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Introduction

The first two chapters in this thesis were followed the first two chapters of Hong Minh'’s thesis|[1].
I have checked all the calculations there and just put essential things to my thesis. In that, I
have provided a well-known method to find the total cross-section and some distributions of the
given process e + e~ — pt + = in both Quantum Electrodynamics (QED) and the Standard
Model (SM) cases. Many essential calculated steps will be introduced in those chapters such as
how to find vertex factors, the propagators, Feynman amplitude... Some comparisons between two
theories shall be implemented to help us to see how different they are.

Nevertheless, the main purpose of this thesis is studying dimension-six operators using Standard
Model Effective Field Theory (SMEFT) framework and then apply it in our process. Although SM
is the successful theory which has amazing agreement with experiments, many physicists believe
that it is just the leading order terms of an exhaustive theory. Experimental errors of measure-
ments are becoming smaller when the LHC reaches the higher level of energy, and it can help to
find new physics beyond SM. Therefore, in Chap. 3, we will derive many deviations of relations
from the SM especially the total cross-section result of et +e~ — u*+p~ process in SMEFT. Also,
some main features of physics such as gauge invariant of dimension-six operators, the independent
of Feynman amplitude on gauge-fixing parameters... will be checked.

In the final chapter, I have re-produced the relations between the Z boson decay angular
distributions and the spin-density matrix elements of the Z boson (it is noted that Z bosons
produced at eTe or pp collision are polarized). Then I applied these results to the process e +e~ —
Z — pt + p~ and find the density matrix for Z boson in two different ways. First, I used the
helicity-amplitude method to calculate the density matrix. In another way, I found the normalized
distribution of the cross-section using the amplitude-squared method, then I compared with the
relation produced above to obtain density matrix elements. After that, I find the normalized
angular distribution for the process e + e~ — Z +~ — p* + p~ which mediated by Z boson and
photon. Using the same manner, I was able to derive the so-called ”density matrix” elements (it
is not actually the density matrix since it has two mediators) and then saw the difference between
two density matrix. Moreover, after using the SMEFT framework, I will be able to calculate the
effects of dimension-six operators on the above spin observables and make a comparison with that

of SM.



Scattering process ¢~ + ¢ — u~ + pt in QED

1.1 Feynman rules in QED

First, the main difference between many models in particle physics is the change of the Lagrangian
density (Lagrangian for short). In QED, only electromagnetic interaction, which mediated by the
photon, exists. The QED Lagrangian, therefore, contains only the field of photon A,:

1 1
L=—-F,F"—
g 284

4
where F},, is the electromagnetic field tensor: F),, = 0,4, — 0,A,. D, is the covariant derivative,

(0 A)? + (i) — m), (1.1)

1
which is: D, = 0, —ieA,. The term —E(OMA“)2 is the gauge fixing term which contains the
A

gauge fixing parameter 4. As you will see later, gauge-fixing term is a technique to calculate the
photon propagator.

Note that in Lagrangian (1.1), the terms which contain one field only are called the free Lagrangian
terms, except for the case —ma1) is called the mass term. While the terms containing more than
one field are the interaction terms.

1.1.1 Photon propagator

Applying the principle of least action for the free electromagnetic field part of the Lagrangian in
(1.1), the Euler-Lagrange equation is of the form:

0Ly oLy
9, (8(80149) ~ i =0 (1.2)

It is obvious that the second term is equal to zero, the first term will be calculated step by step,
we have

OLg A A 1 A
= ———=0"A"—-0"A" — —(0,A")g™.
8(8014)\) €A< 1 )g

Substituting that result into Eq.(1.2), the equation of motion for photon field becomes

Og"e — (1 - gi) 0P| A, = 0. (1.3)

A




The propagator of the vector field D,,(x — y) is the solution of the inhomogeneous equation of
motion above with a point-like source:

Og*? — (1 - §i> 0“8”] D,,(z —y) = g'd*(z — y). (1.4)

A

Using the Fourier transformation for both sides of the Eq.(1.4), we have:

1 d4q ) d4q )
Oa — (1 — — ) g~o” “a@=p (q) = #/_ —ig(z—y)
g < gA) /(271’)46 P <Q) 9y (271')46 )

1
_q2gup + (1 _ _) qqu
a

Based on the Green function method, we know that D, is the photon propagator and the general
form of it is

Dy (q) =g, (1.5)

D (q) = A¢*)apq0 + B(@*)gpw (1.6)

To determine two coefficients above, we have to insert the general form of photon propagator into
Eq.(1.5), it then becomes

[A())a,0 + B(@*)gpw] = g

1
_q29up + (1 _ _) qqu

€a
. . 2\ _1 2\ 1 _é-A .
We can easily derive B(q*) = — and A(¢®) = - Hence, we can rewrite the photon propa-
q q
gator in term of:
I §A Guv
Dy (q) = T e T q—’; (L.7)

An interesting thing is that the gauge-fixing term can help us to derive the photon propagator,
but itself is not gauge invariant. Let’s now discuss about this special term. We can see that the
gauge fixing term depends only on (9,A*)? and independent of the fermion field. Thus, the gauge
fixing term can only affect the photon propagator, which is the internal line. while the external
fermion lines still unchanged. Notice that the internal line is not a physical observable, so it is not
important if this propagator is not gauge invariant. Therefore, the Feynman rules in the interme-
diate steps are important but it is no need to be gauge invariance. Nevertheless, the final results
must be gauge invariant because it is the physical observables.

As T have mentioned above, the gauge-fixing term is a technique to calculate the photon prop-
agator. Because if we do not have that term, we have derived an invalid identity 1/¢* = 0. Thus,
we could not obtain the coefficient A(q?) in the general form of the photon propagator.

