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Introduction

The first two chapters in this thesis were followed the first two chapters of Hong Minh’s thesis[1].
I have checked all the calculations there and just put essential things to my thesis. In that, I
have provided a well-known method to find the total cross-section and some distributions of the
given process e+ + e− → µ+ + µ− in both Quantum Electrodynamics (QED) and the Standard
Model (SM) cases. Many essential calculated steps will be introduced in those chapters such as
how to find vertex factors, the propagators, Feynman amplitude... Some comparisons between two
theories shall be implemented to help us to see how different they are.

Nevertheless, the main purpose of this thesis is studying dimension-six operators using Standard
Model Effective Field Theory (SMEFT) framework and then apply it in our process. Although SM
is the successful theory which has amazing agreement with experiments, many physicists believe
that it is just the leading order terms of an exhaustive theory. Experimental errors of measure-
ments are becoming smaller when the LHC reaches the higher level of energy, and it can help to
find new physics beyond SM. Therefore, in Chap. 3, we will derive many deviations of relations
from the SM especially the total cross-section result of e+ +e− → µ+ +µ− process in SMEFT. Also,
some main features of physics such as gauge invariant of dimension-six operators, the independent
of Feynman amplitude on gauge-fixing parameters... will be checked.

In the final chapter, I have re-produced the relations between the Z boson decay angular
distributions and the spin-density matrix elements of the Z boson (it is noted that Z bosons
produced at e+e or pp collision are polarized). Then I applied these results to the process e++e− →
Z → µ+ + µ− and find the density matrix for Z boson in two different ways. First, I used the
helicity-amplitude method to calculate the density matrix. In another way, I found the normalized
distribution of the cross-section using the amplitude-squared method, then I compared with the
relation produced above to obtain density matrix elements. After that, I find the normalized
angular distribution for the process e+ + e− → Z + γ → µ+ + µ− which mediated by Z boson and
photon. Using the same manner, I was able to derive the so-called ”density matrix” elements (it
is not actually the density matrix since it has two mediators) and then saw the difference between
two density matrix. Moreover, after using the SMEFT framework, I will be able to calculate the
effects of dimension-six operators on the above spin observables and make a comparison with that
of SM.
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1
Scattering process e− + e+ → µ− + µ+ in QED

1.1 Feynman rules in QED

First, the main difference between many models in particle physics is the change of the Lagrangian
density (Lagrangian for short). In QED, only electromagnetic interaction, which mediated by the
photon, exists. The QED Lagrangian, therefore, contains only the field of photon Aµ:

L = −1

4
FµνF

µν − 1

2ξA
(∂µA

µ)2 + ψ̄(i /D −m)ψ, (1.1)

where Fµν is the electromagnetic field tensor: Fµν = ∂µAν − ∂νAµ. Dµ is the covariant derivative,

which is: Dµ = ∂µ − ieAµ. The term − 1

2ξA
(∂µA

µ)2 is the gauge fixing term which contains the

gauge fixing parameter ξA. As you will see later, gauge-fixing term is a technique to calculate the
photon propagator.
Note that in Lagrangian (1.1), the terms which contain one field only are called the free Lagrangian
terms, except for the case −mψ̄ψ is called the mass term. While the terms containing more than
one field are the interaction terms.

1.1.1 Photon propagator

Applying the principle of least action for the free electromagnetic field part of the Lagrangian in
(1.1), the Euler-Lagrange equation is of the form:

∂σ

(
∂LE

∂(∂σAλ)

)
− ∂LE
∂Aλ

= 0. (1.2)

It is obvious that the second term is equal to zero, the first term will be calculated step by step,
we have

⇒ ∂LE
∂(∂σAλ)

= ∂λAσ − ∂σAλ − 1

ξA
(∂µA

µ)gλσ.

Substituting that result into Eq.(1.2), the equation of motion for photon field becomes[
�gµρ −

(
1− 1

ξA

)
∂µ∂ρ

]
Aρ = 0. (1.3)
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The propagator of the vector field Dρν(x − y) is the solution of the inhomogeneous equation of
motion above with a point-like source:[

�gµρ −
(

1− 1

ξA

)
∂µ∂ρ

]
Dρν(x− y) = gµν δ

4(x− y). (1.4)

Using the Fourier transformation for both sides of the Eq.(1.4), we have:[
�gµρ −

(
1− 1

ξA

)
∂µ∂ρ

]∫
d4q

(2π)4
e−iq(x−y)Dρν(q) = gµν

∫
d4q

(2π)4
e−iq(x−y),[

−q2gµρ +

(
1− 1

ξA

)
qµqρ

]
Dρν(q) = gµν . (1.5)

Based on the Green function method, we know that Dµν is the photon propagator and the general
form of it is

Dρν(q) = A(q2)qρqν +B(q2)gρν (1.6)

To determine two coefficients above, we have to insert the general form of photon propagator into
Eq.(1.5), it then becomes[

−q2gµρ +

(
1− 1

ξA

)
qµqρ

] [
A(q2)qρqν +B(q2)gρν

]
= gµν .

We can easily derive B(q2) =
−1

q2
and A(q2) =

1− ξA
q4

. Hence, we can rewrite the photon propa-

gator in term of:

Dµν(q) =
1− ξA
q4

qµqν −
gµν
q2
. (1.7)

An interesting thing is that the gauge-fixing term can help us to derive the photon propagator,
but itself is not gauge invariant. Let’s now discuss about this special term. We can see that the
gauge fixing term depends only on (∂µA

µ)2 and independent of the fermion field. Thus, the gauge
fixing term can only affect the photon propagator, which is the internal line. while the external
fermion lines still unchanged. Notice that the internal line is not a physical observable, so it is not
important if this propagator is not gauge invariant. Therefore, the Feynman rules in the interme-
diate steps are important but it is no need to be gauge invariance. Nevertheless, the final results
must be gauge invariant because it is the physical observables.

As I have mentioned above, the gauge-fixing term is a technique to calculate the photon prop-
agator. Because if we do not have that term, we have derived an invalid identity 1/q2 = 0. Thus,
we could not obtain the coefficient A(q2) in the general form of the photon propagator.

So that, we need to introduce gauge fixing term as a trick. But finally, the physical observables
must be independent of gauge-fixing parameters. And so far in my thesis, you will see that no
physical observable depend on that parameters. Because of that reason, we can arbitrarily choose
the value of gauge-fixing parameters. If we choose ξ = 1, we will call it Feynman gauge. Unitary
gauge for ξ =∞. And the Rξ gauge which still remains ξ.
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1.1.2 Vertex factor of eeγ

One of the useful methods to find the vertex factor is looking for the interaction terms in La-
grangian, then remove all fields and multiply by imaginary unit. In Eq.(1.1), the interaction term
is:

ψ̄i /Dψ ⊃ ψ̄i(−ieγµAµ)ψ = ψ̄eγµAµψ. (1.8)

Thus, the vertex factor reads

γ

e+

e−

= ieγµ. (1.9)

1.1.3 Feynman rules in QED

Now we will introduce the Feynman rules in QED, notice that we only focus on the rules for
diagrams at tree level only. External lines contribute a factor as follows:

~p = u(p),

~p = ū(p),

~p = v̄(p),

~p = v(p).

The essential feature of Feynman rules is that the energy-momentum conservation law must be
obeyed at each vertex.

1.2 Feynman amplitude

Based on the Feynman rules in QED that we had already introduced, we can write down the
Feynman amplitude for the scattering process of e− + e+ → µ− + µ+ in Fig. (1.1) as follows:

γ

e−

e+

µ+

µ−

Figure 1.1: Feynman diagram of process e+ + e− → µ+µ− in QED
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M = [v̄s′(p
′)(ieγµ)us(p)]

[
(1− ξ)qµqν

q4
− gµν

q2

]
[ūr(k)(ieγν)vr′(k

′)]

= −(1− ξ)e2

q4
[v̄s′(p

′)/qus(p)][ūr(k)/qvr′(k
′)] +

e2

q2
[v̄s′(p

′)γµus(p)][ūr(k)γµvr′(k
′)]

We have denoted the four-momenta and spin indices of e−, e+, µ−, µ+ to be (p, s), (p′, s′), (k, r), (k′, r′),
respectively. Using the Dirac equations{

/pus(p) = meus(p),

v̄s′(p
′)/p′ = −mev̄s′(p

′),

the Feynman amplitude becomes:

M =
e2

q2
[v̄s′(p

′)γµus(p)][ūr(k)γµvr′(k
′)].

You can see that M is now independent of ξ. The squared amplitude, therefore, have the form

M2 =M†M =
e4

q4
[v̄s′(p

′)γνus(p)][ūs(p)γ
µvs′(p

′)][v̄r′(k
′)γµur(k)][ūr(k)γνvr′(k

′)].

In the case of unpolarized beam, we have to average the cross-section over the initial spin state
since we do not know the initial particles spin. However, we must sum the cross-section over the
final state because we accept all final particles in the detector and do not measure their spin state.
Summing over the spin states, vs′(p

′)v̄s′(p
′) can be replaced by /p′ − me. Similarly for another

electron and the final muon. Now look at the squared amplitude, we see that it is a scalar and can
be rewritten as traces. So we have:

⇒ |M0|2 =
1

4

∑
spin

|M|2 =
e4

4q4
Tr[(/p′ −me)γ

µ(/p+me)γ
ν ] Tr[(/k′ +mµ)γµ(/k +mµ)γν ]

=
8e4

q4
[(p.k′)(p′.k) + (p′.k′)(p.k) +m2

µ(p.p′) +m2
e(k.k

′) + 2m2
em

2
µ],

where the trace above were tricked as follows

Tr[(/p′ −me)γ
µ(/p+me)γ

ν ] = Tr(/p′γµ/pγ
ν)− Tr(meγ

µmeγ
ν)

= p′αpβTr(γ
αγµγβγν)−m2

eTr(γ
µγν)

= p′αpβ4(gαµgβν − gαβgµν + gανgµβ)− 4m2
eg
µν

= 4(pµp′ν − pp′gµν + pνp′µ −m2
eg
µν),

T r[(/k′ +mµ)γµ(/k +mµ)γν ] = Tr(/k′γµ/kγν)− Tr(mµγµmµγν)

= k′αkβTr(γαγµγβγν)−m2
µTr(γµγν)

= k′αkβ4(gαµgβν − gαβgµν + gανgµβ)−m2
µ4gµν

= 4(k′µkν − k′kgµν + k′νkµ −m2
µgµν).
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Figure 1.2: The process ee→ µµ in CM frame

Let’s introduce a quantity out going angle θ = (k, Oz) and work in Center of Mass Frame (CMF)
Fig.(1.2). Note that we shall use the approximation me = 0. In order to write the squared-
amplitude in term of energy E and angle θ. We must derive some identities below:

p.k = p′.k′ = E2 − k.p = E2 − |p||k|cosθ = E2 − E|k|cosθ,

p.k′ = p′.k = E2 + k.p = E2 + |p||k|cosθ = E2 + E|k|cosθ,

q2 = (p+ p′)2 = (2E,p− p)2 = 4E2,

p.p′ = E2 + |p|2 = E2 + E2 = 2E2,

k.k′ = E2 + |k|2.

(1.10)

The squared amplitude then reads

|M0|2 =
e4

E2

[
(E2 +m2

µ) + (E2 −m2
µ)cos2θ

]
. (1.11)

1.3 Some distributions of e− + e+ → µ− + µ+ process

1.3.1 Total cross-section

Based on [2], the cross section in the center of mass frame for two final-state particles is of the
form:

dσ

dΩ
=

1

64π2s

|k|
|p| |M0|2, (1.12)

where
√
s = 2E is the total energy in CM frame.

⇒ dσ

dΩ
=
|k|e4

256π2E5

[
(E2 +m2

µ) + (E2 −m2
µ)cos2θ

]
. (1.13)

Integrating the differential cross-section over all directions, we can derive the total cross-section:

σT =

∫
dσ

dΩ
dΩ =

|k|e4

48πE5

(
E2 +

1

2
m2
µ

)
(1.14)

Fig.(1.3) indicates the dependence of the total cross-section on
√
s = 2E which is the total energy

in CM frame. As you can see, the plot begin at
√
s = 2mµ. That is a reasonable result since based

on the energy conservation, we must have the total energy at least equal to the mass of a pair of
muons in order to create these particles.
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1.3.2 Angular distribution of muon

The angular distribution is the important distribution, it helps us to predict which angle is more
sensitive to the muon. So that we will know where to put the detectors. From Eq.(1.13), we easily
obtain the angular distribution

dσ

dθ
=
|k|e4

256π2E5

∫ 2π

0

[
(E2 +m2

µ) + (E2 −m2
µ)cos2θ

]
sinθ.dϕ,

=
|k|e4

128πE5

[
(E2 +m2

µ) + (E2 −m2
µ)cos2θ

]
sinθ.

Fig.(1.4) illustrates the angular distribution of muon where the total energy is 20 GeV. We can see
the plot is symmetry between the backward and forward side, and it has two peaks at θ = 0.95 (rad)
and θ = 2.19 (rad) corresponding to the two most sensitive angles.

Figure 1.3: Total cross-section Figure 1.4: Angular distribution of muon

1.3.3 Transverse momentum and longitudinal momentum distributions
of muon

In general, if we wish to change from distribution f(x) to distribution g(y), where y is the function
of x, we can use the formation

g(y) =
∑
xi

f(x)

∣∣∣∣dxdy
∣∣∣∣
x=xi

. (1.15)

In Eq.(1.15), the term
∣∣dx/dy∣∣ is called the Jacobian. It must be understood that xi on the right

handside should be written in terms of y via the inverse function.
The next popular quantities are transverse and longitudinal momentum which are denoted by kt
and kl, respectively. First, the transverse momentum reads

kt = |k|sinθ ⇒


θ1 = arcsin

kt
|k| ,

θ2 = π − arcsin kt|k| .
(1.16)
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The Jacobians are derived as:∣∣∣∣ dθdkt
∣∣∣∣ =

1

|k||cosθ| ⇒
∣∣∣∣∣ dθdkt

∣∣∣∣
θ=θ1

∣∣∣∣∣ =

∣∣∣∣∣ dθdkt
∣∣∣∣
θ=θ2

∣∣∣∣∣ =
1

|k|
√

1− sin2θ1

=
1√

|k|2 − k2
t

(1.17)

Using Eq. (1.15) above, the transverse momentum distribution becomes

dσ

dkt
=
∑
i

dσ

dθ

∣∣∣∣
θ=θi

∣∣∣∣∣ dθdkt
∣∣∣∣
θ=θi

∣∣∣∣∣ =
kt
(
2E2 − k2

t

)
e4

64πE5
√
|k|2 − k2

t

(1.18)

Similarly, we could find the longitudinal momentum distribution of muon.

dσ

dkl
=

e4

128πE5

(
E2 +m2

µ + k2
l

)
(1.19)

where the longitudinal momentum is defined as: kl = |k|cosθ. Fig. (1.5) show the transverse and
longitudinal momentum distributions of muon in the case that CM energy is 10 GeV.

Figure 1.5: Transverse- and longitudinal-momentum distribution of muon
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2
Scattering process e− + e+ → µ− + µ+ in Standard Model

2.1 An overview of Standard Model

Standard Model (SM) is the most successful theory ever which is able to describe three of four
fundamental interactions: electromagnetic, weak and strong interactions. Gravity interaction is
not considered in this model. This model also helps us to classify all currently known elementary
particles which are shown in Fig.(2.1)1. You can see that there are twelve particles of matter
(quarks and leptons), governed by three forces that are caused by the exchange of four Gauge
boson particles (photon, Z, W boson and gluon). The other particle in SM is the famous Higgs
boson, which is thought to give mass to the other massive particles. The paramount property of
SM is using the local SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge symmetry. Experiments with high energy
particles at accelerators have completed our knowledge about SM with amazing precision.

Figure 2.1: Elementary particles in SM

1The source for the picture is from https://en.wikipedia.org/wiki/Standard Model
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The Lagrangian of SM is invariant under that transformation and have the form:

L = Lfermion + Lgauge + Lgf + LHiggs + LY ukawa + Lghost. (2.1)

In this chapter we only work with three first terms of SM Lagrangian, the other terms we will
consider in the later chapter. Another thing to note that we only focus on the transformation of
SU(2)L ⊗ U(1)Y since we do not have strong interaction in ee→ µµ process.
One of an essential point in SM that you must keep in mind that left- and right-handed fields have
different transformations because left-handed fields and right-handed fields are arranged in doublet
and singlet, respectively. Therefore, the right-handed fields are not affected by the transformation
of SU(2)L group. Left- and right-handed under the transformations of SU(2)L ⊗ U(1)Y are:

ψL → ψ′L = exp

{
ig
τ i

2
αi(x) + ig′

Y

2
β(x)

}
ψL

ψR → ψ′R = exp

{
ig′

Y

2
β(x)

}
ψR

(2.2)

Where τ i are the Pauli matrices and they are also the generators of SU(2)L. Y is the hypercharge
which has different values for each particle according to the Gell-Mann Nishijima formula:

Q = I3 +
Y

2
, (2.3)

with Q is the charge of the particle. I3 is the eigenvalue of τ 3/2 and it is called the isospin.

