector, the errors increase very slightly. For
the C,. the constraint is about 1.03 to 1.77 times weaken, as an obvious results when we increase
our set of Wilson coefficient by the non-universality assumption. Most of the coefficients are still
constrained to the power of 1072, and deviate not greater than 20 from 0.

The P-value (of 0.8841) is very high, which mean our null hypothesis is pretty more extreme
than what was actually observed, the results are strongly statistically insignificant.

From the pull, we see the fitted observables greatly agree with the experimental values.

From this discussion, we ignite another suggestion to switch the non-universality assumption
from E;flp P or O to ¥_* However, as can be observed in Coefficient matrix Aj;, the ¥, is universal
to the lepton flavors, due to its same contributions to different flavors of each observable.

+

A.2  Non-universal X/,

Cye and universal quark
For this case, our new-defined variables also overcome the numerical problems, the results well
converge.

Our fit results are shown in Tables[A.5] [A.6]and [A.7 Comparing to Sect. [5.2] this assumption
yields weaker constraints.

For the Uy, the constraint is about 1.89 to 3.40 times weaken, as an obvious results when we
increase our set of Wilson coefficient by the non-universality assumption. Most of the coefficients
are still constrained to the power of 1073, and deviate not greater than 2o from 0.

The P-value (of 0.6595) is high, which mean our null hypothesis is much more extreme than
what was actually observed, the results are strongly statistically insignificant.

| =5t cw st oo st oo s, ol Ol Co Cu

Central Val. x10% || —1.22 —1.70 3.33 3.83 6.69 7.26 —1.41 1.23 —1.22 290 —8.64
Errors x 103 2.06 230 352 388 427 490 123 424 997 2131 648

Table A.5: Results for the case of non-universal X7,, C,. and universal quarks with x2; = 0.6595,

[
d.o.f 3 and P-value = 0.8827. ’
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| | syt o =gt ow st op %, O G G Cu
neet 1.000

cee 0.971  1.000

2ol =0.715 —0.630  1.000

cre |l —0.730 —0.636  0.963  1.000

St || —0475 0478 0384 0.375  1.000

C7r || —0.469 —0.464  0.331 0344  0.963  1.000

Efft‘ 0.196  0.095 —0.809 —0.744 —0.138 —0.068  1.000

Col | 0520 —0.523  0.360 0.363 0.258  0.250 —0.079 1.000

c® |l —0910 —0.917 0.644 0646 0452 0.436 —0.148 0.297 1.000

Cou 0.721  0.725 —0.494 —0.504 —0.352 —0.346  0.092 0.061 —0.904 1.000

Cuoq || —0.950 —0.954  0.653 0.663 0.466 0.456 —0.129 0.571 0.945 —0.726 1.000

Table A.6: Correlation matrix for the case of non-universal Ezl, Cye and universal quarks.

Observables Iy o) RO RO RV AN AL
Pull 0.099 —0.008 —0.046 —0.004 O(10~%) 0.281 0.356
Observables AL mw Ty R} RV AYL AXE
Pull 0.007 O(10~%)  0.052 —0.034 —0.196 —0.014 —0.013

Table A.7: Pull values for the case of non-universal Z:l, Cye and universal quarks.
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Cye and universal quark
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Appendix B

Analytical results for coefficients cé-

Here, for the governing equation of

Oi = Otsﬁ\go,i (1 + Z C;CE) y (BOl)
J

we would like to present the analytical results of c;'- for each of our assumptions. These results are
needed for the calculations in Chapters [4] and [5

B.1 Quark sector

M ~3)

sz Cwq Csou Csod
Ty Ty Ty

Iy c, c% 0. o

. cke g e 0.
I T

Fhad. Cghad' Cb had. Cghad' Cd had.

I'z T'z I'z T'z

I'z Cq c Ce g

Jgad ngad ngad ngad C;}?ad

R} RY R} R}
RY R R N
RC RC RC RC
RS Ca 0 Cb 0 Ce 0 Cd 0
RS RS Ry RS
R N A R
Ry Ry Rp Ry
Ry N A S
Ry Ry Ry Ry
Ry N R S

Table B.1: Coefficients for quark sector.

46



B.1. Quark sector

47

With the following notation:

Vep vy 1
XsMm = Xsm — 5
e 1
o= abe= 3~ 25+ 45
1 4, 16,
Xsm = Xsm = 5 — 530 + 5307
1 2 4
XSm = Xsm = 5~ 553 + 583,
a . 5 14 44
X8 :2'XSM+3'XI§M:§—§53+§337
Y a 7 20 80
Xém = Xéu + Xom + XS = 5~ 353 553-
Coefficients for the decay width read:
For d-type quarks:
CFb: 1_588 gb: 1_553 gb: _gsg‘
¢ X&um X8 X
For u-type quarks:
4 4 4
Lo — —1+ 35 e = +l1-3s5 ¢ _ 3%
‘ XSm Xsm Xsm
We have:
X8 = 2 Xém + 3 Xomr-
The hadrons’ coefficients read:
g § 6(3 + 255
Cghad.:3,%,cgb+2‘xs;\(/i[‘cgc: ( +280) o
b c 2
Thad. XSM I'y XSM T. 90 - 8480
c =3- o+ 2 L0 = ,
T e R e T B sa 1 88
(Tusa _ 9. XSM I _ 485
c had. * Ce 45 — 8453 + 88sy
XsMm 0 0
Ta _ 3. X8M | I _ —36s2
d yhad- 45 — 8452 + 88s3
For the total Z decay width:
CFZ _ Xhad. ‘ thacL _ 6(3 + 25(2))
¢ X2 63 — 120s2 + 160s3’
CFZ _ Xhad. ‘ CFhad. _ 90 — 843(2)
b Yz 63 — 12052 + 160s3’
CFZ _ Xhad. . thad _ 4833
¢ Xt 63 — 120s3 + 160s3’
CFZ . Xhad . CFhacL — _3683 .
d e 63 — 12052 + 160s3

(B.1.2)
(B.1.3)
(B.1.4)
(B.1.5)
(B.1.6)

(B.1.7)

(B.1.8)

(B.1.9)

(B.1.10)

(B.1.11)
(B.1.12)
(B.1.13)

(B.1.14)

(B.1.15)
(B.1.16)
(B.1.17)

(B.1.18)
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We derive the following relations:
For the o, 4

0
Thad

FhadA

_ I'z
a,b,e,d Ca,b,c,d - 2Ca,b7c,d'

For the Rj:
R; _ T had. R§ _ had.
Ca,b,c - Ca,cb,c — Capber Cq = —C -
For the R:
Ry Ty had. R had.
Cabd = Capd ~ Cabds C.0 = —Cc.
For the Ry”:
R§ Rg R had.