So that, we need to introduce gauge fixing term as a trick. But finally, the physical observables
must be independent of gauge-fixing parameters. And so far in my thesis, you will see that no
physical observable depend on that parameters. Because of that reason, we can arbitrarily choose
the value of gauge-fixing parameters. If we choose & = 1, we will call it Feynman gauge. Unitary
gauge for £ = co. And the R¢ gauge which still remains &.
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1.1.2 Vertex factor of eey

One of the useful methods to find the vertex factor is looking for the interaction terms in La-
grangian, then remove all fields and multiply by imaginary unit. In Eq.(1.1), the interaction term
s:

ilpyp O @Z_}i(_wVMAu)Qﬂ = QEGVHAM/}- (1.8)

Thus, the vertex factor reads

= jey. (1.9)

1.1.3 Feynman rules in QED

Now we will introduce the Feynman rules in QED, notice that we only focus on the rules for
diagrams at tree level only. External lines contribute a factor as follows:

7 ® —u(p),
> @ = u(p),
7 ® —u(p),
7 ® = v(p).

The essential feature of Feynman rules is that the energy-momentum conservation law must be
obeyed at each vertex.

1.2 Feynman amplitude

Based on the Feynman rules in QED that we had already introduced, we can write down the
Feynman amplitude for the scattering process of e~ +e* — = + pt in Fig. (1.1) as follows:

Figure 1.1: Feynman diagram of process et + e~ — ptp~ in QED



M = [ (1) (ier")us (p)] [% - gq—} 0 () (ier Yo (K]
. —“‘q—f)em (s (o (K] + S50 ) B ()

We have denoted the four-momenta and spin indices of e, e, u=, u™ to be (p, s), (p', s), (k,r), (K',r),
respectively. Using the Dirac equations

?Us(p) = meus<p)a
Uy (D) = —mevy (p'),
the Feynman amplitude becomes:

62

M = ?[@s' (") us(p)] [t (k) y,0m (K)).

You can see that M is now independent of £&. The squared amplitude, therefore, have the form

™

e

M? = MIM = =[50 ()7 us(9)][ias (P)7" 05 ()] [0 (K ) (R)] [ (k) 00 ()],

)

In the case of unpolarized beam, we have to average the cross-section over the initial spin state
since we do not know the initial particles spin. However, we must sum the cross-section over the
final state because we accept all final particles in the detector and do not measure their spin state.
Summing over the spin states, vy (p')0y(p’) can be replaced by y — m.. Similarly for another
electron and the final muon. Now look at the squared amplitude, we see that it is a scalar and can
be rewritten as traces. So we have:

= Mol = 3 S IMP? = LTI = me (p moy] Tr{( -+ m, )+ )

spin

- 8q_6“4[(p.k’)(p’.k) + (k) (k) +mi(p.p) + mg(kK) + 2mgmy),

where the trace above were tricked as follows

Tr((y — me)V(p + me)y"] = Tr(f+'py”) — Tr(mey'mey”)
= phpsTr(v*y"y"y") = miTr(y")
= phpsd(g™ g™ — g*P g™ + g™ g"%) — AmZg"
= 4(p"p"” — pp'g" + p'p* — mg"),

TT[(%/ + mu)’}/u(k + mu)%/] = TT(M’YM%”YV) - Tr(mu'}/umu')/u)
= KK Tr(Yavuvsw) — moTr(uw)
= KK 4(gapdpy — GasGu + JovGus) — MiAGu
= 4(k K, — K'kgu, + Kk, — migw).



Figure 1.2: The process ee — pp in CM frame

Let’s introduce a quantity out going angle § = (k, Oz) and work in Center of Mass Frame (CMF)
Fig.(1.2). Note that we shall use the approximation me = 0. In order to write the squared-
amplitude in term of energy E and angle #. We must derive some identities below:

(p.k =p k' = E? —k.p = E? — |p|[k|cosf = E? — E|k|cos®,

p.k' =p .k = E* + k.p = E? + |p||k|cosf = E? + E|k|cosb),

¢* = (p+p)° = (2E,p —p)* = 47, (1.10)
py = E*+|p|* = B* + E? = 21,

|k = B+ K

The squared amplitude then reads

4
IMo|* = % (E*+m?) + (B — mi)cosQG] : (1.11)

1.3 Some distributions of e~ +e¢™ — u~ + u* process

1.3.1 Total cross-section

Based on [2], the cross section in the center of mass frame for two final-state particles is of the
form:
do 1 [k
dQ  64n2s |p|

Mo, (1.12)

where /s = 2E is the total energy in CM frame.

do |k|€4 2 2 2 2 2

Integrating the differential cross-section over all directions, we can derive the total cross-section:

do ke s 1 5
= | —=df) = E+ = 1.14
= ] aa™ T ks ( oM (1.14)

Fig.(1.3) indicates the dependence of the total cross-section on /s = 2F which is the total energy
in CM frame. As you can see, the plot begin at /s = 2m,,. That is a reasonable result since based
on the energy conservation, we must have the total energy at least equal to the mass of a pair of
muons in order to create these particles.




1.3.2 Angular distribution of muon

The angular distribution is the important distribution, it helps us to predict which angle is more
sensitive to the muon. So that we will know where to put the detectors. From Eq.(1.13), we easily
obtain the angular distribution

do ke 2 :
5= m/o [(E2 + mi) + (E% — mi)cosQQ} sinf.dp,
= [ke® [(E2 +m?) + (E? — mQ)coszﬁ} sinf
1287 E5 # # '

Fig.(1.4) illustrates the angular distribution of muon where the total energy is 20 GeV. We can see
the plot is symmetry between the backward and forward side, and it has two peaks at # = 0.95 (rad)
and 6 = 2.19 (rad) corresponding to the two most sensitive angles.

=100 ] 80| 1
800000 |- ]
[ ] 60 - R
3 600000 | 1 =
s [ 1872 40| 1
400000 [ ]
200000 | ] 20 1
O L - . 0 L L L . L L L L L L L L L L - L L L L L L L L L - L L L
0 1 2 3 4 0.0 05 1.0 15 20 25 3.0
s (Gev) f(rad)
Figure 1.3: Total cross-section Figure 1.4: Angular distribution of muon

1.3.3 Transverse momentum and longitudinal momentum distributions
of muon

In general, if we wish to change from distribution f(x) to distribution g(y), where y is the function
of x, we can use the formation

(1.15)

g(y) =>_ f(x)

dz
In Eq.(1.15), the term ‘dx / dy‘ is called the Jacobian. It must be understood that x; on the right
handside should be written in terms of y via the inverse function.