2.1.1 Fermion term of SM

The first term of SM Lagrangian in Eq. (2.1) is:

Lfermion =
∑
f

iψ̄L /DψL +
∑
f

iψ̄R /DψR. (2.4)

The general covariant derivative is:

Dµ = ∂µ − ig′
Y

2
Bµ − ig

τ i

2
W i
µ − igsGa

µ

λa

2
(2.5)

Where λa stand for Gell-Mann matrices and Ga
µ, W

i
µ, Bµ are the corresponding gauge fields of

SU(3)C , SU(2)L, and U(1)Y , respectively. But these gauge fields are not physical fields (expect
for Ga

µ but we do not talk about it more) and we call them as weak-eigenstate basic. The mass-
eigenstate basic contains the physical fields which could be written as combinations of gauge fields:

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ)

Zµ = cWW
3
µ − sWBµ

Aµ = sWW
3
µ + cWBµ

(2.6)

Here, we have denoted cW = cosθW and sW = sinθW, where θW is the weak mixing angle defined
as θW = arctan(g′/g).
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2.1.2 Gauge fields in SM

The SM gauge field Lagrangian is of the form:

Lgauge = −1

4
FµνF

µν − 1

4
W a
µνW

aµν . (2.7)

W a
µν and Fµν are called the field tensors corresponding to the gauge fields of SU(2)L and U(1)1

respectively. {
W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW
b
µW

c
ν ,

Fµν = ∂µBν − ∂νBµ.
(2.8)

2.2 Vertex factor of Z-Boson

Note that the interaction term of Z boson and fermions is hidden in the kinetic terms in Eq.(2.4).
Since Zµ is a linear combination of Wµ and Bµ, we will work with the part that contains the gauge
fields W 3

µ and Bµ only. Let’s start with Lagrangian in Eq.(2.4).

Lfermion ⊃ iψ̄Lγ
µDµψL + iψ̄Rγ

µDµψR (2.9)

⊃ iψ̄Lγ
µ

(
−ig τ

3

2
W 3
µ − ig′

Y

2
Bµ

)
ψL + iψ̄Rγ

µ

(
−ig′Y

2
Bµ

)
ψR. (2.10)

Now we want to find the terms contain the Z boson field, thus we have to change the weak- to
mass-eigenstate basic. From Eq. (2.6), we can deduce the inverse transformations:{

W 3
µ = cWZµ + sWAµ,

Bµ = −sWZµ + cWAµ.
(2.11)

Inserting (2.11) into (2.10) and only keep the terms with Z boson field, we have:

Lfermion ⊃ iψ̄Lγ
µ

− ig

cW

(
c2
W

τ 3

2
− s2

W

Y

2

)
Zµ

ψL + iψ̄Rγ
µ

(
ig

cW
s2
W

Y

2
Zµ

)
ψR. (2.12)

Since we do not have neutrino in the process we care about, hence we only keep eL in doublet

ψL =
(
νe e

)
L

and, of course, eR in singlet ψR. Using Gell-Mann Nishijima formula in Eq.(2.3),

we are able to obtain hypercharge Y = −1 and Y = −2 for left- and right-handed electrons
respectively. The interaction term of e− and e+ mediated by Z boson could be written as:

LēeZint = gLZµ(ēLγ
µeL) + gRZµ(ēRγ

µeR). (2.13)

Where gL =
g

cW

(
−1

2
+ s2

W

)
and gR =

g

cW
s2
W . For any Dirac spinor ψ, we can always write it in

term of: ψ = PLψ + PRψ =
1− γ5

2
ψ +

1 + γ5

2
ψ. Based on that identity, Eq.(2.13) can rewrite as

LēeZint = ē (gLγ
µPL + gRγ

µPR) eZµ =
1

2
Zµē

(
gV γ

µ − gAγµγ5
)
e, (2.14)
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where gV = gL + gR and gA = gL − gR. Thus, the vertex factor of eeZ is as follows:

e+

e−

Z0

=
i

2

(
gV γ

µ − gAγµγ5.
)

(2.15)

2.3 Propagator of Z-boson

To find the propagator of Z-boson, we have to insert (2.11) into the gauge field Lagrangian in (2.7)
and pull out the kinetic term for Zµ. Notice that we just interested in the Lagrangian of free Zµ
only. So we will do step by step to find what terms contain Zµ only, we start with

Fµν = ∂µBν − ∂νBµ = ∂µ(−sWZν + cWAν)− ∂ν(−sWZµ + cWAµ) (2.16)

⇒ −1

4
FZ
µνF

Zµν = −1

4
s2
W (∂µZν − ∂νZµ)(∂µZν − ∂νZµ). (2.17)

We have used the notation FZ
µν for the terms of Fµν that contain Zµ only. Similarly, we can find

the terms with only Zµ of W a
µν :

−1

4
WZa
µν W

Zaµν = −1

4
c2
W (∂µZν − ∂νZµ)(∂µZν − ∂νZµ). (2.18)

Thus, we can obtain the Lagrangian of free Zµ only:

LkinZ = −1

4
FZ
µνF

Zµν − 1

4
WZa
µν W

Zaµν (2.19)

= −1

4
(∂µZν − ∂νZµ)(∂µZν − ∂νZµ). (2.20)

However, this is not yet the complete Lagrangian of free Zµ, we have to add two more terms, which
are the mass term of Zµ and the gauge fixing term. In the first chapter, we do not have the mass
terms since photon is massless,

⇒ LZ = −1

4
(∂µZν − ∂νZµ)(∂µZν − ∂νZµ) +

1

2
m2
ZZµZ

µ − 1

2ξZ
(∂µZµ)2. (2.21)

Based on the Lagrangian above, using the same manner which has been introduced in chapter 1,
We are able to derive the form of the propagator of Z boson Dµν(q) as:

Dµν(q) =
1

q2 −m2
Z

[
−gµν + (1− ξZ)

qµqν
q2 − ξZm2

Z

]
. (2.22)

Let’s have a look at the above propagator, the denominator becomes zero when q2 = m2
Z which

will cause the divergence in the total cross-section later. This is because of the approximation that
we make when we consider only the free Zµ Lagrangian. So if we take many higher terms into
account, we will obtain the corresponding Breit-Wigner propagator in Feynman gauge:

Dρν(q) =
−gρν

q2 −m2
Z + iΓZmZ

. (2.23)

Where ΓZ is the decay width of Z Boson and its experimental value is approximate 2.452 GeV.
The manner to find it by theory will be introduced in later section.
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2.4 Feynman amplitude

Basically, the Feynman rules in SM is similar to that of QED. Except for the internal line since
we have one diagram in addition. The process currently has two mediators which are illustrated
by two Feynman diagrams in Fig.(2.2) The Feynman amplitude can be write down as:

e−

e+

γ
µ+

µ−

e−

e+

µ+

µ−

Z

Figure 2.2: Feynman diagrams of process e+ + e− → µ+µ− in SM

M =Mγ +MZ , (2.24)

Where Mγ and MZ are the Feynman amplitude for the diagram which is mediated by photon
and Z boson respectively. They have the form:

Mγ =
[
v̄s′(p

′)(−ieγµ)us(p)
](
−gµν
q2

)[
ūr(k)(−ieγν)vr′(k′)

]
, (2.25)

MZ =

[
v̄s′(p

′)
i

2
(gV γ

µ − gAγµγ5)us(p)

](
− gµν
q2 −m2

Z + iΓZmZ

)

×
[
ūr(k)

i

2
(gV γ

ν − gAγνγ5)vr′(k
′)

]
. (2.26)

After long calculations, we can derive the squared-amplitude as follows:

|M0|2 =
1

4

∑
spin

MM† = |M1|2 + |M2|2 + |M3|2, (2.27)

where the explicit forms are:

|M1|2 =
1

(s−m2
Z)2 + Γ2

Zm
2
Z

[
1

2
g4
V (p.k′)(p′.k) +

1

2
g4
V (p.k)(p′.k′)

+3g2
Ag

2
V (p.k′)(p′.k)− g2

Ag
2
V (p.k)(p′.k′) +

1

2
g4
A(p.k′)(p′.k)

+
1

2
g4
A(p.k)(p′.k′) +

1

2
m2
µg

4
V (p.p′)− 1

2
m2
µg

4
A(p.p′)

]
, (2.28)

|M2|2 =
e2

s(s−m2
Z + iΓZmZ)

[
2g2

V (p.k′)(p′.k) + 2g2
V (p.k)(p′.k′)

+2g2
A(p.k′)(p′.k)− 2g2

A(p.k)(p′.k′) + 2m2
µg

2
V (p.p′)

]
+

e2

s(s−m2
Z − iΓZmZ)

[
2g2

V (p.k′)(p′.k) + 2g2
V (p.k)(p′.k′)

+2g2
A(p.k′)(p′.k)− 2g2

A(p.k)(p′.k′) + 2m2
µg

2
V (p.p′)

]
, (2.29)
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|M3|2 =
e4

q4

[
8(p.k′)(p′.k) + 8(p.k)(p′.k′) + 8m2

µ(p.p′)
]
. (2.30)

Similar to Chap.1, now we will work in CM frame and re-use the results in Eqs.(1.10). From that,
we can obtain |M1|2, |M2|2 and |M3|2:

|M1|2 =
E2

(s−m2
Z)2 + Γ2

Zm
2
Z

[
(g2
V + g2

A)2
(
E2 + |k|2cos2θ

)
+ (g4

V − g4
A)m2

µ + 8g2
Ag

2
VE|k|cosθ

]
,

(2.31)

|M2|2 =
8e2E2(s−m2

Z)

s
[
(s−m2

Z)2 + Γ2
Zm

2
Z

] [g2
V

(
E2 + |k|2cos2θ + m2

µ

)
+ 2g2

AE|k|cosθ

]
, (2.32)

|M3|2 =
16e4E2

s2

(
E2 +m2

µ + |k|2cos2θ
)
. (2.33)

Let’s now denote µ = m2
µ/E

2 and then introduce the factor χ0 to make the squared-amplitude
shorter:

χ0(s) =
s

4e2(s−m2
Z + iΓZmZ)

⇒


1

(s−m2
Z)2 + Γ2

Zm
2
Z

=
16e4

s2
|χ0(s)|2,

s−m2
Z

(s−m2
Z)2 + Γ2

Zm
2
Z

=
4e2

s
Reχ0(s).

(2.34)

For convenient, we will denote G1(s),G1(s) and G1(s) as follow:

G1(s) = (g2
v + g2

A)2|χ0(s)|2 + 2g2
V Reχ0(s) + 1, (2.35)

G2(s) =
[
(g2
v + g2

A)2 + (g4
V − g4

A)µ
]
|χ0(s)|2 + 2g2

V Reχ0(s)(µ+ 1) + µ+ 1, (2.36)

G3(s) = 2g2
Ag

2
V |χ0(s)|2 + g2

AReχ0(s). (2.37)

Then, we will be able to write down a more compact form of |M0|2:

|M0|2 =
16e4E2

s2

[
G1(s)|k|2cos2θ + G2(s)E2 + 4G3(s)E|k|cosθ

]
. (2.38)

2.5 Some distributions

2.5.1 Total cross-section

First, we have to derive the total cross-section. Using Eq.(1.12), we can find

dσ

dΩ
=

e4|k|
16π2Es2

[
G1(s)|k|2cos2θ + G2(s)E2 + 4G3(s)E|k|cosθ

]
. (2.39)

Integrating over all values of cosθ and φ, we can obtain the total cross-section as

σT =
e4|k|

4πEs2

[
1

3
G1(s)|k|2 +G2(s)E2

]
. (2.40)

In Fig.(2.3), the total cross-section of SM and QED are almost the same in low energy range.
However, because of the factor 1

(s−m2
Z)2+Γ2

Zm
2
Z

in |M0|2, we see the peak at about 90GeV, this is

also the sign of Z-boson.

About the angular distribution, afer some simple calculations, we obtain:

dσ

dθ
=

e4|k|
8πEs2

[
G1(s)|k|2cos2θ + G2(s)E2 + 4G3(s)E|k|cosθ

]
sinθ (2.41)
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Figure 2.3: Total cross-section of muon

Figure 2.4: The angular distribution,
√
s = 20 GeV (left) and

√
s = 200 GeV (right)

2.5.2 Forward-backward asymmetry

In the angular distribution, which is not similar to QED, the forward- and backward-side are not
symmetry. And we can see it is clear if we enhance the initial total energy. In order to see how
asymmetry it is, we introduce the forward-backward asymmetry(AFB) as follows:

AFB =
σF − σB
σF + σB

=
σFB
σT

, (2.42)

where:

σF =

∫ π
2

0

dσ

dθ
dθ =

e4|k|
8πEs2

[
1

3
G1(s)|k|2 +G2(s)E2 + 2G3(s)E|k|

]
, (2.43)

σB =

∫ π

π
2

dσ

dθ
dθ =

e4|k|
8πEs2

[
1

3
G1(s)|k|2 +G2(s)E2 − 2G3(s)E|k|

]
, (2.44)

⇒ AFB =
σFB
σT

=
6G3(s)

√
1− µ

G1(s)(1− µ) + 3G2(s)
. (2.45)
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Figure 2.5: AFB with respect to
√
s

Fig.(2.5) shows the value of the forward-backward asymmetry. In the case of low energy, we can
see AFB approximate zero which is the property of QED. Thus, we are able to consider QED is
just a special case of SM.

2.5.3 Transverse and longitudinal momentum distributions

Using the same manner as we have mentioned in chapter 1, we can find the transverse and longi-
tudinal momentum distributions are of the form:

dσ

dkt
=
∑
i

dσ

dθ

∣∣∣∣
θ=θi

∣∣∣∣∣ dθdkt
∣∣∣∣
θ=θi

∣∣∣∣∣ =
e4

4πEs2

kt√
|k|2 − k2

t

[
G1(s)(|k|2 − k2

t ) +G2(s)E2
]
, (2.46)

dσ

dkl
=
∑
i

dσ

dθ

∣∣∣∣
θ=θi

∣∣∣∣∣ dθdkl
∣∣∣∣
θ=θi

∣∣∣∣∣ =
e4

8πEs2

[
G1(s)k2

l +G2(s)E2 + 4G3(s)Ekl
]
. (2.47)

Figures (2.6) and (2.7) indicate the transverse and longitudinal momentum distributions with√
s = 200GeV.

Figure 2.6: Transverse momentum distribution Figure 2.7: Longitudinal momentum distribution
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3
Scattering process e− + e+ → µ− + µ+ in SMEFT

3.1 An overview of Standard Model Effective Field The-

ory(SMEFT)

Although Standard Model has much success to describe strong and electroweak interactions, there
are still many issues that have not been solved. Such as right-handed neutrinos, the mass of
neutrinos. Thus many physicists believe there still have a new physics beyond the SM to explain
such phenomena.
There are many ways to establish Models beyond SM, and all of them have the critical rule is
changing the Lagrangian of SM with addition terms. SMEFT is not an exception to that rule,
which has considered SM as a part of an effective theory and using higher dimensional operators
in addition. Thus the SM is considered as the leading order terms of an exhaustive theory
In SMEFT, we introduce one new parameter (Λ), which is the typical energy scale of SMEFT.
Notice that in SM, the typical energy scale is the Electroweak Scale v = 246GeV. A field theory
valid above Λ has to obey the requirements which have been listed in [3]:

• Its gauge group should contain SU(3)C ⊗ SU(2)L ⊗ U(1)Y of the SM.

• All the SM degrees of freedom should be incorporated either as fundamental or composite
fields.

• At low-energies, it should reduce to the SM, provided no undiscovered but weakly coupled
light particles exist, like axions or sterile neutrinos.

The Lagrangian in SMEFT is given by

LSMEFT = LSM +
1

Λ

∑
k

C
(5)
k Q

(5)
k +

1

Λ2

∑
k

C
(6)
k Q

(6)
k +O

(
1

Λ3

)
, (3.1)

where LSM is the part of the SM Lagrangian which is renormalizable. In the rest terms, Q
(n)
k ,

C
(n)
k stand for dimension-n operators and dimensionless Wilson coefficients, respectively. The

appearances of the energy scale dimension-one Λ in many terms help us to reduce the dimension
of those terms become dimension-4 which is the inevitable feature of Lagrangian Density.
In this thesis, we shall work on dimension-four and -six operators only and ignore all higher
dimension operators. The dimension-six operators were firstly introduced by Buchmuller and

20



Wyler [4] in 1985. Such operators must be invariant under Lorentz and gauge transformations but
in Ref. [4], they do not totally independent of each other and some of them violate the baryon
number conservation. Therefore in 2010, the updated list of dimension-six operators was newly
revised by the Warsaw University group [3]. They have a comment that I think it interesting: ”It
is really amazing that no author of almost 600 papers that quoted Ref. [4] over 24 years has ever
decided to rederive the operator basis from the outset to check its correctness.”