Ca,b,c,d = Ca,b,c,d = ca,b,c,d = CoL,b,c,d

(B.1.19)

(B.1.20)

(B.1.21)

(B.1.22)

The quarks are considered as flavor-universal and the above set of coefficients is applied to derive

observables for all of the cases with quarks.

B.2 Universal lepton and quark

B.2.1 Lepton

[€Y) 3) uni.
C‘PWB C@D Capl Ccpl Cape
I I I
I, 0. et eyt eyt 0.
T T Iy I T
Fl Cll C2l C3l C4l C5l
r r T
Fhad Cl had C2 had. 0 C4 had. O

Table B.2: Coefficients of decay widths in universal lepton assumption.

For the neutrinos:

1
cgyl =——, cgyl = -2, CZVZ =
For the charged leptons:

i 4soco(4sy — 1) BV (=1 + 253 + 4sp)

L' 1 - 652+ 1658 — 1658 22— 452(3 — 852 +8s3)
T —2s2+1 T 2 — 1653 + 48s5 — 325§

PV 4T 1652+ 1658 — 1655

r, _ —2sf
05 h— l .

Xsm

(B.2.23)

(B.2.24)
(B.2.25)

(B.2.26)
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For hadrons:

4sgco(44s3 — 21) (—45 + 90s2 + 4s3)

1—‘had — Fhad = B227
“1 45 — 1743 4 25653 — 1765’ “ 90 — 348s3 + 512s3 — 352s8’ ( )
Piad _ —8s3(21 — 6553 + 44s5) (B.2.28)
4 45 — 17452 + 25658 — 17658 o
The coefficients for total Z decay width read:
Tz _ 40s0c0(8s2 — 3) Tz _ (—63 + 12652 + 40s) (B.2.29)
! 63 — 24653 + 400s3 — 32055’ 2 126 — 492s% + 800s3 — 64055’
Tz _ —2s2 _ —36s2 Tz _ 4(—9 + 87s% — 238s3 + 160s5) (B.2.30)
3 x? 63 —120s% + 1605}’ 63 + 24652 — 400s] + 32058 -
L7 _ —2s2 _ —36s2 (B.2.31)
b x? 63 —120s% + 160s}’ -
For W boson vertices,
350C 3¢k 7t + 2s?
Iy _ _2°0€0 Tw _ 0 Lw — 0 7 770 B.2.32
TTg—a Y TiE—a Y T ig-a) (232
2 2
mw __50C0 mw _ Q0 my 0 B.2.33
VoS YT Y aea R

These coefficient remain unchanged for all the cases.

() 3)
CsoWB CwD C’w C<pl Cwe
Tz Tz Tz Tz Tz
a. g (o2 (o2 g
Ugad o had Cy had Cs had C4had Cs had
0 0 0 0 0
0 Ry Ry Ry Ry Ry
R ¢ Co Cy cy cs
0,7 0,7 0,7 0,7 0,0
AO’Z CAFB CAFB CAFB CAFB CAFB
FB 1 2 3 4 5
mw A" ey 0. 0.
T T T

Table B.3: Coefficients for lepton in universal lepton assumption.

The coefficients for the following observables are derived through relations between coefficients
from the above decay widths:
For o had.

0
Thad _ I Iz
C12345 = C12345 — 2. €12,34,5 (B.2.34)

For RY:

R} ry
€1,2345 = —C1,2345 (B.2.35)
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For Ag’g”:
A% _ 3250 v —16(=sp + 5p) (B.2.36)
! 3258 — 2458 + 852 — 1’ 2 3258 — 2458 + 852 — 1’
S 32si+250) o 325, (B.237)
3 3258 — 2458 + 852 — 1’ 4 3258 — 2458 + 852 — 1’
A% —16(sf — 4sg + 4s)) (B.2.38)

G T 3248 — 2458 1852 — 1

B.2.2 Lepton and quark

The above coefficients for lepton sector remain unchanged. Now, we add some coefficients for
quark sector.

For I'y:
4
AW = 3 (B.2.39)
For o} 4:
0'0 O'O
C6778.9 = Cabied> (B.2.40)
For /%
4852(—9 + 4552 — 5254 + 1658
—7252(—9 + 4552 — 5253 + 1655
o = 125)( 9 1 45y — 525y 16s) (B.2.42)
(—1 4 255)(9 — 2453 + 32s;)(45 — 845 + 88s5)
Ry Ry RY RY
06,1%,8,9 = Ca,Z,c,dv C6,78,9 = Cabed: (B.2.43)
For cfe:
RY RY RY RY RY RY
C6,7.89 = Cape,ds C6,7,89 = Cabeds C6.7,89 = Caped- (B.2.44)
0b .
For Apg:
CA%{; B 4co(120s3 — 6085y + 12165s) — 1280s) + 5H12spt) (B.2.45)
b (1 +282) (=3 + 4s?) (=1 + 4s2)(9 — 1252 + 8s3)(1 — 4s2 + 8s3)’ -
0 0 0 0 0 0 0
QL —2(—120sg + 72855 — 182458 + 249655 — 1792542 + 5125}
COFB — 0 0 0 0 0 0 (B.2.46)
2 (=14 283)(—3 4 4s3)(—1 + 453)(9 — 1253 + 8s3)(1 — 452 + 8sp)’
A% —16s3(—33 + 18452 — 44453 + 6405 — 480s§ + 128s.") (B.2.47)
c,"® = 2.
4 (=14 283)(—3 4+ 4s2)(—1 + 453)(9 — 1252 + 8s3) (1 — 452 + 8sp)’
CA%IZ — 1653(_1 + 28(%) CA%’IZ _ _88?)(1 B 453 + 483) (B 2 48)
3 3250 — 2458 + 852 — 1’ b 3250 — 2458 + 852 — 1’ -
cA%‘g _ 2(—24s3 4+ 16s8) CA%IS _ 16s3(—3 + 2s3) (B.2.49)
0 3258 — 24s4 + 853 — 1 ! 3258 — 24s4 +8s3 — 1 -
0 0 0 0 0 0
cg‘%’f% —8s2(9 — 1252 + 4sp) (B.2.50)