The next popular quantities are transverse and longitudinal momentum which are denoted by k;
and k;, respectively. First, the transverse momentum reads

Ky
0, = arcsmm,
ki = |k|sinf = k, (1.16)

0y = T — arcsin—.

'k

10



The Jacobians are derived as:

e
dky

do
dky

1
- =
|k||cosd|

de
dky

1 1
k|1 —sin?0,  /]k[F— k2

Using Eq. (1.15) above, the transverse momentum distribution becomes

0=061 0=062

do _g~dol A0 )| k(2B K)o
dkt i do 0=0; dkt 0=0; 647TE5\/ ’k|2 - ]{?,52

Similarly, we could find the longitudinal momentum distribution of muon.

do et
— E2 2 ]€2>
Ay~ 128nE° ( R

(1.17)

(1.18)

(1.19)

where the longitudinal momentum is defined as: k; = |k|cosf. Fig. (1.5) show the transverse and

longitudinal momentum distributions of muon in the case that CM energy is 10 GeV.

W7 T

300 (-

|

pb
GeV

200 -

do
dkx(

100 -

ki(GeV) ki(GeV)

Figure 1.5: Transverse- and longitudinal-momentum distribution of muon
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Scattering process ¢~ +e¢" — u~ + p in Standard Model

2.1 An overview of Standard Model

Standard Model (SM) is the most successful theory ever which is able to describe three of four
fundamental interactions: electromagnetic, weak and strong interactions. Gravity interaction is
not considered in this model. This model also helps us to classify all currently known elementary
particles which are shown in Fig.(2.1)!. You can see that there are twelve particles of matter
(quarks and leptons), governed by three forces that are caused by the exchange of four Gauge
boson particles (photon, Z, W boson and gluon). The other particle in SM is the famous Higgs
boson, which is thought to give mass to the other massive particles. The paramount property of
SM is using the local SU(3)c ® SU(2), ® U(1)y gauge symmetry. Experiments with high energy
particles at accelerators have completed our knowledge about SM with amazing precision.

Standard Model of Elementary Particles

three generations of matter
(fermions)

iss | =24 MeVjc? =1.275 GeV/c? =172.44 GeVjc* 0 =125,09 GeV/c?

@ @I-@I| @[ @
up charm top gluon Higgs
B —
=4.8 MeVjc? =95 MeVc® =4.18 GeV/c [
‘OO |-0 | @
down strange bottom photon
!

=0.511 MeV/c* =105.67 MeV/c* =1.7768 GeVfc® =91.19 GeV/c*

-1 -1 -1 o
112 e 12 p- 12 T 1 y

electron muon tau Z boson
[
<2.2eV/c <1.7 Mevic* <15.5 MeV/c’ =80.39 GeV/c*
?,fz Ve j/z vl.l (1]/2 VT Tl W
r?le%cttrri%g ng:}i'siﬂo neLtJ?ll'Jino Whboson

Figure 2.1: Elementary particles in SM

IThe source for the picture is from https://en.wikipedia.org/wiki/Standard _Model
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The Lagrangian of SM is invariant under that transformation and have the form:
L= 'Cfermion + 'Cgauge + 'Cgf + 'CHiggs + ‘CYukawa + /Cghost' (21)

In this chapter we only work with three first terms of SM Lagrangian, the other terms we will

consider in the later chapter. Another thing to note that we only focus on the transformation of
SU(2), ® U(1)y since we do not have strong interaction in ee — pf1 process.
One of an essential point in SM that you must keep in mind that left- and right-handed fields have
different transformations because left-handed fields and right-handed fields are arranged in doublet
and singlet, respectively. Therefore, the right-handed fields are not affected by the transformation
of SU(2)r, group. Left- and right-handed under the transformations of SU(2);, ® U(1)y are:

i

Y — Y, = exp ig%ai(x> + ig/gﬁ(x)} U,
(2.2)

Y
YR — YR = exp ig'gﬁ(X)} YR

Where 7¢ are the Pauli matrices and they are also the generators of SU(2)z. Y is the hypercharge
which has different values for each particle according to the Gell-Mann Nishijima formula:

Q:P+§, (2.3)

with @ is the charge of the particle. I? is the eigenvalue of 73/2 and it is called the isospin.

2.1.1 Fermion term of SM
The first term of SM Lagrangian in Eq. (2.1) is:

Efermion = Z Z&me[] + Z “Z}waR (24>
f f
The general covariant derivative is:
Y T WA
D,=0,— ZQIEB“ — ngW# — zgsGﬂg (2.5)

Where A* stand for Gell-Mann matrices and G, Wﬁ, B, are the corresponding gauge fields of
SU(3)c, SU(2)L, and U(1)y, respectively. But these gauge fields are not physical fields (expect
for G but we do not talk about it more) and we call them as weak-eigenstate basic. The mass-
eigenstate basic contains the physical fields which could be written as combinations of gauge fields:

1 .
Wi = SV )
Z, = ewW?3 — swB, (2.6)

AM = sWWj’ + CwBM

Here, we have denoted cy = cosfw and sy = sinfly, where 0y is the weak mixing angle defined
as Oy = arctan(g'/g).

13



2.1.2 Gauge fields in SM
The SM gauge field Lagrangian is of the form:

1 v 1 a apy
Egauge = _ZLF/_WF# - ZWHVW w. (27)

W, and F),, are called the field tensors corresponding to the gauge fields of SU(2)z and U(1),
respectively.

{W;}V = 02 — 0, W + gea WIWE, (2.8)

F,., =0,B, —0,B,.

2.2 Vertex factor of Z-Boson

Note that the interaction term of Z boson and fermions is hidden in the kinetic terms in Eq.(2.4).
Since Z,, is a linear combination of W), and B,,, we will work with the part that contains the gauge
fields W2 and B, only. Let’s start with Lagrangian in Eq.(2.4).