3.1.1 Notation and conventions

We will mainly based on the notation and conventions of Ref. [3], which have introduced some
main things:
The form of SM Lagrangian before Spontaneous Symmetry Breaking is

LSM =− 1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (Dµϕ)†(Dµϕ) +m2ϕ†ϕ− 1

2
λ(ϕ†ϕ)2

+ i
(
l̄ /Dl + ē /De+ q̄ /Dq + ū /Du+ d̄ /Dd

)
−
(
l̄Γeeϕ+ q̄Γuuϕ̃+ q̄Γddϕ+ h.c.

)
, (3.2)

where Γe,u,d are the Yukawa couplings. The matter field and all their corresponding Hypercharges
are listed in Tab. 3.1

Fields Notations Hypercharge Y
Left-handed lepton doublets ljp -1/2

Right-handed charged leptons ep -1
Left-handed quark doublets qαjp 1/6

Right-handed quarks uαp 2/3
Right-handed quarks dαp -1/3
Higgs boson doublet ϕj 1/2

Table 3.1: The SM matter content

Note that the indices j = 1, 2, α = 1, 2, 3, p = 1, 2, 3 stand for isospin, color and generation
indices, respectively. In Eq.(3.2), the notation ϕ̃j stand for εjk(ϕ

k)∗, where εjk is the Levi-Civita
tensor with ε12 = 1. For the case of covariant derivatives, there is a deviation from Chap.(2) which
is the sign convention:

Dµ = ∂µ + ig′BµY + igW I
µS

I + igsG
A
µT

A. (3.3)

The generators of SU(3) and SU(2) are denoted by T S =
1

2
λA and SI =

1

2
τ I , respectively. For

later convenience, we will use the notation:

ϕ†i
←→
Dµϕ ≡ iϕ†

(
Dµ −

←−
D †µ

)
ϕ, ϕ†i

←→
DI
µϕ ≡ iϕ†

(
τ IDµ −

←−
D †µτ

I
)
ϕ. (3.4)

The gauge field strength tensors and their covariant derivatives are of the forms

GA
µν = ∂µG

A
ν − ∂νGA

µ − gsfABCGB
µG

C
ν , (DρGµν)

A = ∂ρG
A
µν − gsfABCGB

ρ G
C
µν ,

W I
µν = ∂µW

I
ν − ∂νW I

µ − gεIJKW J
µW

K
ν , (DρWµν)

I = ∂ρW
I
µν − gεIJKW J

ρW
K
µν ,

Bµν = ∂µBν − ∂νBµ, DρBµν = ∂ρBµν . (3.5)
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All dimension-six operators, which were listed in [3], are introduced in Table (3.2) and Table (3.3).
Those operators must independent with each other and have to obey the Standard Model gauge
symmetries. Before go to next section, one convention will be used that we will re-denote the
Wilson coefficients as

CWilson

Λ2
≡ CWilson, (3.6)

it leads to the dimension-”minus two” of notation CWilson and the approximation
1

Λ4
= 0 becomes

C2
Wilson = 0.

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ

(
ϕ†ϕ

)3
Qeϕ

(
ϕ†ϕ

)
(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ�

(
ϕ†ϕ

)
�
(
ϕ†ϕ

)
Quϕ

(
ϕ†ϕ

)
(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)∗ (
ϕ†Dµϕ

)
Qdϕ

(
ϕ†ϕ

)
(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσ
µνer)τ

IϕW I
µν Q

(1)
ϕl (ϕ†i

←→
Dµϕ)(l̄pγ

µlr)

QϕG̃ ϕ†ϕG̃A
µνG

Aµν QeB (l̄pσ
µνer)ϕBµν Q

(3)
ϕl (ϕ†i

←→
DI
µϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσ
µντAur)ϕ̃G

A
µν Qϕe (ϕ†i

←→
Dµϕ)(ēpγ

µer)

QϕW̃ ϕ†ϕW̃ I
µνW

Iµν QuW (q̄pσ
µνur)τ

Iϕ̃W I
µν Q

(1)
ϕq (ϕ†i

←→
Dµϕ)(q̄pγ

µqr)

QϕB ϕ†ϕBµνB
µν QuB (q̄pσ

µνur)ϕ̃Bµν Q
(3)
ϕq (ϕ†i

←→
DI
µϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕB̃µνB
µν QdG (q̄pσ

µντAdr)ϕG
A
µν Qϕu (ϕ†i

←→
Dµϕ)(ūpγ

µur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσ
µνdr)τ

IϕW I
µν Qϕd (ϕ†i

←→
Dµϕ)(d̄pγ

µdr)

QϕW̃B ϕ†τ IϕW̃ I
µνB

µν QdB (q̄pσ
µνdr)ϕBµν Qϕud i(ϕ̃†

←→
Dµϕ)(ūpγ

µdr)

Table 3.2: Dimension-six operators other than the four-fermion ones, (taken from [3]).

3.2 Deviations from the Standard Model

There are many relations of SMEFT different with that of SM. Therefore, before calculating the
total cross-section for process e+ +e− → µ+ +µ−, we have to derive many new and basic equations
when we have dimension-six operators in addition.

3.2.1 Higgs mechanism

The Higgs mechanism in SMEFT with dimension-six, in addition, was introduced in [5], this
section shall follow that paper with more unambiguous calculations. The Lagrangian terms which
are relevant to the Higgs field read

LH = LSMH + L(6)
H = (Dµϕ)†(Dµϕ) +m2(ϕ†ϕ)− λ

2
(ϕ†ϕ)2

+ Cϕ(ϕ†ϕ)3 + Cϕ�(ϕ†ϕ)�(ϕ†ϕ) + CϕD(ϕ†Dµϕ)∗(ϕ†Dµϕ). (3.7)
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)
Qll (l̄pγµlr)(l̄sγ

µlt) Qee (ēpγµer)(ēsγ
µet) Qle (l̄pγµlr)(ēsγ

µet)

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt) Quu (ūpγµur)(ūsγ
µut) Qlu (l̄pγµlr)(ūsγ

µut)

Q
(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt) Qdd (d̄pγµdr)(d̄sγ

µdt) Qld (l̄pγµlr)(d̄sγ
µdt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt) Qeu (ēpγµer)(ūsγ
µut) Qqe (q̄pγµqr)(ēsγ

µet)

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt) Qed (ēpγµer)(d̄sγ

µdt) Q
(1)
qu (q̄pγµqr)(ūsγ

µut)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt) Q
(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt) Q

(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

(L̄R)(R̄L) and R̄L)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk[(d

α
p )TCuβr ]

[
(qγjs )TClkt

]
Q

(1)
quqd (q̄jpur)εjk(q̄

k
sdt) Qqqu εαβγεjk[(q

αj
p )TCqβkr ]

[
(uγs )

TCet
]

Q
(8)
quqd (q̄jpT

Aur)εjk(q̄
k
sT

Adt) Qqqq εαβγεjnεkm(qαjp )TCqβkr ]
[
(qγms )TClnt

]
Q

(1)
lequ (l̄jper)εjk(q̄

k
sut) Qduu εαβγ[(dαp )TCuβr ]

[
(uγs )

TCet
]

Qlequ l̄jpσµνer)εjk(q̄
k
sσ

µνut)

Table 3.3: Four-fermion operators, (taken from [3]).

The Higgs field after Spontaneous Symmetry Breaking (SSB) in Unitary gauge is as follows

ϕ =
1√
2

(
0

v +H

)
, (3.8)

where v stand for vacuum expectation value and H is the Higgs field. From the Lagrangian above,
we can see the Higgs potential is of the form

V (ϕ) = m2(ϕ†ϕ)− λ

2
(ϕ†ϕ)2 + Cϕ(ϕ†ϕ)3 (3.9)

Finding the solutions for the differential equation
∂V (ϕ)

∂ϕ
= 0, we obtain

(ϕ†ϕ) =
λ+
√
λ2 − 12Cϕm2

6Cϕ
or (ϕ†ϕ) =

λ−
√
λ2 − 12Cϕm2

6Cϕ
. (3.10)

We only use the second solution since the first one will lead to a divergence when Cϕ → 0. We
will use the approximation (1 +x)n = 1 +nx+O(x2) for the small value x. This approximation is
useful and will be used many times later since our coefficients C(6) are considered as small values.
Thanks to that approximation, we are able to get the vacuum expectation value

v =
√

2(ϕ†ϕ) =

√
2m2

λ
+

3√
2

Cϕm3

λ5/2
. (3.11)

The next thing we wish to figure out is the physical fields of Higgs boson and the fields of Goldstone
boson. Thus, we must obtain the Lagrangian containing bilinear terms of those scalar fields.
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Expanding the Higgs doublet ϕ around the vacuum, we have:

ϕ =

 Φ+

1√
2

(v +H + iΦ0)

 . (3.12)

The field Φ± and Φ0 are still the Goldstone boson fields in SM, we will derive the new versions of
those fields later in this section. Back on our work, we now try to pull out all scalar bilinear terms
from Eq.(3.7) for each operator. For the later calculations, we shall expand one operator each
time, since the Lagrangian from now on is too long to expand all terms simultaneously. Moreover,
all the total derivative in Lagrangian shall be neglected since they do not affect our results.

(Dµϕ)†(Dµϕ) ⊃ (∂µϕ)†(∂µϕ) = ∂µ

(
Φ−

1√
2

(H − iΦ0)

)
∂µ

 Φ+

1√
2

(H + iΦ0)


= (∂µΦ−)(∂µΦ+) +

1

2
(∂µH∂

µH + ∂µΦ0∂µΦ0), (3.13)

(ϕ+ϕ) =

(
Φ−

1√
2

(v +H − iΦ0)

) Φ+

1√
2

(v +H + iΦ0)


= Φ−Φ+ +

1

2
(v2 +H2 + 2vH + Φ02) ⊃ 1

2
H2,

(ϕ+ϕ)2 ⊃ 1

4
(v2 +H2 + 2vH)2 ⊃ 3

2
v2H2, (3.14)

(ϕ+ϕ)3 ⊃ 1

8
(v2 +H2 + 2vH)3 ⊃ 15

8
v4H2, (3.15)

(ϕ+ϕ)∂µ∂
µ(ϕ+ϕ) = ∂µ

[
(ϕ+ϕ)∂µ(ϕ+ϕ)

]
− ∂µ(ϕ+ϕ)∂µ(ϕ+ϕ) ⊃ −∂µ(ϕ+ϕ)∂µ(ϕ+ϕ)

⊃ −v2(∂µH∂
µH), (3.16)

(ϕ+Dµϕ)∗(ϕ+Dµϕ)

⊃
[
Φ+∂µΦ− +

1

2
(v +H + iΦ0)(∂µH − i∂µΦ0)

] [
Φ−∂µΦ+ +

1

2
(v +H − iΦ0)(∂µH + i∂µΦ0)

]
⊃ 1

4
v2∂µΦ0∂µΦ0 +

1

4
v2∂µH∂

µH. (3.17)

Thus, the bilinear terms of the scalar fields read

L =
1

2

(
1 +

1

2
CϕDv2 − 2Cϕ�v2

)
(∂µH)2 +

(
1

2
m2 − 3

4
v2λ+

15

8
Cϕv4

)
H2

+
1

2

(
1 +

1

2
CϕDv2

)
(∂µΦ0)2 + (∂µΦ−)(∂µΦ+). (3.18)
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In order to obtain the physical fields, we need to normalize the kinetic terms into the canonical
forms. The powerful way to do it is rescaling the fields as

h ≡
√

1 +
1

2
CϕDv2 − 2Cϕ�v2H =

(
1 +

1

4
CϕDv2 − Cϕ�v2

)
H, (3.19)

G0 ≡
√

1 +
1

2
CϕDv2Φ0 = 1 +

1

4
CϕDv2Φ0, (3.20)

G± ≡ Φ±. (3.21)

We have introduced the notation h as physical Higgs field, and G0, G± as Goldstone fields. The

mass of Higgs boson, denoted by mh, obey the gauge symmetry form
1

2
(∂µh)2− 1

2
m2
hh

2. Therefore

−1

2
m2
h =

1

2
m2 − 3

4
v2λ+

15

8
Cϕv4

1 +
1

2
CϕDv2 − 2Cϕ�v2

. (3.22)

Using the the approximation 1/Λ4 = 0, we will have the Higgs mass in term of m or v

m2
h = 2m

[
1− m2

λ2
(3Cϕ − 4λCϕ� + λCϕD)

]
(3.23)

= λv2 − v4

(
3Cϕ − 2λCϕ� +

λ

2
CϕD

)
. (3.24)

3.2.2 Mass of W and Z bosons

In this thesis, we do not have strong interaction in the process ee → µµ, so the Lagrangian of
QCD is out of our discussion. The Lagrangian that relevant to free gauge fields reads

LEW = LSMEW + L(6)
EW = LSMEW +QϕW +QϕB +QϕWB +Qϕ� +QϕD

= −1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (Dµϕ)†(Dµϕ) + CϕW (ϕ†ϕ)W I
µνW

Iµν + CϕB(ϕ†ϕ)BµνB
µν

+ CϕWB(ϕ†τ Iϕ)W I
µνB

µν + Cϕ�(ϕ†ϕ)�(ϕ†ϕ) + CϕD(ϕ†Dµϕ)∗(ϕ†Dµϕ). (3.25)

Similar to above subsection, we need to find the bilinear terms of gauge fields from each operator

(ϕ†ϕ)�(ϕ†ϕ) ⊃ v2�v2 = 0, (3.26)

(ϕ†Dµϕ)∗(ϕ†Dµϕ) ⊃ 1

4

(0 v
)(

igSIW Iµ + ig′Y Bµ
)(0

v

)∗ (0 v
)(

igSJW Jµ + ig′Y Bµ
)(0

v

)
=
v4

16

(
g2W 3

µW
3µ + g′2BµB

µ − 2gg′BµW 3
µ

)
. (3.27)

(Dµϕ)†(Dµϕ) ⊃ −ig
2
ϕ†τ IW I

µ i
g

2
τJW Jµϕ− ig

2
ϕ†τ IW I

µ ig
′Y Bµϕ

− ig′ϕ†Y Bµi
g

2
τ IW Iµϕ− ig′ϕ†Y Bµig

′Y Bµϕ

⊃ g2

8
v2(W 1

µW
1µ +W 2

µW
2µ) +

v2

8
(g2W 3

µW
3µ + g′2BµB

µ − 2gg′W 3
µB

µ).
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In the calculation above, we have used the identity τ IτJ = δIJ + iεIJKτ
K and substitute the value

of hypercharge of Higgs field by 1/2. Then, The bilinear part of Lagrangian for gauge fields in
Eq.(3.25) becomes

LEW = −1

4

(
1− 2CϕWv2

)
W I
µνW

Iµν − 1

4

(
1− 2CϕBv2

)
BµνB

µν − 1

2
CϕWBv2W 3

µνB
µν

+
v2g2

8
(W 1

µW
1µ +W 2

µW
2µ) +

v2

8

(
1 +

1

2
v2CϕD

)(
g2W 3

µW
3µ + g′2BµB

µ − 2gg′BµW 3
µ

)
.