T 3250 — 24st + 82— 1
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0,c .
For Apg:
CA%]_; B 8co(78sy — 620s) + 1984s] — 320057 + 2048s5") (B.2.51)
! (=14 282)(—1+ 483)(—3 + 852)(1 — 452 + 852)(9 — 2452 + 32s3)’ -
CA%}; _ —4(—T8sj + 698s) — 26045 + 5184s)° — 524854 + 2048s(") (B.2.52)
2 (—1+282)(—1 4 4s2)(—3 + 8s3)(1 — 453 + 8s3)(9 — 2452 + 32s3)’ o
A% _ —16s5(—51 + 44652 — 163255 + 32005 — 307255 + 10245(°) (B.2.53)
4 (—1+282)(—1 4 482)(—3 4 852)(1 — 453 + 852)(9 — 2453 + 32s3)’ -
A _ 16s5(—1 + 2s3) A% —8s3(1 — 482 + 4sp) (B.2.54)
3 3250 — 2458 + 852 — 1 > 3250 — 2458 + 852 — 1 -
A _ —2(—96s7 + 128s) A _ 64s5(—3 + 4s2) (B.2.55)
6 3250 — 2458 + 852 — 1 ! 3250 — 2458 + 852 — 1 -
v _ 1652(9 — 2452 + 1653) (B.2.56)
8 3258 — 2458 + 852 — 1° -
Cows Cop CY CY) Coo CLl CH Cow Cla
'y Az A cgz ch? cgz cgz c?z cgz cgz
O'0 O'O O'O O'O O'O O'O UO O'O O'O
O.gad C]_ had CQhad Cghad C4 had C5 had Cﬁ had C7 had Cg had Cghad
0 0 0 0 0 0 0 0 0
RY C?“ cf'é c?f cf‘ c?é c?e 05‘3 cge c(fé
0,0 0,7 0,7 0,7 0,7
AR T I
my vy 0. " 0 0 0 0 0
T'w I'w T'w Tw
0 0 0 0 0 0 0
R} C?b cgb 0. cf’” 0 c?b cfb c?b cg”
R? cfg cy : 0. cfg 0 cé%g 052 cgg Cg?
0,0 0,b 0,b 0,b 0,b 0,0 0,0 0,b
A%)]g C‘IAFB C?FB C?FB CfFB C?FB CﬁAFB C‘7AFB 0 C;FB
0,c 0,c 0,c 0,c 0,c 0,c 0,c 0,c
A%»]CB C114FB C?FB C?FB CfFB C?FB C?FB C?FB C?FB 0 .
Table B.4: Coefficients for lepton and quark in universal lepton assumption.
B.3 Non-universal C,, and quark
B.3.1 Lepton
For the neutrinos:
1
cg”e = cg”“ = cg”* =—g cg"e = cgy“ = cg”T = -2, ci”e = ci"“ = ci”* = 2. (B.3.57)
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For the charged leptons:
4sgco(4s2 — 1)
r r 0%0\==>¢
e — L e B.3.58
T T T T 652+ 1658 — 168 ( )
—1 + 2s% + 45}
r r r 0 0
e — L Tr B.3.59
@ T% 7% Ty 453(3 — 8s% +8s3) ' ( )
—2s2+1
Ae=cr=cr = 8++ : (B.3.60)
Xsm
2(—1 + 8s2 — 2453 + 16s?)
re _ Tw_ Iv 0 0 0 B.3.61
T T T T 62 — 1658+ 1650 (B.3.61)
r r —2s3
G =c' =c" = —— . (B.3.62)
Xsm
For hadrons:
Fooy 4sgco(44s3 — 21) Foog (—45 + 90s2 + 4s3) B.3.63
G = 2 1 6 G = 2 1 5 (B.3.63)
45 — 174s§ + 25655 — 1765 90 — 348s5 + 512s; — 3525
Dot _ 8s2(21 — 6553 + 44s7) (B.3.64)
4 = T 2 _ 1 6° "
45 + 174s5 — 25655 + 1765
The coefficients for total Z decay width read:
Tz _ 40s0c0(8s2 — 3) r,_ (=634 12652 + 40s3) (B.3.65)
' 63 — 24653 + 400s8 — 32058’ > 126 — 49252 + 800sj — 64055’ o
r,  —2s5 —36s2 r,  4(—9+ 87sf —238s) + 160s() B.3.66
€3 zZ - 2 1 G = 2 1 6 (B.3.66)
X 63 — 120s§ + 160s; —63 + 24655 — 400s; + 320s;
1 —2s? —12s2
G T% T T3 7 T 63— 120s2 + 160s; ( )
For the total W mass and decay width:
T2 + 252 c?
rw _ % 0 mw _ (U B.3.68
“ 3 N mga (5309
1 3 ce TT
CowpCop  Cy CY Coc Cmr Cr
I, 0. cg”e cg”e cZ”e 0. 0. 0
r,, |0. cgy’* cgu“ cZ”“ 0. 0. O
r,. 0. cg”T cg”T cg”T 0. 0. 0
I, e e ke e 0.0
' c{“ cg“ cg“ CZ“ 0. cg“ 0
I'; A &m0 0.
Thad C{had Cghad 0 L had. 0 0 0