'Cfermion o Z.'IZL’YMDM@DL + Z.QZ]R’YMD;/‘ﬁR (29)
_ 3 Y . Y
Dy <—iQ%W3 - i9,53u> Y, + 1pry* (—19 =B ) YR. (2.10)

Now we want to find the terms contain the Z boson field, thus we have to change the weak- to
mass-eigenstate basic. From Eq. (2.6), we can deduce the inverse transformations:

3 _
WM = sz# + SwAu, (211)
BH = _SWZ,u + CWA,u-
Inserting (2.11) into (2.10) and only keep the terms with Z boson field, we have:
- i 73 Y i
'Cfermion D ZwL’VM __g C%/V_ - SIQ/V_ Zu wL + “/}R’y _gSW QZ]R (212)
cw 2 2 e 2

Since we do not have neutrino in the process we care about, hence we only keep ey in doublet
v = (Ve e) and, of course, e in singlet ¥g. Using Gell-Mann Nishijima formula in Eq.(2.3),
we are able té obtain hypercharge ¥ = —1 and Y = —2 for left- and right-handed electrons
respectively. The interaction term of e~ and e™ mediated by Z boson could be written as:

L5l = g1 Z,(E"er) + grZu(erer). (2.13)

Where g;, = 9 (—5 + 5124/) and gg = is%y. For any Dirac spinor ¢, we can always write it in
Cw w
1—7° 1
term of: ¢ = Py + Pryp = 27@0—1— 7

1. Based on that identity, Eq.(2.13) can rewrite as
L, _
Liel =& (guy"Pr+ gry"Pr) €2, = 52 (v = gav'y’) e, (2.14)

14



where gy = g1, + gr and g4 = g, — gr. Thus, the vertex factor of eeZ is as follows:

et

= % (gv7" — ga7"".) (2.15)

€

2.3 Propagator of Z-boson

To find the propagator of Z-boson, we have to insert (2.11) into the gauge field Lagrangian in (2.7)
and pull out the kinetic term for Z,. Notice that we just interested in the Lagrangian of free Z,
only. So we will do step by step to find what terms contain Z,, only, we start with

Fl“’ = 8,uBu - 8,,3# = 8H(—SWZ,, + CwAl,) — éL(—sWZ# + CwA#) (216)
1 1
= —ZF/ﬁFZ“” = —ngv(aﬂzy —0,Z,)(0"Z" — 0" ZM). (2.17)

We have used the notation F 5, for the terms of F},, that contain Z, only. Similarly, we can find
the terms with only Z, of W :

1 1
—ZW,fVaWZaMV = —Zcﬁv(auzy -0, 7Z,)(0"Z" — 0" Z"). (2.18)

Thus, we can obtain the Lagrangian of free Z,, only:

1 1

Lhin — —ZFiFZ“” 4Wﬁ“WZa“” (2.19)
1 14 v
= (0.2, ~ 0,2,)(0" 2"~ " 2"). (2.20)

However, this is not yet the complete Lagrangian of free Z,, we have to add two more terms, which
are the mass term of Z, and the gauge fixing term. In the first chapter, we do not have the mass
terms since photon is massless,
1
28z
Based on the Lagrangian above, using the same manner which has been introduced in chapter 1,
We are able to derive the form of the propagator of Z boson D,,(q) as:

= Lz = _%L(auzv = 0,Z,)(0"2" = 0" Z") + %mZZZuZ“ (8NZH>2' (2.21)

1 Quly
2 _guu+(1_£Z)#—

Du(q) = —
: ¢> —m ¢ — Ezm?,

(2.22)

Let’s have a look at the above propagator, the denominator becomes zero when ¢*> = m?% which
will cause the divergence in the total cross-section later. This is because of the approximation that
we make when we consider only the free Z, Lagrangian. So if we take many higher terms into
account, we will obtain the corresponding Breit-Wigner propagator in Feynman gauge:

_gpl/
D, (q) = , . 9.93
pr(a) @ —mZ +ilzmy (2:23)

Where I'; is the decay width of Z Boson and its experimental value is approximate 2.452 GeV.
The manner to find it by theory will be introduced in later section.
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2.4 Feynman amplitude

Basically, the Feynman rules in SM is similar to that of QED. Except for the internal line since
we have one diagram in addition. The process currently has two mediators which are illustrated
by two Feynman diagrams in Fig.(2.2) The Feynman amplitude can be write down as:

Figure 2.2: Feynman diagrams of process et +e~ — putpu™ in SM

M =M, + My, (2.24)

Where M, and M are the Feynman amplitude for the diagram which is mediated by photon
and Z boson respectively. They have the form:

=[5y (p)(—ier* I 1y —ieny” v (K :
M, = [00 () (—ier)us(p)] ( qg) [ (k) (—ien” o ()] (2.25)
Mz = | o (p/)%(gv’Y“ - gAV“VE))US(p)} <_q2 — mQZgli z'Fsz>

_ [ Y 5
x [Ur(k)§(gv7 — g ﬂw(k’)} : (2.26)
After long calculations, we can derive the squared-amplitude as follows:

1
[(Mol* = - > MM =M + (M) + [ Ms], (2.27)

spin

where the explicit forms are:

M = s | 590000 + ) (k)G R)

P3G K ) R) — b (BB K) + 504K F)
+3ARGK) + ptal(0f) ~ Gmdahoa)]. (2.28)

M = e R K0 + 267 () )

+2g5(p-K) (W' k) = 295 (p-F) (0 K') + 2migx2/(p'p’)]

T 26 (0K 01K) + 265 (0K) (0K

s(s —=m% —il'zmyz)

+203(p K ) (k) = 203 (p-R) (1K) + 2m2 g% (p.0)) | (2.29)
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|Ms|? = Z—i [S(p.k')(p’.k) + 8(p.k)(p' K + Smi(p.p’) . (2.30)

Similar to Chap.1, now we will work in CM frame and re-use the results in Eqs.(1.10). From that,
we can obtain |Mj[?, |[My|* and |M;|*%