(3.28)

Now, we introduce the new rescaling fields in order to normalize the kinetic terms become canonical
forms. The new fields’ appearances have differences are that they have overhead bar

W̄ I
µ ≡

√
1− 2CϕWv2W I

µ =
(

1− CϕWv2
)
W I
µ , (3.29)

B̄µ ≡
√

1− 2CϕBv2Bµ =
(

1− CϕBv2
)
Bµ. (3.30)

There is a caution that the gauge invariant property must be obeyed by those transformations.
Thus, it is necessary to rewrite the covariant derivative in the form of

D̄µ = Dµ = ∂µ + iḡ′B̄µY + iḡW̄ I
µT

I , (3.31)

where ḡ and ḡ′ have the form

ḡ ≡
(

1 + CϕWv2
)
g, ḡ′ ≡

(
1 + CϕBv2

)
g′, (3.32)

as consequences of above rescaling steps. The Lagrangian in Eq.(3.28) which is rewritten in terms
of B̄µ and W̄µ is

LbilinearEW =− 1

4
W̄ I
µνW̄

Iµν − 1

4
B̄µνB̄

µν − 1

2
CϕWBv2B̄µνW̄ 3µν +

v2ḡ2

8
(W̄ 1

µW̄
1µ + W̄ 2

µW̄
2µ)

+
v2

8

(
1 +

1

2
v2CϕD

)
(g2W̄ 3

µW̄
3µ + g′2B̄µB̄

µ − 2gg′W̄ 3
µB̄

µ). (3.33)

Now, we introduce

ε ≡ CϕWBv2. (3.34)

From Eq. (3.33), we can find the physical field of W boson as

W±
µ =

1√
2

(W̄ 1
µ ∓ iW̄ 2

µ), (3.35)

and the corresponding mass

mW =
1

2
ḡv. (3.36)

The other gauge field in mass eigenstate that we need to identify is neutral gauge boson. Note

that this time is not the same with charged W boson since we have −1

2
CϕWBv2B̄µνW̄ 3µν in the
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Lagrangian. Thus, our mission is not only diagonalizing masses but also reducing the kinetic term
to canonical form simultaneously. Based on [5], we have the mass matrix of the form(

W̄ 3
µ

B̄µ

)
=

(
1 −ε/2
−ε/2 1

)(
cW̄ sW̄
−sW̄ cW̄

)(
Zµ
Aµ

)
, (3.37)

where the θ̄ is mixing angle

tanθ̄ =
ḡ

ḡ′
+
ε

2

(
1− ḡ′2

ḡ2

)
. (3.38)

From now on we will use the notations cW̄ and sW̄ for cosθ̄, sinθ̄. After some simple calculations,
we obtain

cW̄ =
ḡ√

ḡ2 + ḡ′2

(
1− ε

2

ḡ′

ḡ

ḡ2 − ḡ′2
ḡ2 + ḡ′2

)
, sW̄ =

ḡ′√
ḡ2 + ḡ′2

(
1 +

ε

2

ḡ

ḡ′
ḡ2 − ḡ′2
ḡ2 + ḡ′2

)
. (3.39)

Substituting (3.37) into the Lagrangian (3.33), we are able to get the masses of the neutral gauge
boson

mZ =
1

2

√
ḡ2 + ḡ′2v

(
1 +

εḡḡ′

ḡ2 + ḡ′2

)(
1 +

1

4
CϕDv2

)
, (3.40)

mγ = 0. (3.41)

The mass of gauge bosons in this thesis was derived independently before the publication of the
paper [5] in April 2017. For the case of Z boson mass, O. Nachtmann, F. Nagel, M. Pospischil
have already introduced the way to diagonalise the mass matrix also transform the kinetic terms
into canonical forms [6], but their results were not correct since they used the list of dimension-six
operator derived by Buchmuller and Wyler [4] in 1985 which have many redundant operators.
But when I used that manner to find the Z boson mass with the updated list of dimension-six
operators. It is turn out that my result agrees with that of [5]. But I do not introduce it here
since the conventions and notations of that method are complicated so that it can create many
confusions.

3.3 Coupling constants of the vertices in e−+ e+ → µ−+ µ+

3.3.1 Vertex factors of lepton and gauge boson

Since photon and Z boson fields usually appear together. Thus, it is convenient to find the coupling
of photon and Z boson with lepton simultaneously. First, the Lagrangian containing the mixed
terms of leptons and gauge fields reads

L = −1

4
W̄ I
µνW̄

Iµν − 1

4
B̄µνB̄µν + i

∑
(ψ̄L /̄DψL + ψ̄R /̄DψR) + CeW (l̄pσ

µνer)τ
IϕW̄ I

µν

+ CeB(l̄pσ
µνer)ϕB̄µν + Cϕl1(ϕ†i

←→
Dµϕ)(l̄pγ

µlr) + Cϕl3(ϕ†i
←→
DI
µϕ)(l̄pτ

Iγµlr) + Cϕe(ϕ†i
←→
Dµ)(ēpγ

µer),

(3.42)
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The Lagrangian is too long to write all terms simultaneously, thus we must find the contribution
for each operator:

iψ̄L /̄DψL ⊃ iēL

(
iḡ′B̄µY + iḡW̄ I

µT
I
)
γµēL

⊃ iēL

{
iḡ′Y

[(
(−ε/2)cW̄ − sW̄

)
Zµ +

(
(−ε/2)sW̄ + cW̄

)
Aµ

]
+iḡI3

e

[(
cW̄ + (ε/2)sW̄

)
Zµ +

(
sW̄ − (ε/2)cW̄

)
Aµ

]}
γµēL

= iēL

− i2cW̄
(
− ḡ
′2

2
ε− ḡ′2

ḡ
+
ε

2

ḡ′3

ḡ2
+ ḡ

)
Zµ −

i

2
cW̄

(
2ḡ′ − ε ḡ

′2

ḡ

)
Aµ

 γµēL, (3.43)

iψ̄R /̄DψR ⊃ iēR
(
iḡ′B̄µY

)
γµēR

= iēRiḡ
′Y
[(

(−ε/2)cW̄ − sW̄
)
Zµ +

(
(−ε/2)sW̄ + cW̄

)
Aµ

]
γµēR

= iēR

−iḡ′cW̄
(−ε+

ε

2

ḡ′2

ḡ2
− ḡ′

ḡ

)
Zµ +

(
1− ε

2

ḡ′

ḡ

)
Aµ

 γµēR.

Thus, the contribution of operator i
∑

(ψ̄L /̄DψL + ψ̄R /̄DψR) in vertex eeγ is

iēL

− i
2
cW̄

(
2ḡ′ − ε ḡ

′2

ḡ

)
γµ

 eLAµ + iēR

− i
2
cW̄

(
2ḡ′ − ε ḡ

′2

ḡ

)
γµ

 eRAµ
=
i

2
ē

−icW̄
(

2ḡ′ − ε ḡ
′2

ḡ

)
γµ

 eAµ
=

[
ḡḡ′√
ḡ2 + ḡ′2

− εḡ2ḡ′2

(ḡ2 + ḡ′2)3/2

]
(ēγµe)Aµ, (3.44)

and for eeZ coupling is

iēL

− i
2
cW̄

(
− ḡ
′2

2
ε− ḡ′2

ḡ
+
ε

2

ḡ′3

ḡ2
+ ḡ

)
γµ

 eLZµ + iēR

−iḡ′cW̄
(
−ε+

ε

2

ḡ′2

ḡ2
− ḡ′

ḡ

)
γµ

 eRZµ
=

[
− 1

2
√
ḡ2 + ḡ′2

(
(ḡ′2 − ḡ2)PR + 2ḡ′2PL

)
+

εḡḡ′

2(ḡ2 + ḡ′2)3/2

(
(ḡ′2 − ḡ2)PR − 2ḡ2PL

)]
(ēγµe)Zµ.

(3.45)

The contribution of operator QeW is

CeW (l̄pσ
µνer)τ

IϕW̄ I
µν ⊃ CeW

[(
ν̄e ēL

)
σµνer

]
τ 3 1√

2

(
0
v

)
W 3
µν

⊃ −CeW (ēLσ
µνer)

v√
2

(∂µW̄
3
ν − ∂νW̄ 3

µ)

⊃
√

2CeWv(ēLσ
µνer)

[
cW̄∂νZµ + sW̄∂νAµ

]
.
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Now using the Fourier transformation Zµ →
∫
e−iqxZ̃µ where q is the momentum of meditators.

Similar for Aµ, we have

QeW ⊃
√

2CeWv(ēLσ
µνer)

[
cW̄ (−iqν)Zµ + sW̄ (−iqν)Aµ

]
= −i

√
2CeWv(ēqνσ

µνPRe)
[
cW̄Zµ + sW̄Aµ

]
. (3.46)

Note that the operator QeW † also contain the couplings of fermion and gauge boson

QeW † − i
√

2CeW∗v(ēqνσ
µνPLe)

[
cW̄Zµ + sW̄Aµ

]
(3.47)

The calculation for the operator QeB is completely the same with QeW and we can obtain the
contribution

QeB ⊃ −i
√

2CeBv(ēqνσ
µνPRe)(sW̄Zµ − cW̄Aµ) (3.48)

QeB† ⊃ −i
√

2CeB∗v(ēqνσ
µνPLe)(sW̄Zµ − cW̄Aµ). (3.49)

For the Qϕl1 operator

Qϕl1 = Cϕl1(ϕ†i
←→
Dµϕ)(l̄pγ

µlr)

= Cϕl1iϕ†(∂µ + iḡ′Y B̄µ + iḡW̄ I
µT

I −←−∂ µ + iḡ′Y B̄µ + iḡW̄ I
µT

I)ϕ(l̄pγ
µlr)

⊃ 2iCϕl1
(

0 v√
2

)[iḡ′
2

(−sW̄Zµ + cW̄Aµ)− iḡ

2
(cW̄Zµ + sW̄Aµ)

](
0
v√
2

)(
ν̄e ē

)
γµ

(
ν̄e
ē

)

= Cϕl1v
2

2

[
(ḡ′sW̄ + ḡcW̄ )Zµ + 0.Aµ

]
ēLγ

µeL. (3.50)

For the Qϕl3 operator

Qϕl3 = Cϕl3iϕ†(τ IDµ −
←−
Dµτ

I)ϕ(l̄pτ
Iγµlr)

⊃ Cϕl3i
(

0 v√
2

) [
τ 3(iḡ′B̄µY + iḡW̄ I

µT
I) + (iḡ′B̄µY + iḡW̄ I

µT
I)τ 3

]( 0
v√
2

)
(−ēLγµeL)

= Cϕl3v
2

2

[
(ḡ′sW̄ + ḡcW̄ )Zµ + 0.Aµ

]
(ēLγ

µeL)

= Cϕl3v
2

2

√
ḡ2 + ḡ′2Zµ(ēγµPLe). (3.51)

For the Qϕe operator

Qϕe = Cϕeiϕ†(Dµ −
←−
Dµ)ϕ(ēpγ

µer)

⊃ Cϕei
(

0 v√
2

)
(2iḡ′Y B̄µ + 2iḡW̄ 3

µT
3)

(
0
v√
2

)
(ēRγ

µeR)

= −Cϕe1

2
v2
[
(−ḡ′sW̄ − ḡcW̄ )Zµ + 0.Aµ

]
(ēγµPRe)

= Cϕev
2

2

√
ḡ′2 + ḡ2Zµ(ēγµPRe). (3.52)
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3.3.2 Vertex factor of lepton and Goldstone boson

Since our process has neutral mediators, so we will ignore all ”charge” Goldstone boson. The
Lagrangian containing the mixed terms of lepton and Goldstone boson reads

L =− l̄′LΓee
′
Rϕ− ϕ†ē′RΓ†el

′
p + Cϕl1(ϕ†i

←→
Dµϕ)(l̄pγ

µlr) (3.53)

+ Cϕl3(ϕ†i
←→
DI
µϕ)(l̄pτ

Iγµlr) + Cϕe(ϕ†i
←→
Dµ)(ēpγ

µer). (3.54)

First, we need to obtain the coupling in SM. Before doing that, we to rotate the fermion fields by
the unitary matrices in order to diagonalize lepton and quark masses

ψ′X = UψXψX , (3.55)

where ψ stand for ν, e, u, d. X denote for left- and right-handed. The unprimed field is the mass
eigenstate fields.

−l̄′LΓee
′
Rϕ− ϕ†ē′RΓ†el

′
p = −l̄LU †LΓeUReRϕ− ϕ†ēR(U †LΓeUR)†lL

⊃ −
(
ν̄e ēL

)
Γ′eeR

(
0

1√
2
iΦ0

)
−
(

0 − 1√
2
iΦ0
)
ēRΓ′†e

(
νe
eL

)
.

After diagonalizing the lepton masses, we have the identity Γ′ =
√

2
m

v
, the SM Lagrangian then

becomes

−ime

v
ē(PR − PL)eΦ0 = −ime

v
ēγ5eΦ0 = −ime

v
ēγ5e

(
1− 1

4
CϕDv2

)
G0. (3.56)

The contribution of operator Qϕl1,

Qϕl1 = Cϕl1iϕ†(Dµ −
←−
Dµ)ϕ(l̄pγ

µlr)

⊃ Cϕl1i
(

0 1√
2
(v − iΦ0)

)
(∂µ −

←−
∂ µ)

(
0

1√
2
(v + iΦ0)

)(
ν̄e ēL

)
γµ

(
νe
eL

)

= Cϕl1i

[
i√
2

(∂µΦ0)
1√
2

(v + iΦ0) +
1√
2

(v − iΦ0)
i√
2

(∂µΦ0)

]
ēLγ

µeL

= −Cϕl1v(∂µΦ0)ēγµPLe

= iCϕl1v/qG
0ēγµPLe. (3.57)

The contribution of operator Qϕl3,

Qϕl3 = Cϕl3iϕ†(τ IDµ −
←−
Dµτ

I)ϕ(l̄pτ
Iγµlr)

⊃ Cϕl3i
(

0 1√
2
(v − iΦ0)

)
(τ 3∂µ −

←−
∂ µτ

3)

(
0

1√
2
(v + iΦ0)

)(
ν̄e ēL

)
τ 3γµ

(
νe
eL

)

= Cϕl3i

[
− i√

2
(∂µΦ0)

1√
2

(v − iΦ0)− 1√
2

(v + iΦ0)
i√
2

(∂µΦ0)

]
(−ēLγµeL)

= −Cϕl3v(∂µΦ0)ēγµPLe

= iCϕl3v/qG
0ēγµPLe. (3.58)
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For the Qϕe operator

Qϕe = Cϕeiϕ†(Dµ −
←−
Dµ)ϕ(ēpγ

µer)

⊃ Cϕei
(

0 1√
2
(v − iΦ0)

)
(∂µ −

←−
∂ µ)

(
0

1√
2
(v + iΦ0)

)
(ēRγ

µeR)

= Cϕei

[
i√
2

(∂µΦ0)
1√
2

(v + iΦ0) +
1√
2

(v − iΦ0)
i√
2

(∂µΦ0)

]
ēRγ

µeR

= −Cϕev(∂µΦ0)ēγµPRe

= iCϕev/qG
0ēγµPRe. (3.59)

3.3.3 Four-fermion vertex

There are three four-fermion operators in Table. (3.3) contribute to our process. The corresponding
Lagrangian reads

L = C ll(l̄pγµlr)(l̄sγ
µlt) + Cee(ēpγµer)(ēsγ

µet) + Cee(l̄pγµlr)(ēsγ
µet). (3.60)

The operators Qee have four cases for our coupling:

(ēRγµeR)(µ̄RγµµR), (µ̄RγµµR)(ēRγµeR), (µ̄RγµeR)(ēRγµµR), (ēRγµµR)(µ̄RγµeR). (3.61)

Note that for the last two cases we can use the Fierz identity 1 (ēpγµer)(ēsγµet) = (ēpγµet)(ēsγµer).
So in the coupling we have: 4iCee

eµ(γµPR)e(γ
µPR)µ

However, we can not apply directly the Fierz transformation for Qll since this term not only have
the Dirac indices but also have the SU(2) indices. Thus we have two cases Qll for our coupling:

(ēLγµeL)(µ̄LγµµL), (µ̄LγµµL)(ēLγµeL). (3.62)

Another two cases which are not applied Fierz identity directly are

(
ν̄e ēL

)
γµ

(
ν̄µ
µ̄L

)(
ν̄µ µ̄L

)
γµ

(
ν̄e
ēL

)
,

(
ν̄µ µ̄L

)
γµ

(
ν̄e
ēL

)(
ν̄e ēL

)
γµ

(
ν̄µ
µ̄L

)
. (3.63)

But after we expand it, we can get four terms without SU(2) indices. Two of them are

(ēLγµµL)(µ̄LγµeL), (µ̄LγµeL)(ēLγµµL), (3.64)

and they are Fierz transformable. So in the coupling we have 4iC ll
eµ(γµPL)e(γ

µPL)µ.
Similar to operator Qll, the operator Qle has SU(2) indices as well. We will have two cases:

(ēLγµeL)(µ̄Rγ
µµR). (µ̄LγµµL)(ēRγ

µeR). (3.65)

1For futher reading of Fierz transformation, please find the paper [7]
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The other cases after SU(2) expansion are (ēLγµµL)(µ̄Rγ
µeR) and (µ̄LγµeL)(ēRγ

µµR). The Fierz
transformation for Qle in the first case is:

(ēLγµµL)(µ̄Rγ
µeR)

= −1

4

[
4(ēLeR)(µ̄RµL)− 2(ēLγµeR)(µ̄Rγ

µµL)− 2(ēLγµγ
5eR)(µ̄Rγ

µγ5µL)− 4(ēLγ
5eR)(µ̄Rγ

5µL)
]

= −1

4

[
4 (ēPRe) (µ̄PLµ)− 2

(
ēPRγµ(PR − PL)PRe

) (
µ̄PLγ

µ(PR − PL)PLµ
)

−4
(
ēPR(PR − PL)PRe

) (
µ̄PL(PR − PL)PLµ

)]
= −1

4

[
4 (ēPRe) (µ̄PLµ) + 4 (ēPRe) (µ̄PLµ)

]
= −2 (ēPRe) (µ̄PLµ) . (3.66)

So now we will have −2i(PR)e(PL)µC
le
eµ in the coupling. Similar to the case (µ̄LγµeL)(ēRγ

µµR).
Thus the coupling corresponding to operator Qle is

iC le
eµ(γµPL)e(γ

µPR)µ + iC le
µe(γ

µPL)µ(γµPR)e − 2i
[
(PL)µ(PR)eC

le
eµ + (PL)e(PR)µC

le
µe

]
.