Table B.5: Coefficients of decay widths for lepton in non-universal C,. assumption.
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(€Y) 3) ee e T
C‘PWB CWD Capl C<pl Ccpe Ccpe Cgoe
' Az & cgz c? cgz cgz CI;Z
a 0'0 UO 0'0 UO g 0'0
O.gad Cl had 62 had C had C4had C had c had C7had
RY RY RY RY RY
R? e o e R~ L | 0.
RY RO RY RO RV
R) N N N 0. ¢* 0.
RO RO RO RO RO
R? N e N 0 0. ¢~
O,e O,e 0,e O,e O,e
0,e A Are  AFe  AFe  ArFs
Agg G 67 G ° G G 00.
0 A s K A s A s A s A s b A s
AF’S ¢ B TR ¢ FB o FB i FB cq FB
0,7 0,7 0,7 0,7 0,7 0,7
0,7 Apg Arg Arg Arg Arg Arg
Agg 2 Ccy s Cy Cs 0. ¢
myy ey 0. "™ 0 0 0.
T T T

Table B.6: Coefficients for lepton in non-universal Cy,. assumption.

The coefficients for the following observables are derived through relations between coefficients

from the above decay widths:
For o had.

0
had _
C1,23,45 —

For Ry :

0 0
e - e
€12345 = —C1,234,55

O,ep |
For Agg":

0,
A
1

0
—C1,2,34,7

r 'z Ohad __
C19345 — 2 C12345 Gy = —2-¢
RO o0 RO
W _ i —
12,346 — —€1,2.34,69 C1234,7 =
Y _ AR 3250
3288 — 245 +8s2 — 1’
4 6
M A —16(—sy + o)
3255 — 24s3 + 852 — 17
4 6
oAl 32(—sb+ 2s0)
s 3 3258 — 2458 +8s3 — 1’
4
0, 0,
M 3259
325§ — 245t +8s — 17
2 4
A% —16(sf — 4sg + 4sp)

—8(s2 — 4sp + 4s8)

0,u 0,7
AFB AFB

G T 3258 — 24sh + 852 — 1

6 T BT T 3080 o4sd 1 852 — 1

B.3.2 Lepton and quark

The above coefficients for lepton sector

quark sector.

(B.3.69)

(B.3.70)

(B.3.71)
(B.3.72)
(B.3.73)
(B.3.74)
(B.3.75)

(B.3.76)

remain unchanged. Now, we add some coefficients for
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[€Y) (3) ee e T 1) (3)
Ccpl Cgol Cgoe Ccpe Cgpe Cﬁpq Cﬁpq C‘PU C‘Pd
Tz Tz 'z Tz 'z Tz Tz 'z Tz
FZ Cg Cél CO5 Cg) C7O 3 CSO 9 Cgo 9 01(9 9 C(:)[l
0 Thad had Thad had had had had had had
Ohad || C3 ) Cy ] Cs ) Ce Cr Cg ] ) ) €10 ] €11 )
0 RE Re RC Re Re Re Re
R; Cy : 040 cs OO. 0. 080 090 cl% cl%
R R R R R R R
0 H i H i i iz iz
R, Cq ) ¢y i 0. ¢ OO Cq i Co i 0100 c110
0 R R R R R R R
R Cy T s T 0() 0. 7 7 ¢ ¢ oy
0.e A0-e A0 A0-e
AL Y e S 0 0 0 0 0 0
FB 3 4 5 . . .
AO M Ag"]g AOF%; A%]g A%M 0 0 0 0
! C C & C, . . . .
FB 3 4 5 6
or || Avs  Avs  Aws AT
Az a8 ¢, B ¢ TP 0. ¢, 0 0 0 0
FB 3 4 5 : 7 : : . .
myy 0. "™ 0 0. 0. 0. 0. 0. 0.
T T
T'w 0. ¢% 0 0. 0 0. ¢ 0. 0.
RY RY RY RY R?
R) 0. «¢,° 0. 0. 0. c° ¢ ¢ of
0 RO RU RU RU RU
R; 0. ¢ 0. 0. 0. ¢° c9° ¢ o
0% 0,6 0.6 0,6 0,6 0.6
0b A%T AT 4O A% AT AL
AF’B Cs FB Cy FB o FB 0. 0 Cy FB co FB 0. CllFB
O,c O,c O,c O,c O,c O,c
0,c AFg Arp Apg Afg  Arp Arp
Agg || ¢ cy Cs 0. 0. g™ ™ ¢y 0.

Table B.7: Coeflicients for lepton and quark in non-universal C,. assumption.