E2

My ]? = ) T [(95 +92)° (B + [k[cos®0) + (gy — ga)m., + 849y Elk|cosd|
z ALY/
(2.31)
2 8¢?E°(s — m3) 2 (2 2 2 2 2
|IM,y)? = ST = n )+ ol g (E + |k[*cos”0 + mu> +2g% E|k|cosf | , (2.32)
zZ ALY/
16e* E?
Ml = 25 (E2 +m?2 + yk\%os?e) . (2.33)
s

Let’s now denote y = m’/E?* and then introduce the factor xo to make the squared-amplitude
shorter:

1 e oo
ESCRY 2.2 — .2 IXO )
Xo(s) = — — G mZ_) +17m3 ) (2.34)
4e2(s —my +il'zmy) s —my e
212 5 = ——Rexo(s).
(s —m%)2 +15m3 s
For convenient, we will denote G (s),G1(s) and G4(s) as follow:
Gi(s) = (g5 + 92)*[x0(s)* + 297 Rexo(s) + 1, (2.35)
Ga(s) = [(gs + 92)° + (gv — g)e] [xo(s)]* + 203 Rexo(s) (e + 1) + po + 1, (2.36)
Ga(s) = 29307 Ix0(5)* + gARexo(s). (2.37)
Then, we will be able to write down a more compact form of [M,]?:
, 16eE? 9 9 9
IMo|? = —5— [G1(5)|k[*cosd + Gy (s)E® 4 4Gs(s)E|k|cosd] . (2.38)
2.5 Some distributions
2.5.1 Total cross-section
First, we have to derive the total cross-section. Using Eq.(1.12), we can find
do _ ﬂ [G1(s)[k|*cos?0 + Ga(s)E? + 4G (s)E|k|cos] (2.39)
dQ ~ 16m2Es? 1 ? ’ ' '
Integrating over all values of cosf and ¢, we can obtain the total cross-section as
e'lk| [1 2 2
0T = s gGl(s)]k| + Go(s)E7| . (2.40)

In Fig.(2.3), the total cross-section of SM and QED are almost the same in low energy range.

However, because of the factor m in [Mo|?, we see the peak at about 90GeV, this is
A z""z

also the sign of Z-boson.
About the angular distribution, afer some simple calculations, we obtain:
do e[k

7= 3B [G1(3)|k|200829 + Go(s)E* + 4G3(S)E|k|cose} sinf (2.41)
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Figure 2.4: The angular distribution, /s = 20 GeV (left) and /s = 200 GeV (right)

2.5.2 Forward-backward asymmetry

In the angular distribution, which is not similar to QED, the forward- and backward-side are not
symmetry. And we can see it is clear if we enhance the initial total energy. In order to see how
asymmetry it is, we introduce the forward-backward asymmetry(App) as follows:

App= 2= (2.42)
O +0pB or
where:

Fdo el 15 o :

o :/0 0% = 37 Es [gGl(s)lkl +Ga(s)E +2G3(3)E|k|} , (2.43)
"do e'lk| [1

T a0 3G ()l E? —2G3(s) Elk 2.44
7 / 6" = &rEs [3G1(5)| |+ Ga(s)B7 = 2G5(s) B I], (2.44)

. OFB . 6G3(S)m
= Arp = or  Gi(s)(1 —p) +3Gs(s)’ (2.45)
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Figure 2.5: App with respect to /s

Fig.(2.5) shows the value of the forward-backward asymmetry. In the case of low energy, we can
see App approximate zero which is the property of QED. Thus, we are able to consider QED is
just a special case of SM.

2.5.3 Transverse and longitudinal momentum distributions

Using the same manner as we have mentioned in chapter 1, we can find the transverse and longi-
tudinal momentum distributions are of the form:

do do do o s
e o B Loy, | dhelomy,| G (s)([k[* = k7) + Ga(s) E* 2.46
dk; Z d oy | dhi|y_y | ATEs2\/|K]> — k7 (G (s)([k[* = kf) + Ga(s) E7] (2.46)
dO- do‘ dg 64

dky = d0 gy, | dkr|oy, SWESZ[ 1)k + Ga(s) E® + 4Gs(s) Bk (2.47)

Figures (2.6) and (2.7) indicate the transverse and longitudinal momentum distributions with

Vs = 200GeV.
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Figure 2.6: Transverse momentum distribution Figure 2.7: Longitudinal momentum distribution
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Scattering process ¢~ +¢e¢" — u~ + put in SMEFT

3.1 An overview of Standard Model Effective Field The-
ory(SMEFT)

Although Standard Model has much success to describe strong and electroweak interactions, there
are still many issues that have not been solved. Such as right-handed neutrinos, the mass of
neutrinos. Thus many physicists believe there still have a new physics beyond the SM to explain
such phenomena.

There are many ways to establish Models beyond SM, and all of them have the critical rule is
changing the Lagrangian of SM with addition terms. SMEFT is not an exception to that rule,
which has considered SM as a part of an effective theory and using higher dimensional operators
in addition. Thus the SM is considered as the leading order terms of an exhaustive theory

In SMEFT, we introduce one new parameter (A), which is the typical energy scale of SMEFT.
Notice that in SM, the typical energy scale is the Electroweak Scale v = 246GeV. A field theory
valid above A has to obey the requirements which have been listed in [3]:

e Its gauge group should contain SU(3)c ® SU(2)r ® U(1)y of the SM.

e All the SM degrees of freedom should be incorporated either as fundamental or composite
fields.

e At low-energies, it should reduce to the SM, provided no undiscovered but weakly coupled
light particles exist, like axions or sterile neutrinos.

The Lagrangian in SMEFT is given by
1 1 1
_ (5) ) (5) (6) ~(6)
Lsyerr = Lsm + N Ek Cy'Qy + A2 Ek Cy'QL +0 (A3) : (3.1)

where Lg)s is the part of the SM Lagrangian which is renormalizable. In the rest terms, ngn)7
C,i") stand for dimension-n operators and dimensionless Wilson coefficients, respectively. The
appearances of the energy scale dimension-one A in many terms help us to reduce the dimension
of those terms become dimension-4 which is the inevitable feature of Lagrangian Density.