3.4 Feyman rules

After find all interaction terms for our process, we are now able to write down the Feynman rules
for the couplings of our process in SMEFT. The Feynman rules for propagators are not mentioned
here since we have rescaled the fields to make the the kinetic terms in SMEFT the same with that
of SM. And it lead to the unchanged propagators. It must be understood that all couplings below
have incoming momentum.

γ

e−

e+

=
iḡḡ′√
ḡ2 + ḡ′2

γµ − iḡ2ḡ′2v2

(ḡ2 + ḡ′2)3/2
CϕWBγµ

+

√
2ḡ′v√

ḡ2 + ḡ′2
qν

(
CeW∗
e σµνPL + CeW

e σµνPR

)
−

√
2ḡv√

ḡ2 + ḡ′2
qν

(
CeB∗
e σµνPL + CeB

e σµνPR

)
, (3.67)

G0

e−

e+

=
me

v
γ5 − v

4
CϕDmeγ

5 − v/q
(
PLC

ϕl1
e + PLC

ϕl1
e + PRC

ϕe
e

)
, (3.68)
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Z̄

e+

e−

=
i√

ḡ2 + ḡ′2

(
(ḡ2 − ḡ′2)γµPL − 2ḡ′2γµPR

)

+
iḡḡ′v2

2(ḡ2 + ḡ′2)3/2
CϕWB

(
(ḡ′2 − ḡ2)γµPL − 2ḡ2γµPR

)
+

√
2ḡv√

ḡ2 + ḡ′2
qν

(
CeW∗
e σµνPL + CeW

e σµνPR

)
+

√
2ḡ′v√

ḡ2 + ḡ′2
qν

(
CeB∗
e σµνPL + CeB

e σµνPR

)
+

1

2
iv2
√
ḡ2 + ḡ′2

(
Cϕl1
e γµPL + Cϕl3

e γµPL + Cϕe
e γ

µPR

)
, (3.69)

e−

e+

µ+

µ−

=4iC ll
eµ(γµPL)e(γ

µPL)µ + 4iCee
eµ(γµPR)e(γ

µPR)µ

+ iC le
eµ(γµPL)e(γ

µPR)µ + iC le
µe(γ

µPL)µ(γµPR)e

− 2i
[
(PL)µ(PR)eC

le
eµ + (PL)e(PR)µC

le
µe

]
. (3.70)

3.5 The independence of Feynman amplitude on gauge fix-

ing parameters

We have apparently discussed the properties of gauge fixing parameters in Chap.1 . In this sec-
tion, we will check that if the Feynman amplitude of the diagrams in Fig.(3.1) depend on those
parameters or not. Therefore, we will only focus on terms in propagators that contain gauge-fixing
parameters only. Note that we will not use any approximation of mf = 0, where mf is the fermion’s
mass. First, the Feynman for the diagram which mediated by photon reads

γ

e−

e+

µ+

µ−

Z̄

e−

e+

µ+

µ−

G0

e−

e+

µ+

µ−

Figure 3.1: Feynman diagrams containing gauge fixing parameters of process e+ + e− → µ+µ− in
SMEFT
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Mγ =v̄s′(p
′)

[
iḡḡ′√
ḡ2 + ḡ′2

γµ − iḡ2ḡ′2v2

(ḡ2 + ḡ′2)3/2
CϕWBγµ −

√
2ḡ′v√

ḡ2 + ḡ′2
qσ

(
CeW∗
e σµσPL + CeW

e σµσPR

)
+

√
2ḡv√

ḡ2 + ḡ′2
qσ

(
CeB∗
e σµσPL + CeB

e σµσPR

)]
us(p)

[
−i
q2

(
gµν − (1− ξγ)

qµqν
q2

)]

ūr(k)

[
iḡḡ′√
ḡ2 + ḡ′2

γν − iḡ2ḡ′2v2

(ḡ2 + ḡ′2)3/2
CϕWBγν +

√
2ḡ′v√

ḡ2 + ḡ′2
qρ

(
CeW∗
µ σνρPL + CeW

µ σνρPR

)
−
√

2ḡv√
ḡ2 + ḡ′2

qρ

(
CeB∗
µ σνρPL + CeB

µ σνρPR

)]
vr′(k

′). (3.71)

We can see that the terms containing gauge-fixing parameter in photon propagator proportion to
qµ. Now look at the first coupling, it is obvious that two terms consist of γµ will vanish when we
multiply by qµ

v̄s′(p
′)(/q)us(p) = v̄s′(p

′)(/p′ + /p)us(p) = v̄s′(p
′)(−me +me)us(p) = 0. (3.72)

For the rest terms in that coupling, it will be canceled out since (qσqµ)σσµ = 0. Hence, our
amplitude does not depend on ξγ. For ξZ , it is more complicated, the amplitude for Z and
Goldstone boson read

MZ =

v̄s′(p
′)

[
i√

ḡ2 + ḡ′2

(
(ḡ2 − ḡ′2)γµPL − 2ḡ′2γµPR

)
+

iḡḡ′v2

2(ḡ2 + ḡ′2)3/2
CϕWB

(
(ḡ′2 − ḡ2)γµPL − 2ḡ2γµPR

)
−

√
2ḡv√

ḡ2 + ḡ′2
qσ

(
CeW∗
e σµσPL + CeW

e σµσPR

)
−
√

2ḡ′v√
ḡ2 + ḡ′2

qσ

(
CeB∗
e σµσPL + CeB

e σµσPR

)
+

1

2
iv2
√
ḡ2 + ḡ′2

(
Cϕl1
e γµPL + Cϕl3

e γµPL + Cϕe
e γ

µPR

)]
us(p)

×

 −i
q2 − m̄2

Z

(
gµν − (1− ξZ)

qµqν
q2 − ξZm̄2

Z

)
×ūr(k)

[
i√

ḡ2 + ḡ′2

(
(ḡ2 − ḡ′2)γνPL − 2ḡ′2γνPR

)
+

iḡḡ′v2

2(ḡ2 + ḡ′2)3/2
CϕWB

(
(ḡ′2 − ḡ2)γνPL − 2ḡ2γνPR

)
+

√
2ḡv√

ḡ2 + ḡ′2
qρ

(
CeW∗
µ σνρPL + CeW

µ σνρPR

)
+

√
2ḡ′v√

ḡ2 + ḡ′2
qρ

(
CeB∗
µ σνρPL + CeB

µ σνρPR

)
+

1

2
iv2
√
ḡ2 + ḡ′2

(
Cϕl1
µ γνPL + Cϕl3

µ γνPL + Cϕe
µ γ

νPR

)]
vr′(k

′), (3.73)

MG0 =v̄s′(p
′)

[
me

v
γ5 − v

4
CϕDmeγ

5 + v/q
(
PLC

ϕl1
e + PLC

ϕl1
e + PRC

ϕe
e

)]
us(p)

[
i

q2 − ξZm̄2
Z

]

ūr(k)

[
mµ

v
γ5 − v

4
CϕDmµγ

5 − v/q
(
PLC

ϕl1
e + PLC

ϕl1
e + PRC

ϕe
e

)]
vr′(k

′). (3.74)
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After some calculations, we can write the parts containing ξZ of two above amplitudes of the form

Mξ
Z =

imemµ(1− ξZ)

(q2 − ξZm̄2
Z)(q2 − m̄2

Z)

[
v̄s′(p

′)γ5us(p)
] [
ūr(k)γ5vr′(k

′)
]

×
[
ḡ2 + ḡ′2

4
+
ḡḡ′ε

2
+

1

4
v2(ḡ2 + ḡ′2)(Cϕl1

e + Cϕl3
e − Cϕe

e + Cϕl1
µ + Cϕl3

µ − Cϕe
µ )

]
, (3.75)

Mξ
G0

=
imemµ

q2 − ξZm̄2
Z

[
v̄s′(p

′)γ5us(p)
] [
ūr(k)γ5vr′(k

′)
]

×
[

1

v2
− CϕD

2
+ (Cϕl1

e + Cϕl3
e − Cϕe

e + Cϕl1
µ + Cϕl3

µ − Cϕe
µ )

]
. (3.76)

Let’s now temporarily denote (Cϕl1
e + Cϕl3

e − Cϕe
e + Cϕl1

µ + Cϕl3
µ − Cϕe

µ ) as A.

Mξ
Z +Mξ

G0
∼ 1

q2 − ξZm̄2
Z

 1− ξZ
q2 − m̄2

Z

(
ḡ2 + ḡ′2

4
+
ḡḡ′ε

2
+

1

4
v2(ḡ2 + ḡ′2)A

)
+

1

v2
− CϕD

2
+ A

 .
(3.77)

Using the form of mZ in Eq.(3.40) and the property C2
Wilson = 0 of the Wilson coefficients, we have

mZCWilson =
1

2

√
ḡ2 + ḡ′2v

(
1 +

εḡḡ′

ḡ2 + ḡ′2

)(
1 +

1

4
CϕDv2

)
CWilson

=
1

2

√
ḡ2 + ḡ′2vCWilson. (3.78)

Eq(3.77) will be rewritten as

Mξ
Z +Mξ

G0

∼ 1

q2 − ξZm̄2
Z

A
[

1− ξZ
q2 − m̄2

Z

m2
Z + 1

]
+

1

v2
− CϕD

2

+
1− ξZ
q2 − m̄2

Z

1

v2

[
ḡ2 + ḡ′2

4
v2 +

ḡḡ′ε

2
v2 +

1

8
(ḡ2 + ḡ′2)v4CϕD − 1

8
(ḡ2 + ḡ′2)v4CϕD

]
=

1

q2 − ξZm̄2
Z

{
A
q2 − ξZm2

Z

q2 − m̄2
Z

+
1

v2
− CϕD

2
+

1− ξZ
q2 − m̄2

Z

1

v2

[
m2
Z −

1

8
(ḡ2 + ḡ′2)v4CϕD

]}

=
1

q2 − ξZm̄2
Z

Aq2 − ξZm2
Z

q2 − m̄2
Z

+
1

v2

1 +
1− ξZ
q2 − m̄2

Z

m2
Z −

CϕD

2
v2

(
1 +

1− ξZ
q2 − m̄2

Z

m2
Z

)
=

1

q2 − ξZm̄2
Z

Aq2 − ξZm2
Z

q2 − m̄2
Z

+
1

v2

[
q2 − ξZm2

Z

q2 − m̄2
Z

− CϕD

2
v2 q

2 − ξZm2
Z

q2 − m̄2
Z

]
=

1

q2 − m̄2
Z

A+
1

v2

[
1− CϕD

2
v2

] . (3.79)

That is what we expected when the Feynman amplitude is independent on gauge fixing-parameters.

35



3.6 Z boson decay width

Another quantity that we are interesting in is the decay width of Z boson in SMEFT. In the
previous section, we can see that the Z propagator have the term q2 − m2

Z in the denominator
and it leads to divergence in the total cross-section. To avoid that, the solution was introduced
in Chap. 2 that we used the Breit-Wigner propagator instead. But the Breit-Wigner propagator
does contain the decay width of Z boson, that is the first reason for this section. The second is that
we already have the accurate value of Z decay width by experiment, thus it is the great quantity
for us to constraint the value of Wilson coefficients. We shall use the coupling of Z with fermions
in [5], some of them were checked in Sec.(3.3).

We still work on the Center of Mass frame, our process is Z decay to two fermions process
Z → f̄ + f , where Z, f , f̄ have the the momentum q = (2E,~0), k1 = (E,~k), and k2 = (E,−~k),
respectively. The Feynman amplitude is then of the form

Mf = ū(k1)gµf v(k2)ελµ(q) (3.80)

and the squared amplitude result reads

|Mf |2 =
1

3
MfM†

f . (3.81)

We do not have to multiply
1

4
to squared amplitude since we accept all spin states of the two

final particles. The
1

3
factor stand for the spin states average of Z boson. In the couplings of Z

boson with fermions in paper [5], we will ignore all operators which are not relevant to our process
e+ + e− → µ+ + µ− and only take the operator QϕWB into account. Then will obtain the results
for each fermion

|Mν |2 =
ḡ2 + ḡ′2

6
m2
Z +

ḡḡ′v2

3
m2
ZReCϕWB, (3.82)

|Me|2 =
1

(ḡ2 + ḡ′2)

(
(ḡ′2 − ḡ2)2

6
+

2

3
ḡ′4

)
m2
Z −

ḡḡ′(ḡ′2 − ḡ2)2v2

3(ḡ2 + ḡ′2)2
m2
ZReCϕWB

+
4ḡ3ḡ′3v2

3(ḡ2 + ḡ′2)2
m2
ZReCϕWB, (3.83)

|Mu|2 =
1

ḡ2 + ḡ′2

[
ḡ′4

54
(17m2

Z + 7m2
f )−

ḡ2ḡ′2

9
(m2

Z + 11m2
f ) +

ḡ4

6
(m2

Z −m2
f )

]

− ḡḡ′5v2

9(ḡ2 + ḡ′2)2
((m2

Z + 11m2
f )ReCϕWB +

ḡ3ḡ′3v2

27(ḡ2 + ḡ′2)2
(26m2

Z − 2m2
f )ReCϕWB

− ḡ5ḡ′v2

9(ḡ2 + ḡ′2)2
(m2

Z + 11m2
f )ReCϕWB, (3.84)
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|Md|2 =
1

ḡ2 + ḡ′2

[
ḡ′4

54
(5m2

Z − 17m2
f ) +

ḡ2ḡ′2

9
(m2

Z − 7m2
f ) +

ḡ4

6
(m2

Z −m2
f )

]

+
ḡḡ′5v2

9(ḡ2 + ḡ′2)2
(m2

Z − 7m2
f )ReCϕWB +

ḡ3ḡ′3v2

27(ḡ2 + ḡ′2)2
(14m2

Z − 26m2
f )ReCϕWB

+
ḡ5ḡ′v2

9(ḡ2 + ḡ′2)2
(m2

Z − 7m2
f )ReCϕWB. (3.85)

We have used the relations |~k|2 = E2 − m2
f and q2 = m2

Z = 4E2. Applying the the differential
decay width in the paper [2]

dΓf
dΩ

=
1

64π2mZ

√
1−

4m2
f

m2
Z

|Mf |2, (3.86)

and ingerating over θ and φ, we have

Γf =
1

16πmZ

√
1−

4m2
f

m2
Z

|Mf |2. (3.87)

Because of the term

√
1−

4m2
f

m2
Z

, so Z boson can not decay to particles with have 2mf > mZ . Then

we will calculate the total decay width of Z boson with the absence of top quark

Γ = 3Γν + Γe + Γµ + Γτ + 3Γu + 3Γd + 3Γc + 3Γs + 3Γb (3.88)

The result of Z decay width in SMEFT is a function of CϕWB, it’s too long and there is no need
to write it down, but when I set CϕWB = 0, the result is 2.44402 GeV, which is a bit far from
the experimental value 2.4952 GeV. Therefore, I decided to use the result of Nghia’s thesis[8], he
calculated the next-to-leading order (NLO) with QCD corrections to the decay Z → bb̄, his result
reads

ΓQCD = Γ0

(
1 +

αs
π

)
, (3.89)

where ΓQCD, Γ0 are the decay width of Z boson at NLO and tree level of SM, respectively. while αs
stand for the strong interaction coupling constant. Eq.(3.89) can apply for all Z → qq̄ channels so
I have used the NLOQCD factor for all quarks. I also checked both cases of massless and massive
fermions, and it turned out that the mass of fermion has weak effect on our result. So now to
easily compare with Nghia’s thesis, in which he has used the approximation mb = 0, I will set
mf = 0 for all particles. My result for the decay width of Z to bb̄ at NLOQCD based on Eq.(3.89)
is 0.385748 GeV which agree with that of Nghia and the paper [9]
Moreover, I also use the NLOQCD decay width for SMEFT, since QCD correction factor is the
same for the SM and SMEFT when only operator QϕWB is kept. Fig.(3.2) shows the values of Z
boson decay width with respect to C̄ϕWB in many models, the way we chose the value of C̄ϕWB

will be discuss more in Sec.(3.9). The input parameters, which I chose from Particle Data Group
[10], are

mZ = 91.1876(GeV), mW = 80.385(GeV),

GF = 1.1663787.10−5(GeV−2), αs = αs(mZ) = 0.1181.