For I'y:
4
W = 3 (B.3.77)
For o} 4:
Ugad — Ugad B 3 78
€8,9,10,11 = Cab,ec,d’ (B.3.78)
For cfib.e:
R 4852(—9 + 4552 — 52sp + 16s8) (B.3.79)
b (=14 282)(9 — 1252 4 8s1) (45 — 8452 + 88sd) o
RO —72s3(—9 + 4582 — 5253 + 16s8)
= 152 > - 5 N (B.3.80)
- s5)(9 — 24s5 + 32s;) (45 — 843 + 88s5)
RO RO RO RO
C8,%,10,11 = Ca,l;),c,d ) €89,10,11 = Caped * (B.3.81)
For cRgp:
0 RO 0 0 0 0
€89,10,11 = Capc,ds €89,10,11 = Capcd €89,10,11 = Capc,d (B.3.82)
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For Ag’g:
A0 4cp(12083 — 60883 + 121657 — 128058 + 512511 (B35
P = : 3.
! (=14 283)(—3 + 4s3)(—1 + 4s2)(9 — 1253 + 8s3)(1 — 452 + 8sp)
A0 —2(—120s) + 728s§ — 1824s§ + 2496s5° — 1792547 + 51254
FB _ 0 0 0 0 0 0 B.3.84
2= (—1+282)(—3+4s2)(—1 +453)(9 — 1253 + 8s3) (1 — 4s% + 8s¢)’ (B.3.84)
0 0 0 0 0 0 0
A% —1654(—33 + 18452 — 44452 + 64058 — 48058 + 1285L0) (B.3.85)
7B = : 3.
4 (=14 283)(—3 4+ 4s3)(—1 + 4s3)(9 — 1253 + 8s3)(1 — 452 + 8sp)
A% 1655(—1 + 2s2) A% —8s2(1 — 482 + 4s?) (B.3.86)
c3 B = = : 3.
3 3250 — 2458 + 852 — 1’ ° 3250 — 24s8 + 852 — 1
0. 2(—24s2 4 1658 0,b 16s5(—3 + 252
org _ 225 +165%) o — 10503+ 2%) (B.3.87)
3255 — 2453 + 852 — 1 3255 — 2453 + 852 — 1
0 0 0 0 0 0
0r  —8s2(9 — 1252 + 4s?
CiE = 8?3(9 T %) (B.3.88)
For AYS:
A0 8co (7853 — 62053 + 198457 — 320053 + 2048s11) (B389
o= , 3.
! (—1+282)(—1+4s2)(—3 + 8s3)(1 — 452 + 8s3)(9 — 2452 + 32s3)
A0c —A(—T8sk + 6988 — 260453 + 5184510 — 5248512 + 2048s14) (B.3.90)
Cy P = : 3.
2 (=14 282)(—1+ 453)(—3 + 8s3)(1 — 452 + 858)(9 — 2452 + 32s3)
A%e —1655(—51 + 44652 — 163252 + 320055 — 307255 + 102455°
FB _ 0 0 0 0 0 o B.3.91
G = (—1+283)(—1+4s2)(—3 + 8s3)(1 — 453 + 8s3)(9 — 2452 + 32s3)’ (B-3.91)
0 0 0 0 0 0 0
A 1655(—1 + 255) A —8s5(1 — 4sg + 4sp) (8.3.92)
3 3258 — 2458 +8s3 — 1’ > 3258 — 2453 +8s3 — 1’ o
AR _ —2(—96s3 + 128s8) AR _ 64s5(—3 + 4s2) (B.3.93)
10 3258 — 2458 + 852 — 17 M 328 — 2458 4+ 852 — 17
A%e 16s5(9 — 2455 4 16s;) B.3.04
“2° 7 3956 — 24sd + 852 — 1 (B:3.94)
B.4 Non-universal C,;, C,3 and quark
B.4.1 Lepton
For the neutrinos:
1 v
e = cg”" = = ~3 e = cg”” = =2, e = cg “ = =2, (B.4.95)
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Cows Cyp C&)ee Cg)ee CE)## CS)H# C«S)TT CS)TT C;xc}i.
r, |o A A e 0. 0. 0. 0 0.
r, | o v 0. 0. a™ o™ 0. 0. O
r, |o A7 0. 0. 0. 0. om0
I, e ) cg¢ 0. 0. e
r, 01;” cg“ 0. CZ“ cg“ cg“ 0. 0. cg“
j clff ch 0. cZT 0. ch cl;T ch ch
Chad. C{had. Cghad. 0. cghad. 0. Cghad. 0. 0. Cghad.

Table B.8: Coefficients of decay widths for lepton in non-universal C,;, C,3 assumption.

For the charged leptons:

4sgco(4s2 — 1)
Fe _ obw — o — 00170 B.4.96
OO T T 6+ 16s) — 1655 (B4.56)
Rl S re o (C14 250+ dso) B.4.97
e TR T Ty 3B -8+ 8s) (B457)
—282 41
T ;++ , (B.4.98)
SM
T T _ 2(—1+ 652 — 1455 + 8s5) (B.4.99)
4 6 —1+ 652 — 16s3 + 165§
452(1 — 5sZ + 4sp)
re _ Tu_ 0o _ 1o _ 40 0 T %% B.4.100
% = G €4 “ —1+ 652 — 163 + 165§ ( )
Y (B.4.101)
9 —C —C = 7 - o

Xsm
For hadrons:
Thaa _ 4sgco(44sE — 21) Lha _ (—45 + 90s2 + 4s3) (B.4.102)
1 45 — 17482 + 25655 — 17655 2 90 — 348s2 + 51253 — 35255

4s2(21 — 6582 + 44s3)

L = cphed = : B.4.103
“ % —45 + 17452 — 25658 + 17658 ( )
The coefficients for total Z decay width read:
4 23 —63 + 12652 + 405
7 = Osoco(8s5 — 3) ’ L7 = ( +2 %0 +4 50) . (B.4.104)
63 — 24652 + 400s3 — 32058 126 — 49253 + 8005 — 64055
1 —2s2 —12s2 4(— 2 _116s3 6
gy L ;0 _ 250 5 R (—3 + 395g 632 + 8050)6’ (B.A4.105)
>t 3 x 63 — 120s§ + 160s; ’ —63 4 24655 — 400s5 + 320sp
5 12¢2 242 362
e =120 _ o bz = =0 0% (B.4.106)
3 X 63 — 120s§ + 160s; x? 63 — 120s3 + 160s;
(B.4.107)
For W mass and total decay width:
w % (B.4.108)
Ly = 4.
AR )
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o7

_ —4+25¢% + 853

= e =2
) .
18(s% — ¢3) 9
(Mee ~B)ee ~Dup ~Bup ~D)7T ~B)TT ~uni.
C@WB C%OD Cgol Ccpl Capl Ccpl Ccpl Ccpl Ccpe
Iy Az &7 aZ 7 dr f &7 g7
1 : 5
O'O O’O 0'0 0'0 U'O 0'0 U‘O 0'0 0'0
O-gad Cl had CQ had 03 had C4 had C5 had 06 had C7 had 08 had Cg had
RU RO RU RO RU RO
RY ¢  Cy¢ 3t 4 0. ¢° 0. 0. ¢°
RO RO RO RO RO RO
R) oot 0.0 " " g 0. 0. ¢
RO RO RO RY RO RO RO
RY am o 0. ¢ 0. ¢ et gt CoT
0.e AO,e AO,e AO,e AO,e 0,e 0,e
AF’B 01 FB 02 FB 03 FB C4 FB O 6 FB O O 9 FB
O,n 0,1 O,p 0,1 O, O,e O,n
0, A A A A A A A
AF}/; Cl FB 02 FB C3 FB 4 FB 05 . (I:B OO‘ OO 9 I;B
0,7 0,7 0,7 0,7 T T T T
0 A% A% AY; A% AY; A A A%
AF;; Cl FB Cz FB 63 FB C4 FB O Cﬁ FB C7 FB CS 09 FB
mw A eV 0. 0. " 0 0 0
T T T T T
Iy a” oW 0. % 0. ¢ 0. " 0

Table B.9: Coefficients for lepton in non-universal Cy;, C,3 assumption.