In this thesis, we shall work on dimension-four and -six operators only and ignore all higher
dimension operators. The dimension-six operators were firstly introduced by Buchmuller and
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Wyler [4] in 1985. Such operators must be invariant under Lorentz and gauge transformations but
in Ref. [4], they do not totally independent of each other and some of them violate the baryon
number conservation. Therefore in 2010, the updated list of dimension-six operators was newly
revised by the Warsaw University group [3]. They have a comment that I think it interesting: "It
is really amazing that no author of almost 600 papers that quoted Ref. [4] over 24 years has ever
decided to rederive the operator basis from the outset to check its correctness.”

3.1.1 Notation and conventions

We will mainly based on the notation and conventions of Ref. [3], which have introduced some
main things:
The form of SM Lagrangian before Spontaneous Symmetry Breaking is

1 1 1 1
Lsn =— ZGI?VGA’“’ - ZW;{VWI“” = 4 BwB" + (D) (D*p) + mPplp — §A(90*s0)2

+1 (Z]Dl + elpe + qlpq + ulPu + JlDd) — (fFeego + qUuup + qladp + h.c.) , (3.2)

where I ,, ¢ are the Yukawa couplings. The matter field and all their corresponding Hypercharges
are listed in Tab. 3.1

Fields Notations | Hypercharge Y
Left-handed lepton doublets v -1/2
Right-handed charged leptons €p -1
Left-handed quark doublets qgj 1/6
Right-handed quarks ugy 2/3
Right-handed quarks ds -1/3
Higgs boson doublet @ 1/2

Table 3.1: The SM matter content

Note that the indices j = 1,2, a = 1,2,3, p = 1,2, 3 stand for isospin, color and generation
indices, respectively. In Eq.(3.2), the notation $’ stand for €;;,(o*)*, where €, is the Levi-Civita
tensor with €15 = 1. For the case of covariant derivatives, there is a deviation from Chap.(2) which
is the sign convention:

D, =0, +igB,Y +igW.S" +ig,G T4, (3.3)

1 1
The generators of SU(3) and SU(2) are denoted by T = 5)\A and ST = 57'1 , respectively. For

later convenience, we will use the notation:

@Tiﬁuap = 4! (Du — gL) ©, @Tiﬁicp = 4! (’/‘IDM — gLTI) Q. (3.4)
The gauge field strength tensors and their covariant derivatives are of the forms
Gﬁu = (‘LG’;‘ - &,Gﬁ - gszBCGEGSJ (DpG/W)A = apGﬁu - gszBCGfGSw
W), =0.W, —o,W] — g’ wIwr, (D W) =0,W, — g KWW L,
B, =90,B,—0,B,, D,B,, = 0,B,,. (3.5)
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All dimension-six operators, which were listed in [3], are introduced in Table (3.2) and Table (3.3).
Those operators must independent with each other and have to obey the Standard Model gauge
symmetries. Before go to next section, one convention will be used that we will re-denote the
Wilson coefficients as

C’VVilson
A2 = CWilson7 (36>

1
it leads to the dimension-"minus two” of notation Cyy;s0, and the approximation — = 0 becomes

A4
O%Vilson =0.

X3 ¢® and ¢*D? P’
Oc fABCGAuGBpGCu Q. (cp*go)g Qe (@TSO) (pere)
Q(; fABCGAVGBPGCH QWD (QDTQO) |*:| (QOTSO) ng@ ( 90) q, p
Ow ]JleVWJpWKM Qup (ngD”go) ((pTDNQO) Quay (‘PTSO) (@pdr )
QVV IJleuWJpWKM

X? 2 1/}2X(p ¢2¢2D
Qe | eleGh G | Quv | oe)rToWl, || QY | (#liDup) @01
Quc ploGa, G Qe | (L,0"e,)pBuy QY | (¢TiDLo) T, w1,)
Qew QOT(PWJVWIW Qua | (Gpotr4 ur)SOG Qe (‘PTZ up)(Ep'er)
Qv | PleWLWI | Quw | (Go™u)T dW], | Q4 | (¢ iBy0) 010
QyB QDTSOL?WBW Qun (quwur)@B/w 4(5(1) (@Tlﬁ )((IP VMC]r)
Qui ol oB,, B Quc | (@0 74d)pGa, | Quu (@23 o) (7" uy)
Qews SOTTIQDVY;{VBW Qaw (QPJ#VdT)TIQOW;{u Qypd ( B ‘P)(_zﬁudr)
ngWB SOTTISDW;VBW QdB (ijalwdr) SOB;W ngud ( ) ( 7p'7“dr)

Table 3.2: Dimension-six operators other than the four-fermion ones, (taken from [3]).

3.2 Deviations from the Standard Model

There are many relations of SMEFT different with that of SM. Therefore, before calculating the
total cross-section for process e™ +e~ — ut + ™, we have to derive many new and basic equations
when we have dimension-six operators in addition.

3.2.1 Higgs mechanism

The Higgs mechanism in SMEFT with dimension-six, in addition, was introduced in [5], this
section shall follow that paper with more unambiguous calculations. The Lagrangian terms which
are relevant to the Higgs field read

A
Ly = LM+ L = (Do) (DFp) +m?(phe) — 2 (#'e)?
1

+ C? () + C* (T )0l 0) + C#P (0" Dyp)* ("D ). (3.7)
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(LL)(LL) (RR)(RR) (LL)(RR)
Qu (Lol ) (Lsy™y) Qee (Epvuer)(Esyter) Qle (Lpyulr)(esyer)
t(z}z) (Qp’m%)( ) Quu (EPWL“T)(ESVMW) Quu (ZPVulr>(@s’YMut>
S @nre) @ a) | Qu | (dud)(datd) || Qua <zpwzr><&swdt>
QY | (Gm)@e) | Qu | E@me)@aru) | Qo | (Grua) (@ er)
QY | Gy 1)@ a) || Qua | (@uen)(diydy) W (@) @ uy)
QW | (@) (diy dy) & (@ TAg) (@A TAuy)
Q) | (@, T4u,) (dy"TAdy) Q%f} (@ vuar) (dsyPdy)
qu) (QP'VMTAQT)(J 'V“TAdt)
(LR)(RL) and RL)(LR) B-violating
Qledq (Ber)(dsq)) Qdug e*Me ()T Cull] [(¢27)T ClY]
Q(u)qd (@ur)eji(qidy) Ququ e el (g57) T Cgl¥] [(u])T Cey]
Qgi)qd (ggTAur)gjk(quAdt) Qaqq € mgjngkm( )ch ] [(QZm)TClﬂ
Qlequ  (Her)en(@hue) Qduu O‘M[(d{')‘)TC'UE] [(u2)" Ce,]
Quequ | Bouver)ejn(qho uy)

Table 3.3: Four-fermion operators, (taken from [3]).