37



Note again that I have used the approximation mf = 0 for all fermions. Since our result in SMEFT
is a function of Wilson coefficients, so we can change the value of those coefficients to get the result
close to the experimental value, this case is changing CϕWB.

Figure 3.2: The values of Z decay width

3.7 Feynman amplitude

γ

e−

e+

µ+

µ−

Z̄

e−

e+

µ+

µ−

G0

e−

e+

µ+

µ−

e−

e+

µ+

µ−

Figure 3.3: Feynman diagrams of process e+ + e− → µ+µ− in SMEFT

The notations of spins and momentums is the same with previous chapters. But for easy
following, we now mention again that we have denoted the four momenta and spin indices of
e−, e+, µ−, µ+ to be (p, s), (p′, s′), (k, r), (k′, r′), respectively. q = p+ p′ = k + k′ is the momentum
of the mediators. The Feynman amplitudes for diagrams in Fig.(3.3) reads
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Mγ =v̄s′(p
′)

[
iḡḡ′√
ḡ2 + ḡ′2

γµ − iḡ2ḡ′2v2

(ḡ2 + ḡ′2)3/2
CϕWBγµ −

√
2ḡ′v√

ḡ2 + ḡ′2
qσ

(
CeW∗
e σµσPL + CeW

e σµσPR

)
+

√
2ḡv√

ḡ2 + ḡ′2
qσ

(
CeB∗
e σµσPL + CeB

e σµσPR

)]
us(p)

[
−i
q2

(
gµν − (1− ξγ)

qµqν
q2

)]

ūr(k)

[
iḡḡ′√
ḡ2 + ḡ′2

γν − iḡ2ḡ′2v2

(ḡ2 + ḡ′2)3/2
CϕWBγν +

√
2ḡ′v√

ḡ2 + ḡ′2
qρ

(
CeW∗
µ σνρPL + CeW

µ σνρPR

)
−
√

2ḡv√
ḡ2 + ḡ′2

qρ

(
CeB∗
µ σνρPL + CeB

µ σνρPR

)]
vr′(k

′) (3.90)

MZ =

v̄s′(p
′)

[
i√

ḡ2 + ḡ′2

(
(ḡ2 − ḡ′2)γµPL − 2ḡ′2γµPR

)
+

iḡḡ′v2

2(ḡ2 + ḡ′2)3/2
CϕWB

(
(ḡ′2 − ḡ2)γµPL − 2ḡ2γµPR

)
−

√
2ḡv√

ḡ2 + ḡ′2
qσ

(
CeW∗
e σµσPL + CeW

e σµσPR

)
−
√

2ḡ′v√
ḡ2 + ḡ′2

qσ

(
CeB∗
e σµσPL + CeB

e σµσPR

)
+

1

2
iv2
√
ḡ2 + ḡ′2

(
Cϕl1
e γµPL + Cϕl3

e γµPL + Cϕe
e γ

µPR

)]
us(p)

×
[

−igµν
q2 − m̄2

Z + iΓ̄Zmz

]

×ūr(k)

[
i√

ḡ2 + ḡ′2

(
(ḡ2 − ḡ′2)γνPL − 2ḡ′2γνPR

)
+

iḡḡ′v2

2(ḡ2 + ḡ′2)3/2
CϕWB

(
(ḡ′2 − ḡ2)γνPL − 2ḡ2γνPR

)
+

√
2ḡv√

ḡ2 + ḡ′2
qρ

(
CeW∗
µ σνρPL + CeW

µ σνρPR

)
+

√
2ḡ′v√

ḡ2 + ḡ′2
qρ

(
CeB∗
µ σνρPL + CeB

µ σνρPR

)
+

1

2
iv2
√
ḡ2 + ḡ′2

(
Cϕl1
µ γνPL + Cϕl3

µ γνPL + Cϕe
µ γ

νPR

)]
vr′(k

′) (3.91)

MG0 =v̄s′(p
′)

[
me

v
γ5 − v

4
CϕDmeγ

5 + v/q
(
PLC

ϕl1
e + PLC

ϕl1
e + PRC

ϕe
e

)]
us(p)

[
i

q2 − ξZm̄2
Z

]

ūr(k)

[
mµ

v
γ5 − v

4
CϕDmµγ

5 − v/q
(
PLC

ϕl1
e + PLC

ϕl1
e + PRC

ϕe
e

)]
vr′(k

′) (3.92)

M4 = 4iC ll
eµv̄s′(p

′)(γµPL)us(p)ūr(k)(γµPL)vr′(k
′) + 4iCee

eµv̄s′(p
′)(γµPR)us(p)ūr(k)(γµPR)vr′(k

′)

+ iC le
eµv̄s′(p

′)(γµPL)us(p)ūr(k)(γµPR)vr′(k
′) + iC le

µev̄s′(p
′)(γµPR)us(p)ūr(k)(γµPL)vr′(k

′)

− 2iC le
eµv̄s′(p

′)PRus(p)ūr(k)PLvr′(k
′)− 2iC le

µev̄s′(p
′)PLus(p)ūr(k)PRvr′(k

′) (3.93)

Notice that we used the Breit-Wigner propergator of Z boson to avoid the divergence in our results.
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3.8 Result of squared-amplitude

I have used FORM2 to calculate this squared-amplitude. In this result, we obtain some great
things that we expected are the independence on gauge-fixing parameters, the squared-amplitude
is the real number athough the initial set of Wilson coefficients is complex numbers. And the most
important result is that our distributions later are completely the same with SM when we set all
Wilson coefficients equal to zero.
With the approximation me = mµ = 0, we will obtain MG0 = 0, thus

|MG0 |2 =MγM†
G0

=MZM†
G0

= 0 (3.94)

The other results are

1

4
|Mγ|2 =

[
16E4ḡ4ḡ′4

q4(ḡ2 + ḡ′2)2
− 64v2E4ḡ5ḡ′5

q4(ḡ2 + ḡ′2)3
ReCϕWB

]
(1 + cos2θ). (3.95)

1

4
|MZ |2 =

v2E4

(q2 − m̄2
Z)2 + Γ̄2

Zm
2
Z

[
CZ1(1 + cos2θ) + CZ2cosθ

]
, (3.96)

in which we have

CZ1(
√
s) =

1

v2

[
4ḡ′8

(ḡ2 + ḡ′2)2
+

2ḡ′4(ḡ′2 − ḡ2)2

(ḡ2 + ḡ′2)2
+

(ḡ′2 − ḡ2)4

4(ḡ2 + ḡ′2)2

]

− 4ḡ′6

(ḡ2 + ḡ′2)
Re(Cϕe

e + Cϕe
µ )− 2ḡ′4(ḡ′2 − ḡ2)

(ḡ2 + ḡ′2)
Re(Cϕl3

µ + Cϕl1
µ + Cϕl3

e + Cϕl1
e )

− ḡ′2(ḡ′2 − ḡ2)2

(ḡ′2 + ḡ2)
Re(Cϕe

µ + Cϕe
e )− (ḡ′2 − ḡ2)3

2(ḡ′2 + ḡ2)
Re(Cϕl3

µ + Cϕl1
µ + Cϕl3

e + Cϕl1
e )

+

(
16ḡ3ḡ′7

(ḡ′2 + ḡ2)3
− 4ḡḡ′5(ḡ′2 − ḡ2)2

(ḡ′2 + ḡ2)3
+

4ḡ3ḡ′3(ḡ′2 − ḡ2)2

(ḡ′2 + ḡ2)3
− ḡḡ′(ḡ′2 − ḡ2)4

(ḡ′2 + ḡ2)3

)
ReCϕWB,

(3.97)

CZ2(
√
s) =

1

v2

[
8ḡ′8

(ḡ2 + ḡ′2)2
− 4ḡ′4(ḡ′2 − ḡ2)2

(ḡ2 + ḡ′2)2
+

(ḡ′2 − ḡ2)4

2(ḡ2 + ḡ′2)2

]

− 8ḡ′6

(ḡ2 + ḡ′2)
Re(Cϕe

e + Cϕe
µ ) +

4ḡ′4(ḡ′2 − ḡ2)

(ḡ2 + ḡ′2)
Re(Cϕl3

µ + Cϕl1
µ + Cϕl3

e + Cϕl1
e )

+
2ḡ′2(ḡ′2 − ḡ2)2

(ḡ′2 + ḡ2)
Re(Cϕe

µ + Cϕe
e )− (ḡ′2 − ḡ2)3

(ḡ′2 + ḡ2)
Re(Cϕl3

µ + Cϕl1
µ + Cϕl3

e + Cϕl1
e )

+

(
32ḡ3ḡ′7

(ḡ′2 + ḡ2)3
+

8ḡḡ′5(ḡ′2 − ḡ2)2

(ḡ′2 + ḡ2)3
− 8ḡ3ḡ′3(ḡ′2 − ḡ2)2

(ḡ′2 + ḡ2)3
− 2ḡḡ′(ḡ′2 − ḡ2)4

(ḡ′2 + ḡ2)3

)
ReCϕWB.

(3.98)

2FORM is a symbolic manipulation system which is used by many HEP physicists. For more information, please
find [11] [12] [13] [14] or read here https://www.nikhef.nl/ form/license/license.html
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1

4
(MγM†

Z +MZM†
γ) =

v2E4

q2[(q2 − m̄2
Z)2 + Γ̄2

Zm
2
Z ]

(
CγZ1(1 + cos2θ) + CγZ2cosθ

)
, (3.99)

where

CγZ1(
√
s) =

2(q2 − m̄2
Z)

v2

[
4ḡ2ḡ′6

(ḡ′2 + ḡ2)2
+

4ḡ2ḡ′4(ḡ′2 − ḡ2)

(ḡ′2 + ḡ2)2
+
ḡ2ḡ′2(ḡ′2 − ḡ2)2

(ḡ′2 + ḡ2)2

]

− ḡ2ḡ′2(3ḡ′2 − ḡ2)

(ḡ′2 + ḡ2)

[
(q2 − m̄2

Z)2Re(Cϕe
µ + Cϕl3

µ + Cϕl1
µ + Cϕe

e + Cϕl3
e + Cϕl1

e )

+2Γ̄Zm̄ZIm(Cϕe
µ + Cϕl3

µ + Cϕl1
µ + Cϕe

e + Cϕl3
e + Cϕl1

e )
]

+
8ḡ3ḡ′3

(ḡ′2 + ḡ2)2

(
3ḡ′2 − ḡ2

) [
Γ̄Zm̄ZImCϕWB − 2(ḡ′2 − ḡ2)

(ḡ′2 + ḡ2)
(q2 − m̄2

Z)ReCϕWB

]
, (3.100)

CγZ2(
√
s) =

2(q2 − m̄2
Z)

v2

[
8ḡ2ḡ′6

(ḡ′2 + ḡ2)2
− 8ḡ2ḡ′4(ḡ′2 − ḡ2)

(ḡ′2 + ḡ2)2
+

2ḡ2ḡ′2(ḡ′2 − ḡ2)2

(ḡ′2 + ḡ2)2

]

− 2ḡ2ḡ′2(ḡ′2 + ḡ2)

(ḡ′2 + ḡ2)

[
(q2 − m̄2

Z)2Re(Cϕe
µ − Cϕl3

µ − Cϕl1
µ + Cϕe

e − Cϕl3
e − Cϕl1

e )

+2Γ̄Zm̄ZIm(Cϕe
µ − Cϕl3

µ − Cϕl1
µ + Cϕe

e − Cϕl3
e − Cϕl1

e )
]

+
8ḡ3ḡ′3

(ḡ′2 + ḡ2)
Γ̄Zm̄Z2ImCϕWB. (3.101)

1

4
(M4M†

γ +MγM†
4) =

E4ḡ2ḡ′2

q2(ḡ′2 + ḡ2)

[
C4γ1(1 + cos2θ) + C4γ2cosθ

]
, (3.102)

where

C4γ1(
√
s) = 8Re(Cle

µe + Cle
eµ) + 32Re(Cee

eµ + Cll
eµ), (3.103)

C4γ2(
√
s) = −16Re(Cle

µe + Cle
eµ) + 64Re(Cee

eµ + Cll
eµ). (3.104)

1

4
(M4M†

Z +MZM†
4) =

E4

[(q2 − m̄2
Z)2 + Γ̄2

Zm̄
2
Z ]

[
C4Z1(1 + cos2θ) + C4Z2cosθ

]
, (3.105)

where

C4Z1(
√
s) =

4

(ḡ′2 + ḡ2)

{
(q2 − m̄2

Z)
[
8ḡ′4ReCee

eµ + ḡ′2(ḡ′2 − ḡ2)Re(Cle
µe + Cle

eµ) + 2(ḡ′2 − ḡ2)2ReCll
eµ

]
−Γ̄Zm̄Z

[
8ḡ′4ImCee

eµ + ḡ′2(ḡ′2 − ḡ2)Im(Cle
µe + Cle

eµ) + 2(ḡ′2 − ḡ2)2ImCll
eµ

]}
,

(3.106)

C4Z2(
√
s) =

4

(ḡ′2 + ḡ2)

{
(q2 − m̄2

Z)
[
16ḡ′4ReCee

eµ − 2ḡ′2(ḡ′2 − ḡ2)Re(Cle
µe + Cle

eµ) + 4(ḡ′2 − ḡ2)2ReCll
eµ

]
−Γ̄Zm̄Z

[
16ḡ′4ImCee

eµ − 2ḡ′2(ḡ′2 − ḡ2)Im(Cle
µe + Cle

eµ) + 4(ḡ′2 − ḡ2)2ImCll
eµ

]}
.

(3.107)
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Now we can write the squared-amplitude in a compact form

|M0|2 = A(
√
s)(1 + cos2θ) + B(

√
s)cosθ, (3.108)

in which we have

A(
√
s) =

[
16E4ḡ4ḡ′4

q4(ḡ2 + ḡ′2)2
− 64v2E4ḡ5ḡ′5

q4(ḡ2 + ḡ′2)3
ReCϕWB

]
+

v2E4

(q2 − m̄2
Z)2 + Γ̄2

Zm
2
Z

CZ1(
√
s)

+
v2E4

q2[(q2 − m̄2
Z)2 + Γ̄2

Zm
2
Z ]
CγZ1(

√
s) +

E4ḡ2ḡ′2

q2(ḡ′2 + ḡ2)
C4γ1(

√
s) +

E4

[(q2 − m̄2
Z)2 + Γ̄2

Zm̄
2
Z ]
C4Z1(

√
s),

(3.109)

B(
√
s) =

v2E4

(q2 − m̄2
Z)2 + Γ̄2

Zm
2
Z

CZ2(
√
s) +

v2E4

q2[(q2 − m̄2
Z)2 + Γ̄2

Zm
2
Z ]
CγZ2(

√
s)

+
E4ḡ2ḡ′2

q2(ḡ′2 + ḡ2)
C4γ2(

√
s) +

E4

[(q2 − m̄2
Z)2 + Γ̄2

Zm̄
2
Z ]
C4Z2(

√
s). (3.110)

3.9 Some distributions for the process e+ + e− → µ+ + µ−

Before going to this section, some assumptions are needed for us. First, it is convenient to set all
Wilson coefficients that we used for field rescaling equal to zero except for CϕWB since the decay
width and the mass of Z boson are depend on that coefficient. The next step is classifying all
coefficients in groups, if you pay attention to the squared amplitude, you can see that there are
some operators always appear with each other as a sum. Therefore they have the same contribution
to our process. These groups are [CϕWB]. [Cϕe

e , C
ϕe
µ ], [Cϕl1

e , Cϕl3
e , Cϕl1

µ , Cϕl3
µ ], [C le

eµ, C
le
µe], [Cee

eµ],
[C ll

eµ]. Since the coefficients in the same group have the same contribution, so we only take one
representative operator for each group into account. Now we have six coefficients to consider, but
it is hard to put many lines in one plot, so I will again separate them into two group

• The Higgs group: The coefficients which their corresponding operators contain Higgs fields:
CϕWB, Cϕe and Cϕl1.

• The four-fermion group: The coefficients which were contained in four-fermion operators:
C le
eµ, Cee

eµ and C ll
eµ.

The important notations that we will use now are the dimensionless coefficients which are denoted
by

C̄Wilson =
v2

Λ2
Re(CWilson), ImC̄Wilson =

υ2

Λ2
Im(CWilson), (3.111)

and their possible values are from -0.2 to 0.2, note that in this thesis we only consider the real
part of Wilson coefficients. In most of the cases, I will choose the value of 0.1 for my calculations.