(B.4.109)

The coefficients for the following observables are derived through relations between coefficients
from the above decay widths:

For oyaq.
Ul?acl _ Fe 2 1—‘Z Ul?ad — 2 1—‘Z
12349 = €12349 — 4 C1234,9; C56,7,8 = — 4 C56,78"
For R? :
P
0 0 R?L F2 RO o
e _ € _ T —_ T
€1,2,34,6,9 — —€12,346,9, 124569 — —€1,2456.,9, €1,2,4,6,7,89 — —€1,2,4,6,7,8,9,

(B.4.110)

(B.4.111)
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For Ag’gp:
Apn _ Awh AV 325¢ B.4.112
“ “ “ 328§ — 2453 +8s2 — 1’ (B.4.112)
A0 A%k A0T —16(—84 + 36)
CyFB = yFB = ¢, FB = 3950 24840+ 8802 — (B.4.113)
0 0 0
A 32(=sp + 2s0) (B.4.114)
3 3258 — 2458 + 852 — 1’ o
Avs _ 3255 B.4.115
T 3245 — 243 £ 852 1 (B.4.115)
AR _ 32505 B.4.116
6 T 3250 — 2453 + 852 — 1’ (B4.116)
A% 407 1650(—1 + 2s3)
oLt = ¢y = o —0243 T 85% — (B.4.117)
AOHU‘ AOaT 1634
047213 =c, FB — 3286 — 2454 1 832 — 17 (B4118>
0 0 0
AR5 _ v s 16050 — dsg + 45() (B.4.119)

T 3258 — 245t 4852 — 1

B.4.2 Lepton and quark

0;11)66 Cgl))ee Cg(oll)lm CS)MN CS)T T CS’)T T C};gi' C«,gq) Cg(;(’]) C«wu Ccpd

'z c;?: z CSEZ chZ cg z c;;z cgz C§Z C;;OZ c;;IZ CEZZ c;;f
O-l?ad C;had CZ had Cghad Cghad C;had Cg had Cg had Ci had Cflfllmd Cflfgad Cflfgad
R? c?g cff O0 . cgf 0. 0. cg E cﬁf cff cﬁf C%)
R) 0. Cf“ c5R“ c?“ 0. 0. cé% . cfo" cﬁ“ ci“ cg“
0 0 0 0 0 0 0 0 0

RY O(L cfgz 0 f‘éj: ch c?f fc‘éj T cﬁ} cf’{ cf{ cf{
Al ™ ™ 0. ™ 0. 0. c™ 0. 0. 0. 0
Al A b C4AOF§ c?%{; g‘%‘é 0. cg‘%g 0. 0. 0 0.
A |l e g e e o0 00 00 o

FB 3 4 6 7 8 9

myy 0. "™ 0. g 0. 0. 0 0. 0. 0 0.
Ty 0. &% 0. g% 0. &% 0. 0. &Y 0 0.
0 0 0 0 0 0

R 0. sz 0. cg'z 0. 0 0. cﬁg cﬁo cﬁo cﬁ’;
Re | 0 e 0 q 0 0 0 o of e o
A%’g (N 0. ¢ 0. 0. ™ cg® c® 0. 3"

0,c 0,c 0,c 0,c 0O,c 0,c 0,c
AOF’]‘; C?F B chB 0. c?F B 0. 0 c?F B, chFB cﬁFB cfQFB 0.

Table B.10: Coefficients for lepton and quark in non-universal C,;, Cy3 assumption.