The Higgs field after Spontaneous Symmetry Breaking (SSB) in Unitary gauge is as follows

o= 25 (v 0n). 9

where v stand for vacuum expectation value and H is the Higgs field. From the Lagrangian above,
we can see the Higgs potential is of the form

A
V(p) =m*(¢'0) = 5(¢'9)* + C?(4T0)° (3.9)
Finding the solutions for the differential equation g(w) = 0, we obtain
2
A+ VA2 —12C%m? A — VA2 —12C*m?
Ton) — Ton) —

We only use the second solution since the first one will lead to a divergence when C¥ — 0. We
will use the approximation (1 +x)" = 1+ nx + O(2?) for the small value z. This approximation is
useful and will be used many times later since our coefficients C® are considered as small values.
Thanks to that approximation, we are able to get the vacuum expectation value

m? 3 C*m?
= /2(¢Tp) \/_ SR (3.11)

The next thing we wish to figure out is the physical fields of Higgs boson and the fields of Goldstone
boson. Thus, we must obtain the Lagrangian containing bilinear terms of those scalar fields.
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Expanding the Higgs doublet ¢ around the vacuum, we have:
o+
¥ = 1 ;50

—(@w+ H+1D

ol )
The field ®* and ®° are still the Goldstone boson fields in SM, we will derive the new versions of
those fields later in this section. Back on our work, we now try to pull out all scalar bilinear terms
from Eq.(3.7) for each operator. For the later calculations, we shall expand one operator each
time, since the Lagrangian from now on is too long to expand all terms simultaneously. Moreover,
all the total derivative in Lagrangian shall be neglected since they do not affect our results.

(3.12)

q)—l-
1
T( DM T(AH 5) — - —_ ;PO 1z 1
(D)1 (D"9) > 0,) (0%0) =0, (87 J5(H —i97)) o Lapa
= (9,07)(0"®T) + %(@H@“H + 9,00 ®Y), (3.13)
1 ®*
+ _ - _ B0
(7o) = (0 - ia9) Lo
o1
= o Pt + %(v2 + H? +20H +0%) > 5H2,
1
(¢Tp)? D Z(v2 + H* +20H)* D ;v2H2, (3.14)
(pTe)® D é(qﬂ + H? 4+ 20H)® D %#H{ (3.15)

(¢79)0.0" (9" ) 8# [(¢70)0" (07 0)] = D¢ 9)0"(¢70) D =0ul¢T9)" (¢ ")
—v*(0,HO"H), (3.16)

(¢ D) (¢ Dlp)

) {qﬁaucb— + %(v + H +i®°)(0,H — i@uéo)} {q>—auc1>+ + %(v + H —i®°)(0,H + i@ufbo)}

) i&a“cpoa“«bo - inG#Ha“H. (3.17)

Thus, the bilinear terms of the scalar fields read

1 1 1 3 15
L= (1 + 50@%2 — 20@%2) (0,H)* + (§m2 - ZU?A + gcsow) H?
1

5 (1 " gw) (0,8°) + (9,87)(9"2™). (3.18)
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In order to obtain the physical fields, we need to normalize the kinetic terms into the canonical
forms. The powerful way to do it is rescaling the fields as

h= \/1 + %Ow%? —20°02H = (1 + icwqﬂ — C’“”DUQ) H, (3.19)
0 — 1 0 1 D, 250
G’ =4/1+ 50@%2@ =1+ Z(J*" v=d°, (3.20)
G* = ot (3.21)

We have introduced the notation h as physical Higgs field, and G°, Gi as Goldstone fields. The
1
mass of Higgs boson, denoted by my,, obey the gauge symmetry form — (8 h)%— §mhh2 Therefore

1 3 15
1 -m? — v\ + —C*%*
_Igp2 = 2 4 8 (3.22)
h — 1 . .
1+ §C"PD112 — 20¢Hy2

\)

Using the the approximation 1/A* = 0, we will have the Higgs mass in term of m or v

2

m
m2 = 2m [1 ~ 32 (307 - ANCPH 4 \CPP) (3.23)
= \? =t (30“’ — 2XC¥H + %C@D> : (3.24)

3.2.2 Mass of W and Z bosons

In this thesis, we do not have strong interaction in the process ee — puu, so the Lagrangian of
QCD is out of our discussion. The Lagrangian that relevant to free gauge fields reads

Lpw = Loyt + EEW = Lo+ Quw + Qup + Quwp + Quo + Qup

1
= —LWLWI — LB, B 1 (D) (D) + O (ol )WL, W 4 O%P () B, B

+ OB o)W, B + O (01 0)O(¢"0) + C#P (0! D) (0! Dyp). (3.25)
Similar to above subsection, we need to find the bilinear terms of gauge fields from each operator

(#'0)O(p'p) D v’0v* =0, (3.26)

e > 1 010) s (0] ) aswee ) ()

U4

- = ( WA 4 g2 B, B — 2gg’B“W3>. (3.27)

(DMQO)T(D“QO) —22<p TIWI Wk z2g0 TIWIzg'YBMgo

— zg’ngYB#zéTIWI“cp —ig'0'Y B,ig'Y By
2 2

g (Y
D GUWWH L WIW) 4+ = (" WiW™ + ¢ B, B — 299' W, B").
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In the calculation above, we have used the identity 7/77 = 6;; 4+ ie;;x 7" and substitute the value
of hypercharge of Higgs field by 1/2. Then, The bilinear part of Lagrangian for gauge fields in
Eq.(3.25) becomes