To see how different of SMEFT from SM, we introduce the ratio
SMEFT

SM
. As we expect, it must

equal to 1 when all Wilson coefficients are set to be zero. The input parameters for all below
graphics are

mZ = 91.1876(GeV), mW = 80.385(GeV), GF = 1.1663787.10−5(GeV−2). (3.112)

which were chosen from Particle Data Group [10]. Note again that we use the approximation
me = mµ = 0.
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3.9.1 Total cross-section

From Eq.(1.12), the cross-section of our process is of the form

dσ

dΩ
=

1

64π2s

|k|
|p| |M0|2 =

1

64π2s

[
A(
√
s)(1 + cos2θ) + B(

√
s)cosθ

]
. (3.113)

The total cross-section then reads

σ =

∫
dσ

dΩ
dcosθdφ =

1

12πs
A(
√

s). (3.114)

The result of total cross-section are indicated in Fig.(3.4). Notice that in all below plots, for each
line we will set zero value for all Wilson coefficients except for the coefficient which is denoted for
that line.

Figure 3.4: Total cross-section of muon in SMEFT when C̄Wilson = 0.1 each time

Figure 3.5: The SMEFT/SM ratio of total cross-section when
√
s = 100GeV
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Figure 3.6: The SMEFT/SM ratio of total cross-section for special case
√
s = mZ GeV

In Fig.(3.5), we can see that the dependence of SMEFT on Wilson coefficients is linear, but the
special case is for CϕWB, since we not only have it in the coupling but also in the mass and decay
width of Z. Therefore our result is not linear depend on CϕWB. Comparing Fig.(3.5) and Fig.(3.6),
we see that for the case

√
s = 100 GeV, the coefficients in four-fermion group have stronger effect

than that of Higgs group. While in the special case
√
s = mZ , the contributions of coefficients

in four-fermion group are negligible. Note that in
√
s = mZ case, Cee

eµ and C ll
eµ have the same

contribution so that you can not distinguish them in the graphic.

3.9.2 Angular distribution

The angular distribution reads

dσ

dθ
=

1

32πs

[
A(
√
s)(1 + cos2θ) + B(

√
s)cosθ

]
sinθ. (3.115)

Figure 3.7: The angular distribution for C̄Wilson = 0.1 when
√
s = 100(GeV)

3.9.3 Fordward-backward asymmetry

the fordward-backward asymmetry

AFB =
σF − σB
σF + σB

=
3

8

B(
√
s)

A(
√
s)
. (3.116)
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Figure 3.8: The SMEFT/SM ratio of angular distribution when
√
s = 100GeV and θ from π/4 to

3π/4

Figure 3.9: The fordward-backward asymmertry in SMEFT when C̄Wilson = 0.1

3.9.4 Transverse momentum distribution

The transverse momentum distribution is given by

dσ

dkt
=
A(
√
s)

16πs

(2E2 − k2
t )kt

E3
√
E2 − k2

t

. (3.117)

3.9.5 Longitudinal momentum distribution

The longitudinal momentum distribution is of the form

dσ

dkl
=

1

32πsE

A(
√
s)

(
1 +

k2
l

E2

)
+B(

√
s)
kl
E

 . (3.118)
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Figure 3.10: The SMEFT/SM ratio of fordward-backward asymmertry when
√
s = 100GeV

Figure 3.11: The SMEFT/SM ratio of fordward-backward asymmertry when
√
s = mZ GeV

3.9.6 Rapidity distribution

The rapidity is defined as

y =
1

2
ln

(
E + kl

E− kl

)
. (3.119)

From the original definition, we can write down the another form of it

y = arctanh
kl

E
(3.120)

Thus, the Jacobian then read

kl = Etanhy⇒
∣∣∣∣∣ dkl

dy

∣∣∣∣
kl=Etanhy

∣∣∣∣∣ = E(1− tanh2y) (3.121)

Thus the rapidity distribution of muon is:

dσ

dy
=

dσ

dkl

∣∣∣∣
kl=Etanhy

∣∣∣∣∣ dkldy
∣∣∣∣
kl=Etanhy

∣∣∣∣∣
=

1

32πs

[
A(
√
s)
(
1 + tanhy2

)
+B(

√
s)tanhy

]
(1− tanh2y). (3.122)
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Figure 3.12: The transverse momentum distribution in SMEFT when C̄Wilson = 0.1 and
√
s =

200GeV

Figure 3.13: The SMEFT/SM ratio of transverse momentum distribution when
√
s = 200GeV and

kt from 90 to 100(GeV)

Figure 3.14: The longitudinal momentum distribution in SMEFT when C̄Wilson = 0.1 and
√
s =

200GeV
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Figure 3.15: The SMEFT/SM ratio of longitudinal momentum distribution when
√
s = 200GeV

and kl from 90 to 100 (GeV)

Figure 3.16: The rapidity distribution in SMEFT when C̄Wilson = 0.1 and
√
s = 100GeV

Figure 3.17: The SMEFT/SM ratio of rapidity distribution when
√
s = 100GeV and y from 1 to 2
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Figure 3.18: Total cross-section of muon in SMEFT when ImC̄Wilson = 0.1 each time

Figure 3.19: The angular distribution for ImC̄Wilson = 0.1 when
√
s = mZ(GeV)

Figure 3.20: The fordward-backward asymmertry in SMEFT when ImC̄Wilson = 0.1
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Figure 3.21: The transverse momentum distribution in SMEFT when ImC̄Wilson = 0.1 and
√
s =

200GeV

Figure 3.22: The longitudinal momentum distribution in SMEFT when ImC̄Wilson = 0.1 and√
s = 200GeV

Figure 3.23: The rapidity distribution in SMEFT when ImC̄Wilson = 0.1 and
√
s = mZ(GeV)
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4
Application for the spin-density matrix elements of Z boson

4.1 Relations of the Z boson decay angular distributions

with its spin-density matrix elements

A density matrix is a matrix that describes a quantum system in a mixed state, a statistical en-
semble of several quantum states. Density matrix is contradicted with a single state vector which
describes a quantum system in a pure state. We call pure state when a quantum system has one
state vector |ψ〉 only. Nevertheless, it is possible for a system to be in a statistical ensemble of
different state vectors as well. This time we call the system is in a mixed state. For instance,
we have a mixed state of a system when the system have two distinguishable states are |ψ1〉 and
|ψ2〉, with the probability for each state is 50%. That means there is 50% probability that the
state vector is |ψ1〉 and the rest chance that the state vector is |ψ2〉. Hence it turns out that
density matrix is the powerful tool to describe the mixed state. Note that a mixed state is not the
same with a quantum superposition. The probabilities in a mixed state are classical probabilities,
dissimilar to the quantum probabilites in a quantum superposition.

Being a spin-1 particle, Z boson’s spin state is described in a form of a 3×3 density matrix with
8 observables. We have the number 8 rather than another number since the density matrix of Z
boson has 8 degrees of freedom. Now the main purpose of this section is re-producing the relations
in [15] between the Z boson decay angular distributions and the spin-density matrix elements of
the Z boson (it is noted that Z bosons produced at e+e− or pp collision are polarized). The method
to find those relations was firstly introduced by J.A. Aguilar-Saavedra and J. Bernabeu in 2016
[16] when they used that method for the W boson case.
In addition to the form of 3 × 3 matrix, the density matrix has the other features which are
Hermitian and unit trace. The general form of it reads

ρ =
1

3
+

1

2

1∑
m=−1

〈Sm〉∗Sm +
2∑

m=−2

〈Tm〉∗Tm, (4.1)

where Sm is the three spin operators which are given in the spherical basis by

S±1 = ∓ 1√
2

(Sx ± iSy), S0 = Sz, (4.2)
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and Tm are five irreducible tensors establishing from Sm as

T±2 = S2
±1, T±1 =

1

2
[S±1S0 + S0S±1], T0 =

1√
6

[S+1S−1 + S−1S+1 + 2S2
0 ]. (4.3)

We have used the notation Sx,y,z for the spin operators which have the below forms for the spin-1
particles

Sx =
1√
2

0 1 0
1 0 1
0 1 0

 , Sy =
1√
2i

 0 1 0
−1 0 1
0 −1 0

 , Sz =

1 0 0
0 0 0
0 0 −1

 . (4.4)

Substituting eq.(4.4) into (4.2) and (4.3), we can obtain

S−1 =

0 0 0
1 0 0
0 1 0

 , S1 =

0 −1 0
0 0 −1
0 0 0

 , S0 =

1 0 0
0 0 0
0 0 −1

 ,

T−2 =

0 0 0
0 0 0
1 0 0

 , T2 =

0 0 1
0 0 0
0 0 0

 , T0 =
1√
6

1 0 0
0 −2 0
0 0 1

 ,

T−1 =
1√
2

0 0 0
1 0 0
0 −1 0

 , T1 =
1√
2

0 −1 0
0 0 1
0 0 0

 . (4.5)

For later convenience, we will define the operators

A1 =
1

2
(T1 − T−1), A2 =

1

2i
(T1 + T−1), B1 =

1

2
(T2 + T−2), B2 =

1

2i
(T2 − T−2). (4.6)

From the explicit form of the above operators, we are now able to write each density matrix
elements of Z boson in terms of expected values of observables

ρ±1±1 =
1

3
± 1

2
〈S3〉+

1√
6
〈T0〉,

ρ±10 =
1

2
√

2
[〈S1〉 ∓ i〈S2〉]∓

1√
2

[〈A1〉 ∓ i〈A2〉],

ρ00 =
1

3
− 2√

6
〈T0〉,

ρ1−1 = 〈B1〉 − i〈B2〉, (4.7)

and the other elements have the forms ρa,b = ρ∗b,a. As we will see later, the angular distribution
of Z decay totally depends on those density matrix elements. To figure out that, we first need to
write the amplitude for the decay of Z boson by using the helicity formalism of Jacob and Wick
[17]

Mm,λ1λ2 = aλ1λ2D
1∗
mλ(φ, θ, 0), (4.8)

where m is the third spin component and λ1λ2 stand for the helicities of two fermions which are
the production of Z decay. λ = λ1−λ2 = ±1. We use the Z boson rest frame and φ, θ are the polar
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and azimuthal angles of fermion respectively. The notation Ds
m′m(α, β, γ) is the Wigner D-matrix

[18] which is of the form

Ds
m′m(α, β, γ) ≡ 〈sm′|R(α, β, γ)|sm〉 = e−im

′αe−imγdsm′m(β), (4.9)

where R(α, β, γ) = e−iαSxe−iβSye−iγSz is a generic rotation in 3-dimensional space which is built by
compounding operators using Euler angles, and dsm′m(β) = 〈sm′|e−iβSy |sm〉 is the Wigner’s small
d-matrix. The amplitude in Eq.(4.8) then becomes

Mmλ1λ2 = aλ1λ2e
imφd1

mλ(θ). (4.10)

The squared amplitude is easily found

|M|2 =
∑
m′,m

ρmm′M†
m′λ1λ2

Mmλ1λ2

=
∑
m′,m

ρmm′a∗λ1λ2aλ1λ2e
i(m−m′)φd1

mλ(θ)d
1
m′λ(θ). (4.11)

The decay width of Z boson in two final particles reads [2]

dΓ

dΩ
=

1

64πm2
Z

√
1− 4m2

m2
Z

|M|2

= C
∑

m,m′mλ1λ2

ρm,m′ |aλ1λ2 |2ei(m−m
′)φd1

mλ(θ)d
1
m′λ(θ) (4.12)

Note that a1/2 −1/2 is different with a−1/2 1/2 and their values are proportional to the right- and
left-handed couplings of Z boson and charged lepton, respectively. It is convenient to denote them
as a1 = a2

1/2 −1/2 and a2 = a2
−1/2 1/2 for short, then we have

a2
1/2 −1/2

a2
−1/2 1/2

=
a1

a2

=
gl

2

R

gl
2

L

. (4.13)

For later apparent calculations, it is necessary to introduce some values of the Wigner’s small
d-matrix elements for spin-1 particles

d1
1,1(θ) =

1 + cosθ

2
, d1

1,0(θ) = −sinθ√
2
, d1

1,−1(θ) =
1− cosθ

2
, d1

0,0(θ) = cosθ. (4.14)

The other values of d-matrix elements can derive by using the feature below

djm′,m(θ) = (−1)m−m
′
djm,m′(θ) = dj−m,−m′(θ). (4.15)

The sum in Eq.(4.12) have the below result, note that the mediate calculation steps is too long
and there is no need to explicitly write it down

dΓ

dΩ
= C

a1 + a2

2

{(
1

3
+
T0√

6

)
(1 + cos2θ) +

(
1

3
− 2√

6
T0

)
sin2θ + 〈B1〉cos2φsin2θ + 〈B2〉sin2φsin2θ

−〈A1〉cosφsin2θ − 〈A2〉sinφsin2θ +
a1 − a2

a1 + a2

(〈S1〉cosφsinθ + 〈S2〉sinφsinθ + 〈S3〉cosθ)

}
.

(4.16)
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Integrating the terms in {} bracket, we will get the value of 8π/3. Let’s introduce the factor

η =
a1 − a2

a1 + a2

=
gl

2

R − gl
2

L

gl
2

R + gl
2

L

' −0.14. (4.17)

We are now able to write Eq.(4.12) in the normalised distribution form

1

Γ

dΓ

dcosθdφ
=

3

8π

{
1

2
(1 + cos2θ) +

(
1

6
− 1√

6
〈T0〉

)
(1− 3cos2θ) + 〈B1〉cos2φsin2θ + 〈B2〉sin2φsin2θ

−〈A1〉cosφsin2θ − 〈A2〉sinφsin2θ + η(〈S1〉cosφsinθ + 〈S2〉sinφsinθ + 〈S3〉cosθ)
}
.

(4.18)

We have changed it into the normalized form so that we can compare with the form which is
usually used by experimentalist. Because of the term ei(m−m

′)φ in squared amplitude, the off-
diagonal elements will become zero when we integrate over the azimuthal angle. The polar angle
distribution, therefore, is given by

1

Γ

dΓ

dcosθ
=

3

8π

∫
1

Γ

dΓ

dcosθdφ
dφ =

1

2
+

3〈T0〉
4
√

6
(3cos2θ − 1) +

3

4
η〈S3〉cosθ. (4.19)

The forward-backward (FB) asymmetry

AFB =
1

Γ

[
Γ(cosθ > 0)− Γ(cosθ < 0)

]
=

∫ 1

0

1

Γ

dΓ

dcosθ
dcosθ −

∫ 0

−1

1

Γ

dΓ

dcosθ
dcosθ

=

(
1

2
+

3

8
η〈S3〉

)
−
(

1

2
− 3

8
η〈S3〉

)
=

3

4
η〈S3〉. (4.20)

The edge-central asymmetry

AEC =
1

Γ

[
Γ

(
|cosθ| > 1

2

)
− Γ

(
|cosθ| < 1

2

)]

=

∫ −1/2

−1

1

Γ

dΓ

dcosθ
dcosθ +

∫ 1

1/2

1

Γ

dΓ

dcosθ
dcosθ −

∫ 1/2

−1/2

1

Γ

dΓ

dcosθ
dcosθ

=

(
1

2
+

9〈T0〉
16
√

6

)
−
(

1

2
− 9〈T0〉

16
√

6

)
=

3

8

√
3

2
〈T0〉. (4.21)

All the diagonal density matrix elements have been found already. In order to measure the off-
diagonal one, we need to avoid the vanishment in the azimuthal integral. The issue is that all
off-diagonal elements contain cosφ or sinφ. While cosφ has opposite value between forward- and
backward-part of the trigonometric circle, the value of sinφ is opposite between upper- and lower-
part of the circle. That is the reason for the cancellation of those terms when we integrate over
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φ. Thus if we can make our function has the same sign in two opposite part of the trigonometric
circle, our integration will remain off-diagonal elements. The solution for this is using function
f1(φ) = sign(cosφ) or f2(φ) = sign(sinφ). The corresponding results of the multiplication f1(φ),
f2(φ) are denoted as δ1Γ and δ2Γ

1

Γ

d(δ1Γ)

dcosθ
=

∫ 3π
2

−π
2

1

Γ

dΓ

dcosθdφ
sign(cosφ)dφ

=

∫ π
2

−π
2

1

Γ

dΓ

dcosθdφ
dφ−

∫ 3π
2

π
2

1

Γ

dΓ

dcosθdφ
dφ

=
3

2π
η〈S1〉sinθ −

3

2π
〈A1〉sin2θ. (4.22)

1

Γ

d(δ2Γ)

dcosθ
=

∫ 2π

0

1

Γ

dΓ

dcosθdφ
sign(sinφ)dφ

=

∫ π

0

1

Γ

dΓ

dcosθdφ
dφ−

∫ 2π

π

1

Γ

dΓ

dcosθdφ
dφ

=
3

2π
η〈S2〉sinθ −

3

2π
〈A2〉sin2θ. (4.23)

Because of the sign(sinφ) and sign(sinφ) function, when we integrate (4.22) and (4.23) over the
polar angle, we will obtain

AxFB =
δ1Γ

Γ
=

∫ 1

−1

1

Γ

dδ1Γ

dcosθ
dcosθ =

1

Γ

[
Γ(cosφ > 0)− Γ(cosφ < 0)

]
=

3

4
η〈S1〉, (4.24)

AyFB =
δ2Γ

Γ
=

∫ 1

−1

1

Γ

dδ2Γ

dcosθ
dcosθ =

1

Γ

[
Γ(sinφ > 0)− Γ(sinφ < 0)

]
=

3

4
η〈S2〉. (4.25)

We have used the notation AxFB and AyFB since they look like the forward-backward asymmetry
with respect to x and y axes, respectively. So we have just gained two more observables. The rest
observables in (4.22) and (4.23) can be found by calculating the Forward-Backward asymmetries
A1
FB and A2

FB of δ1Γ, δ2Γ distributions.