The above coefficients for lepton sector remain unchanged. Now, we add some coefficients for
quark sector.
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For I'y:
AV = 3 (B.4.120)
For o} 4:
o—gad O—Sad
€10,11,12,13 = Cab.c,ds (B.4.121)
For cRgvc:
2452(—9 4 4552 — 525 + 1658
A - 280< T 2% — 9%+ Sg> — (B.4.122)
—3652(—9 4 4552 — 52s% + 1658
e = ol = - sl T 20% — 925 + Sg> — (B.4.123)
(=14 2s5)(9 — 24s5 + 32s5)(45 — 843 + 88sp)
Ry Ry R R
01017,11,12,13 = Ca,i,c,d ) €10,11,12,13 = Cabed - (B.4.124)
For cRgp:
0 0 0 0 0 0
€10,11,12,13 = Cabc,d> €10,11,12,13 = Cabe.d> €10,11,12,13 = Cabe.d: (B.4.125)
0,b.
For Apg:
0.b 16s3(3 — 252 — 12s% — 168 + 3258
¥ i 50<2 50— % 302+ ff) — (B.4.126)
A0 —(3233(—15 + 9153 — 228861 + 31288 — 22438 + 643(1)0)
coFB . . - g - 5 T~ (B.4.127)
(=14 2s3)(—3 +4s5)(—1 + 4s5)(9 — 1255 + 8s5) (1 — 4s5 + 8s5)
0,b 164_1 242 0,b _821_42 4gh
C?FB — 5 SO( < + Sg) , CQAFB — 680( I SO + 5 SO) , (B4128)
0.b 2(—24s% 4+ 1658 0,6 1652 (—3 + 252
0‘140FB — 6< SO4+ 320> 7 0‘141FB — - SO( - + Sg) 7 (B.4.129)
0,b —852(9 — 1252 + 4s?
A _ iO( 125 + s0) (B.4.130)
O,c .
For Apg:
0.c 165 (—1 + 252
s - 10571 12%) (B.4.131)
A0 1633(12 — 9783 + 33083 — 60888 + 44888)
s = 5 5 - 5 - 5 T~ (B.4.132)
A%¢ —(1633(—39 + 34953 — 130233 + 259238 — 262438 + 10245(1)0)
¥ = : : - - - > I~ (B.4.133)
0.c —8s2(1 — 452 + 4s? 0.c —2(—96s% + 1285
v _ 630( 20 + - 50) , P = 6( S(f 230) , (B.4.134)
0.c 64sk(—3 + 4s? oc  16s52(9 — 2452 + 165}
g Gsh(—34dsh Aps _ 105009 = 245+ 16sp) (B.4.135)
(B.4.136)
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B.5 Non-universal >, C, and universal quark
B.5.1 Lepton
ee ee + TT T uni.—
CowpCypp X577 Ceo XU Chr X770 CTT B0
r, [lo. &” 0 0.0 0 0 0 ¢
r. e e o 4o 0. 0. 0. cF
', c{“ Cg“ cg" 0. cg" cg“ 0. 0. cg“
I'; Cl;T Cg* ch 0 ch 0. c?T ch ch
Chad. Cll—‘had. Cghad. Cghad‘ 0. Cghad‘ 0. 0. 0. Cghad.
Table B.11: Coefficients of decay widths for lepton in non-universal X, C,. assumption.
For the neutrinos:
1% ]‘ v,
G =gt =g ==, =Gy =y = 2. (B.5.137)
For the charged leptons:
4sgco(4st — 1)
T T T 0¢0 0
e — et =l = B.5.138
T T T 62 1 165 — 1650 ( )
=t =0 = B.5.139
@ T 79 T5T 453(3 — 8s2 +8s3) ( )
2(—1 + 5s2 — 9sd + 458
—1 + 655 — 165, + 1653
252(1 — 5s2 + 4s3)
r r r r 0 0 0
e _ Tu_ To_ I _ B.5.141
G TG TS TS T T 62— 1658 + 1658 ( )
—2s2 4+ 1
L= ZZ0F (B.5.142)
Xsm
—9g2
CZE = Cg'u — CgT — ZSO , (B5143)
Xsm
452(1 — 5s2 + 4s3)
r r r 0 0 0
€ p— H pr— T = . B-5-144
O 7% T T T 652 — 1650 + 165 ( )
For hadrons:
Thad _ 4soco(44s3 — 21) Fhad _ (—45 + 90s2 + 4s3)
€1 2 4 6" Co 3 1 5, (B.5.145)
45 — 174s5 + 25655 — 1765 90 — 348s§ + 512s; — 3525
(Lra (oo 252(21 — 6553 + 44s3) Ppd 452(21 — 6553 + 44s3) . (B.5.146)

T 45+ 17452 — 25684 + 17658 0 T 45+ 1745 — 25654 + 17658
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The coefficients for total Z decay width read:

Tz _ 4050co (852 — 3) 1, (=634 12652 + 40s1) (B.5.147)
' 63 — 24653 + 400s$ — 32058’ > 126 — 49252 + 800sp — 640s5"
r,_ 6+ 8452 — 24458 4 16058 oo L 253 +1 _ 6 — 1252 (B.5.148)
35 63 + 24652 — 40058 + 32058 T3 X% 63 — 12052 + 160s3’
To 1 —2s _ —12s3 Lo —18 + 15653 — 440s3 + 32058‘ (B.5.149)
L6873 2 63 — 12082 4 160s8’ ? 63 — 12053 + 160s3
(B.5.150)
(B.5.151)
For total W mass and decay width:
2 2
mw 0 G B.5.152
G5 Ty 8s2 “ 4 —8s3 (B.5.152)
—4 4 25¢% + 853 1 —6 4 25¢2 + 1252
Ty _ Tw _ 0 T 5% Tw _ = I'w _ 0 0 (B.5.153
G TS 36(s3 —c2) Ty “ —18 + 3653 ( )

The coefficients for the following observables are derived through relations between coefficients

ee+ ee e L TT+ T uni.—
C@WB CSOD 2<,0l Ct,pe Zg@l Cgae Ecpl Cgoe Ecpl
T, T, 187 T, 187 187 107 17 17
0 0
0 %had Ohad %had Ohad had had had %had Ohad
Ohad ¢ ao GF G G G Cr Cg G
R R R R R R
R? L ¢ gt ot e 0. 0. 0. ¢°
RT  RY RV RO RV RY
R e O e | R o ( R | R
RO RO RO RO RO RY RO
RY (N 0. ¢ 0. ™ g™ cy”
0 T, 0; T 0, 0
AO,B Apg AR Apg ARg Apg 0 0 0 ARg
FB 1 2 C3 Gy 5 9
0,0 Az AU AUH Az ADH AUH iz
AF,B ¢ FB c FB oA FB ¢ FB ct FB cg FB 0 0 o FB
0r AO T AO T AO,T AO T AO,T AO,T AO,T AO,-r
) FB FB FB FB FB FB FB FB
ARG G c Cy cy cs 0. ¢ Cq Co
myy e 0. " 0. 0. 0. ¢
Tw T'w Tw T'w Tw Tw

Table B.12: Coeflicients for lepton in non-universal Y., C,. assumption.

from the above decay widths:

For opaq.
Thad T —9 L'z Thad —_9. 'z (B 5 154)
1,234 = C12,34 " 12,345 C5,6,7,89 — C5,6,7,8,9° -0-
For R? :
P
0 o R, ro RO o
e R e N T R T
€1,2,3,4,59 — —C1,23459 €1,2,3,56,9 — —€1,2,3,56,9 €1,2,35789 — —€1,2357809: (B.5.155)
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0,ep .
For Agy:
0, 0, 0, 3
Agg _ ARp _ AFs 328060
=" =" =—= i SR— (B.5.156)
44 6
efF5 — b = ¥ — 1605 + %) (B.5.157)
2 3258 — 2458 + 852 — 1’
0. 4/ 2 , _ 2 4l 6
A% 16s5(—1+ 3s5) A%e  —16(sg — 4sy + 4sp)
3= 1 5 T 1 5 : (B.5.158)
0,e 0, 4.2 0, 0, 6
5F};, — 5F}73— — 16SOCO CAFlg —c FB — 1650 (B 5 159)
3250 — 245t 4852 — 1" P 3 3258 — 2458 + 852 — 1’
4 2 2 2 4
A _ 16s*(—1 + 2s°) AV _ A —8s5(1 — 4sg + 4s;) (B.5.160)
7 - - - . . .
3250 — 2458 + 852 — 17 4O 48T 3260 — 2488 + 852 — 1
(B.5.161)
B.5.2 Lepton and quark
ee+ ee YUt pp STT+ 7T yuni.— @ (3)
Eapl Ogoe E@ C«pe Egol Cgoe ol Coq  Cgq O«pu Owd
T T T T T T T T T T T
'z cg,z célz ng cgz ng cgz cgz C&OZ c&f ad i
0 0
0 %had had had %had %had had had had had %had %had
Ohad || C3 do Cy do Cs do S S do C1od0 011‘*0 012&0 01340
0 R R R R R R R R
R c3§ cy ¢ 055 00 0. 0. Cg; Cl(()j CH; 0125 cl?g
R R R R R R R R
0 " W " i 1 (0 H iz
R, Cq i 0. ¢ i Cq 00. OO. Co ) o Cii Cis C3
R R R R R RO RD RU RO
R} N L < S LR < S < M M« [ A o t S T A o T
O,e O,e 0,e
0O,e Arg Arg Arg
Agg 030 040 O0. 00. 0. 0. 090 0. 0. 0. 0.
0, A0H A0:E A0:H A0:H A0H
Agh |l 3™ )" ™ g™ 0. ey 0. 0. 0. 0.
0,7 0,7 0,7 0,7 0,7
0,7 Arg  Arp Arg  App Arg
AR || c3 Cy 0. 0. ¢ Cg Cy 0. 0. 0. 0.
mw || g™ 0. " 0. 0. 0. cg™ 0. 0. 0. 0.
T T r T T
Iy cs" 0. " 0. " 0. ¢ 0. " 0. 0.
0 0 0 0 0 0 0
0 Ry Ry Ry R, Ry Ry Ry
Ry G 0. ¢4 : 0. 0. 0. ¢ C Gy Cu Gr G
0 RO RO RV R RU RO RO
R Cy b ()b. Cs b 0. 0 0. Cy b Cli 011; C1y 013;
0 0 0 0 0 0 0
0,b Apg  Ars AFB Ars  Ars AFB Agg
Agg || ¢ C a6 0. 0. 0. ¢ SET 1 O0. 13
0,c Avs  Aps Apg Aps  Aps  ARg Apg
Agg || ¢ cy cs 0. 0 0. ¢ ce® o g 0.

Table B.13: Coefficients for lepton and quark in non-universal X, C,. assumption.

The above coefficients for lepton sector remain unchanged. Now, we add some coefficients for

quark sector.
For I'y:

1
2 (B.5.162)
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For o} 4:
O-l(')nad Ugad
€10,11,12,13 = Capb,e,d (B.5.163)
For ¢fhe:
12s2(— 4552 — 5254 + 1658
e = = 250( 9 & 4sg — 5259+ 165) (B.5.164)
2452(—9 + 4552 — 5254 + 168
o 2So< + 0% — 92% + Sg) — (B.5.165)
—1852(—9 + 4552 — 5254 + 1658
e = o = - ol T 205 — 025 F SS) s (B.5.166)
(=14 2s3)(9 — 24s% + 32s5)(45 — 847 + 88sp)
—3652(—9 + 4552 — 5254 + 1658
i 3650(—9 + 455 — 525 £ 165) (B.5.167)
R? RY RO RO
Cl1011,12,13 = Ca,li,c,da €10,11,12,13 = Cap,c,d- (B.5.168)
For cRgp:
0 0 0 0 0 0
€10,11,12,13 = Cabc,ds €10,11,12,13 = Cabe,d> €10,11,12,13 = Cabe.d: (B.5.169)
0,b .
For Apg:
A%t 1653(—12 + 89s2 — 24053 + 29655 — 19255 + 64s.°) (B.5.170)
C = ..
3 (—1+282)(—3+4s2)(—1 + 453)(9 — 12s2 + 8s3)(1 — 452 + 8s¢)’
A0r —8s3(1 — 4s§ + 4s7) B
= 5171
4 3288 — 245 +8s2 — 1’ ( )
A% —16s5(—15 + 9153 — 22853 + 31255 — 22455 + 645)°)
e — . - > - - L e (B.5.172)
A% —3255(—15 4 913 — 22853 + 312s§ — 22455 + 645.°) (B.5.173)
c = , .0.
? (—1+282)(—3+4s2)(—1 4 4s3)(9 — 1252 + 8s3) (1 — 452 + 8s3)
0 2(—24s% + 1658 0. 16s(—3 + 252
CfOFB - 6< SO4+ 820> ) CleB = 6 ol 1 u 8(2)) ’ (B.5.174)
A0 —8s3(9 — 12s% + 4sg) (B.5.175)

3" = 3288 — 24s§ +8s2 — 1
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64

O7c .
For Apg:

8s5(—15 + 15553 — 64254 + 13765 — 1728s§ + 1024510)
(—1+282)(—1+4s2)(—3 + 8s3)(1 — 452 + 8s4)(9 — 2452 + 32s3)’
_ —8s5(1 — 4sj + 4sp)

3288 — 2458 +8s2 — 17
—8s3(—39 + 34953 — 130253 + 25925 — 26245 + 1024550)
(—1+282)(—1+4s2)(—3 + 8s3)(1 — 453 + 8s3)(9 — 2452 + 32s3)’
—1653(—30 + 34952 — 130258 + 259258 — 262458 + 1024530)

T (C1+253)(—1 + 452)(—3 + 8s2)(1 — 452 + 852)(9 — 2452 + 32s8)’
_ —2(—96s; + 1285() A _ 64s5(—3 + 4s2)
3258 — 2458 + 852 — 1’ 3260 — 242 4852 — 17

_ 1652(9 — 2452 + 1653)
325§ — 2458 +8sF — 1

(B.5.176)
(B.5.177)
(B.5.178)
(B.5.179)
(B.5.180)

(B.5.181)
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