A1
FB =

∫ 1

0

1

Γ

d(δ1Γ)

dcosθ
dcosθ −

∫ 0

−1

1

Γ

d(δ1Γ)

dcosθ
dcosθ

=
1

Γ

[
Γ(cosθ > 0, cosφ > 0)− Γ(cosθ > 0, cosφ < 0)

]
− 1

Γ

[
Γ(cosθ < 0.cosφ > 0)− Γ(cosθ < 0, cosφ < 0)

]
=

1

Γ

[
Γ(cosθcosφ > 0)− Γ(cosθcosφ < 0)

]
=

(
3

8
〈S1〉 −

1

π
〈A1〉

)
−
(

3

8
〈S1〉+

1

π
〈A1〉

)
= − 2

π
〈A1〉. (4.26)

In the same manner, we can get

A2
FB =

1

Γ

[
Γ(cosθsinφ > 0)− Γ(cosθsinφ < 0)

]
= − 2

π
〈A2〉. (4.27)
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Although we have the sign function in addition, we still not be able to avoid the cancelltion
of the terms containing 〈B1〉 and 〈B2〉. Therefore, we must change a bit our sign functions to
f3(φ) = signcos2φ, f4(φ) = signsin2φ. Then, the δ3Γ distribution reads

1

Γ

d(δ3Γ)

dcosθ
=

∫ 2π

0

1

Γ

dΓ

dcosθdφ
sign(cos2φ)dφ

=

∫ π
4

−π
4

1

Γ

dΓ

dcosθdφ
dφ+

∫ 5π
4

3π
4

1

Γ

dΓ

dcosθdφ
dφ−

∫ 3π
4

π
4

1

Γ

dΓ

dcosθdφ
dφ−

∫ 7π
4

5π
4

1

Γ

dΓ

dcosθdφ
dφ

=
3

2π
〈B1〉sin2θ. (4.28)

After the total integration over the polar angular, it yields

A1
φ =

∫ 1

−1

1

Γ

d(δ3Γ)

dcosθ
dcosθ =

1

Γ

[
Γ(cos2φ > 0)− Γ(cos2φ < 0)

]
=

2

π
〈B1〉. (4.29)

Similar to the case of f4(φ) = signsin2φ, we have

A2
φ =

1

Γ

[
Γ(sin2φ > 0)− Γ(sin2φ < 0)

]
=

2

π
〈B2〉. (4.30)

4.2 Z boson spin-density matrix elements using spinor he-

licity amplitudes method

In ordinary way, when we calculate amplitude of scattering process, we usually write down the
amplitude using Feynman rules. After that, we square the amplitude and sum over the spins of
external states. Then using the trace theorems to obtain the squared-amplitude in a more compact
form without γ matrix. This basic technique is widely used in many textbooks, but it can create
many issues at a deeper level since the Feynman amplitude for the process with many diagrams is
much more complicated to square. For the spinor helicity amplitude method, it was first introduced
by J.D. Bjorken and M. Chen [19] in 1966. In this method, we must choose a specific polarization
states of the external particles, then write all spinors or gauge boson polarization vectors in explicit
form. Next, find the individual helicity amplitude corresponding with each polarized external state
and sum over the squares of polarized amplitudes. It is so different with the squared-amplitude
method when we squared each helicity amplitude and then sum over all possible squared helicity-
amplitudes later. We are able to do that because the helicity-amplitudes for each external state
are independent and not interfere with each other. 1

4.2.1 Squared amplitude of Z boson squared amplitude method

Our goal is not using the squared amplitude method, but we need to use it since it is necessary
for us to compare the results of two methods together. First, we consider the Z boson that was
created by ee collider. Hence, our Feynman diagram is

1For further discussion on that, please see [20]
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Z̄

e+

e−

With the coressponding momentum of Z boson is as previous chapters: q = p+ p′. The Feynman
amplitude reads

M = v̄s′(p
′)
i

2
(gV γ

µ − gAγµγ5)us(p)ε
∗
λµ, (4.31)

where ελµ(q) is the Z boson polarization vector, the squared-amplitude is then given by

|M|2 =
1

4

∑
s,s′,λ

[
ūs(p)

(
− i

2

)
γµ(gV − gAγ5)vs′(p

′)ελµ(q)

] [
v̄s′(p

′)
i

2
γν(gV − gAγ5)us(p)ε

∗
λν(q)

]
.

(4.32)

Now, using the trace theorems like the former chapters, also the below identities

3∑
λ=1

εµλ(q)εν∗λ (q) = −gµν +
qµqν

m2
Z

, and εµλ(q)ε∗λ′µ(q) = −δλλ′ , (4.33)

we are able to obtain

|M|2 =
1

4

(g2
A + g2

V )

[
2(p′.q)(p.q)

m2
Z

+ (p.p′)

]
+ 2gV gAiε

ρµσνpρp
′
σqµqν

 . (4.34)

Now if we work on the CM frame like chapter 1, and choose the case of on-shell Z boson, i.e.
q2 = m2

Z = 4E2, the squared amplitude becomes

|M|2 = (g2
V + g2

A)E2. (4.35)

4.2.2 Squared amplitude of Z boson using helicity amplitude method

As I have introduced above, first, we must choose a basis for the polarization states of the external
particles, note that the momentum notation is unchanged from Chap. 1, where q2 = m2

Z

pµ = (E, ~p) = (E, 0, 0,−E), p′µ = (E,−~p) = (E, 0, 0, E), qµ = (2E,~0). (4.36)

and the Z boson polarization vectors reads

εµ0 = (0, 0, 0, 1), εµ+ = − 1√
2

(0, 1, i, 0), εµ− =
1√
2

(0, 1,−i, 0). (4.37)

Before we construct the Dirac spinor, we need to consider some definitions. The Weyl spinors are
defined as

χ+(p) =
1√

2|~p|(|~p|+ pz)

(
|~p|+ pz
px + ipy

)
, χ−(p) =

1√
2|~p|(|~p|+ pz)

(
−px + ipy
|~p|+ pz

)
, (4.38)
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which satisfy the equation

χ†λ(p)χλ′(p) = δλλ′ (4.39)

Hχ±(p) = ±χ±(p), (4.40)

where H =
~σ~p

|~p| is the helicity operator. Then the Dirac spinors can be constructed from the Weyl

spinor as follows

uλ(p) =

(√
p0 + λ|~p|χλ(p)√
p0 − λ|~p|χλ(p)

)
, vλ(p) =

(
λ
√
p0 − λ|~p|χ−λ(p)

−λ
√
p0 + λ|~p|χ−λ(p)

)
. (4.41)

First, we need to find the explicit form of Weyl spinor. Using Eq.(4.40), we have

~σ~p

|~p|χ+(p) =

(
−1 0
0 1

)
χ+(p) = χ+(p). (4.42)

Thus the spinor above must have the form χ+(p) =

(
0
a

)
with a is an arbitrary number. But our

Weyl spinor have to obey the normalize condition (4.39), therefore we can obtain χ+(p) spinor and
the other three Weyl spinors using the same trick

χ+(p) =

(
0
1

)
, χ−(p) =

(
1
0

)
, χ+(p′) =

(
1
0

)
, χ−(p′) =

(
0
1

)
. (4.43)

From (4.41), the expression of Dirac spinors is

u+(p) =
√

2E


0
1
0
0

 , u−(p) =
√

2E


0
0
1
0

 , v+(p′) = −
√

2E


0
0
0
1

 , v−(p′) = −
√

2E


1
0
0
0

 .

(4.44)

With all explicit forms of spinors and polarization vectors, we are now able to compute the helicity
amplitude

A(λ, s′, s) = v̄s′(p
′)
i

2
(gV γ

µ − gAγµγ5)us(p)ε
∗
λµ. (4.45)

The results turn out with no surprise when almost all terms vanish except for two cases

A(1, 1,−1) = −iE
√

2(gV − gA), A(−1,−1, 1) = −iE
√

2(gV + gA). (4.46)

The squared amplitude then becomes

1

4

∑
s′,s,λ

A∗(λ, s′, s)A(λ, s′, s) =
1

4

[
A∗(1, 1,−1)A(1, 1,−1) + A∗(−1,−1, 1)A(−1,−1, 1)

]
= E2(g2

V + g2
A) (4.47)

which agrees with the squared amplitude in the previous subsection.
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4.2.3 Z boson spin-density matrix elements

The next step is calculating Z boson density matrix. The relation between density matrix elements
and helicity amplitudes is indicated by the formula

ρij =
∑
s′,s

aA∗(i, s′, s)A(j, s′, s) (4.48)

where a is a constant. For the cases of Z boson, we have two non-zero elements since there are
only two helicity amplitudes of Z remain in above subsection. Thus, the density matrix elements
of Z boson reads

ρ11 = a2E2(gV − gA)2, ρ−1−1 = a2E2(gV + gA)2 (4.49)

and all other elements are canceled out. Notice that the density matrix have the feature of unit
trace, therefore

ρ11 + ρ−1−1 = a2E2(2g2
V + 2g2

A) = 1⇒ a =
1

4E2(g2
V + g2

A)
. (4.50)

Using Eq.(4.7), we rewrite the density matrix elements as

ρ11 =
1

3
+

1

2
〈S3〉+

1√
6
〈T0〉 =

1

2
− gV gA
g2
V + g2

A

, (4.51)

ρ−1−1 =
1

3
− 1

2
〈S3〉+

1√
6
〈T0〉 =

1

2
+

gV gA
g2
V + g2

A

. (4.52)

The observables values are now obtained

〈S3〉 = − 2gV gA
g2
V + g2

A

, 〈T0〉 =
1√
6
. (4.53)

while all other observables vanish. Note that if we change the basis states of the external particles,
such as

pµ = (E, ~p) = (E, 0, 0, E), p′µ = (E,−~p) = (E, 0, 0,−E), (4.54)

then our results are quite different when 〈S3〉 value has the opposite sign. This is because when
we change the basis, our spinors form will change which leads to different helicity amplitudes.

4.3 Z boson spin-density matrix elements using squared

amplitude method

As I have mentioned, our purpose to write the normalised distribution of Z decay in Eq.(4.18) is
that we can compare with the cross-section distribution in normalised form. From [21] [22] [23], the
normalised cross-section distribution using by experimentalist in the CollinsSoper (CS) reference
frame [24] is parameterised in terms of eight coefficients V0−7

1

σ

dσ

dcosθdφ
=

3

16π

{
(1 + cos2θ) +

1

2
V0(1− 3cos2θ) + V1cosφsin2θ +

1

2
V2cos2φsin2θ + V3cosφsinθ

+V4cosθ + V5sin2φsin2θ + V6sinφsin2θ + V7sinφsinθ
}
. (4.55)
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Comparing with Eq.(4.18), we have these relations

V0 =
2

3
− 2

√
2

3
〈T0〉, V1 = −2〈A1〉, V2 = 4〈B1〉, V3 = 2η〈S1〉,

V4 = 2η〈S3〉, V5 = 2〈B2〉, V6 = −2〈A2〉, V7 = 2η〈S2〉. (4.56)

Now our mission is finding the normalized distribution of the cross-section using the amplitude-
squared method, then compare with the relation produced above to obtain density matrix elements
of Z boson.
First, we have already found the squared amplitude of process e+ + e− → Z → µ+ + µ− with the
only meditator is Z boson in Eq.(2.31)

|MZ |2 =
e4

E2
|χ0|2

[
(g2
V + g2

A)2
(
E2 + |k|2cos2θ

)
+ (g4

V − g4
A)m2

µ + 8g2
Ag

2
VE|k|cosθ

]
(4.57)

Using the approximation me = mµ = 0, we can find the total cross section as

dσ

dΩ
=

e4

64π2s
|χ0|2

[
(g2
V + g2

A)2
(
1 + cos2θ

)
+ 8g2

Ag
2
V cosθ

]
,

⇒ σ =
e4

12πs
|χ0|2(g2

V + g2
A)2. (4.58)

The nomalised distribution of cross-section is then reads

1

σ

dσ

dcosθdφ
=

3

16π

[
(1 + cos2θ) +

8g2
Vg2

A

(g2
V + g2

A)2
cosθ

]
. (4.59)

Comparing with Eq.(4.55) and using the relations in Eq.(4.56), we have

V4 = 2η〈S3〉 =
8g2

V g
2
A

(g2
V + g2

A)2
, V0 =

2

3
− 2

√
2

3
〈T0〉 = 0 (4.60)

where η =
g2
R − g2

L

g2
R + g2

L

= − 2gV gA
g2
V + g2

A

. we can obtain

〈S3〉 = − 2gV gA
g2
V + g2

A

, 〈T0〉 =
1√
6

(4.61)

while all other observables equal to zero which is totally the same with the results in helicity
method.

4.4 The so-called ”spin-density matrix” of Z boson and

photon in SM

Using the above method, If we can find the normalized angular distribution for the process e+ +
e− → µ+ +µ− which mediated by Z boson and photon, we will able to derive the so-called density
matrix elements. We use the word ”so-called” since it is not actually the density matrix while it
has two mediators. Based on the result in Eq.(2.39) of Chapter 2

dσ

dΩ
=

e4|k|
16π2Es2

[
G1(s)|k|2cos2θ + G2(s)E2 + 4G3(s)E|k|cosθ

]
. (4.62)
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We will find the total cross-section of our process with two mediators using approximation mµ = 0
as

⇒ σ =
e4

32π

[
2

3
G1(s) + 2G2(s)

]
. (4.63)

Note that the approximation mµ = 0 leads to G1(s) = G2(s). The nomalised distribution of
cross-section is then reads

1

σ

dσ

dΩ
=

3

16π

[
(1 + cos2θ) +

4G3(s)

G1(s)
cosθ

]
. (4.64)

Using the same trick, Now we compare with Eq.(4.55) and use the relations in Eq.(4.56), we have

V4 = 2η〈S3〉 =
4G3(s)

G1(s)
, V0 =

2

3
− 2

√
2

3
〈T0〉 = 0. (4.65)

Then two observables values read

〈T0〉 =
1√
6
, 〈S3〉 =

2G3(s)

ηG1(s)
. (4.66)

Note that in both Z and Z-photon density matrix, there are only two non-zero observable. While
〈T0〉 in both cases have the same value and it is a constant. Thus, let’s focus on the 〈S3〉 value,
it is just a number in Z density matrix while it becomes a function on the threshold energy

√
s in

the so-called Z-photon density matrix. The values of 〈S3〉 are indicated in Fig.(4.2), we can see
that the intersection is at

√
s = mZ , so the so-called density matrix of Z and photon will becomes

the density matrix of Z boson when the threshold energy equal to mass of Z boson.

Z -photon

Z

20 40 60 80 100 120 140

-6

-4

-2

0

2

4

6

s (GeV)

〈S 3〉

Figure 4.1: The values of 〈S3〉 in two density matries
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4.5 The so-called ”spin-density matrix” of Z boson and

photon in SMEFT

Using the result in Chap.3, we have the cross-section of the process e+ + e− → µ+ +µ− in SMEFT
as follows

dσ

dΩ
=

1

64π2s

[
A(
√
s)(1 + cos2θ) + B(

√
s)cosθ

]
, (4.67)

and the total cross-section reads

σ =
1

12πs
A(
√
s). (4.68)

Now, we are able to find the normalized distribution of cross-section as

1

σ

dσ

dΩ
=

3

16π

[
(1 + cos2θ) +

B(
√

s)

A(
√

s)
cosθ

]
. (4.69)

Once again, we compare with Eq.(4.55) and use the relations in Eq.(4.56)

V4 = 2η〈S3〉 =
B(
√
s)

A(
√
s)
, (4.70)

V0 =
2

3
− 2

√
2

3
〈T0〉 = 0. (4.71)

Then two observables values then read

〈T0〉 =
1√
6
, 〈S3〉 =

B(
√
s)

2ηA(
√
s)
. (4.72)
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Figure 4.2: The values of 〈S3〉 in SMEFT when the C̄Wilson = 0.1
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