1 1 1
Low == (1200 ) Wi, W' — 2 (1= 2042) B, B — ~CoV P W, B
O w4 O <1 + 1&0%”) (PWiw & 2B, B" — 299 B*W})
g z s\ 2 z . A

(3.28)

Now, we introduce the new rescaling fields in order to normalize the kinetic terms become canonical
forms. The new fields’ appearances have differences are that they have overhead bar

Wl = \/1—20eW 2! = (1 . C“’W02> w!, (3.29)
By = V1-209002B, = (1= C*%0?) B, (3.30)

There is a caution that the gauge invariant property must be obeyed by those transformations.
Thus, it is necessary to rewrite the covariant derivative in the form of

Dy =D, =0, +ig B,Y +igW.T", (3.31)
where g and ¢’ have the form
g= (1 + C’“’W02> g, 7= (1 + 0993112) g, (3.32)

as consequences of above rescaling steps. The Lagrangian in Eq.(3.28) which is rewritten in terms
of B, and W, is

ilinear 1< T v 1 - DUV 1 DUV, v U2_2 1l 121%
Lo = = W, W = 3B B — SCHVBGR B 4 — = (W, W+ W)
v? 1 e _ L
+ 3 (1 + 51;20@) (FPWIW 4 ¢? B, B" — 2gg'W3B"). (3.33)

Now, we introduce
e = CVBy?, (3.34)

From Eq. (3.33), we can find the physical field of W boson as

+ 7171 Y172
Wk = — (W i), (3.35)

Sl

and the corresponding mass

1
my = QQU. (3.36)

The other gauge field in mass eigenstate that we need to identify is neutral gauge boson. Note

that this time is not the same with charged W boson since we have —QCWWBUQBWWSW in the
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Lagrangian. Thus, our mission is not only diagonalizing masses but also reducing the kinetic term
to canonical form simultaneously. Based on [5], we have the mass matrix of the form

w3 1 —€/2 v sw [ Zu
(5) - (o 1) (0 ) (3)

where the @ is mixing angle
5 /2
tand = é + g (1 - g_-) . (3.38)

From now on we will use the notations ¢y and sy for cosf, sinf. After some simple calculations,
we obtain

g 6§/g2_§/2 g/ 65@2_@/2
Ciyp — —— ]—__Tf s Sy —m e/ 1+_?, — . (339)
YRR ( 299°+9° YVEre 209+

Substituting (3.37) into the Lagrangian (3.33), we are able to get the masses of the neutral gauge
boson

1 €qq 1
mz = 5\ G* + g (1 = _gf’g,?) (1 + ZCS"DUQ) , (3.40)

2
m., = 0. (3.41)

The mass of gauge bosons in this thesis was derived independently before the publication of the
paper [5] in April 2017. For the case of Z boson mass, O. Nachtmann, F. Nagel, M. Pospischil
have already introduced the way to diagonalise the mass matrix also transform the kinetic terms
into canonical forms [6], but their results were not correct since they used the list of dimension-six
operator derived by Buchmuller and Wyler [4] in 1985 which have many redundant operators.
But when I used that manner to find the Z boson mass with the updated list of dimension-six
operators. It is turn out that my result agrees with that of [5]. But I do not introduce it here
since the conventions and notations of that method are complicated so that it can create many
confusions.

3.3 Coupling constants of the vertices in e” +e" — u~ +pu™

3.3.1 Vertex factors of lepton and gauge boson

Since photon and Z boson fields usually appear together. Thus, it is convenient to find the coupling
of photon and Z boson with lepton simultaneously. First, the Lagrangian containing the mixed
terms of leptons and gauge fields reads

I T o ]
L= _ZW,L/WIW - ZBWBW +1 Z(iﬂLlD?ﬂL + YrDvr) + CW (I,0" eT)TIgoW/fV

+ CP (1,0 e, )pB,, + CY (o' D,0) (L,y"1,) + C# (o1 DLe) 1,71 4M1,) + C¥(¢1iD,) (e e, ),
(3.42)
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The Lagrangian is too long to write all terms simultaneously, thus we must find the contribution
for each operator:

i Py, D ey, (Z?/BHY + Z?WJTI> Yer
D iég {ig’Y [((—E/Z)CW —sw) Zu + ((—€¢/2)sw + e ) AM}

—i—ig[f [(CV‘V + (e/Z)SW) Z,+ (SW — (e/2)cv—v) AM} } rer
- 9° 9% €3” i o9 s
=€y, —§CW —76 — E + Eg_ + Z — §CW 29 — 65 AM YEeL, (343)

WP O ieg (19'B.Y) +'er
= ienigV | (—¢/2ew = sw) Zu+ ((=¢/2)sw + ew) 4] 1¥en

- - €g® g cg _
=1er { —ig —e+ - = | Zut (1———)A vHeg.

Thus, the contribution of operator iZ(&LI_DQﬂL + &RI_DwR) in vertex eey is

7: B glz /I/ B glz
i€y, —§CW Qg’—eg Y| erA, +ieg —écW Qg’—eg 7| erAy

i g/?
= ié —iCW 2?]/ - GE ’}/'u 614'u

99’ €9°g _
- (ey"e) Ay, (3.44)

N o

and for eeZ coupling is

=12

- i 9% g%  €eg® " - - €9” g A
= 2 _ < _Z 7 _ - _ _Z _ < M
1€, 20117 ( € g + 5 g —|—g ¥ er, u +Z€R 19 Cyy €+ 5 §2 g ¥ €RrR4y,

/

(evte)Z,.

(3.45)

1 €qq _ _ _
B [ N ((g° — 3°)Pa+2°Pr) + 5 o (07 = 69) P = 20°P2)

2(* + 9"

The contribution of operator Q" is

0
eW N7z 1 eW -~ = nz 3
CV(l,o )T’ ngW O C |:<Ve 6L> o er] —\/_ ( ) W,

~OM (et ) (0,07 — A,V;)

%I@

> V20V (e o e,

~—

[CW@Z“ + SWaVA“] .
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Now using the Fourier transformation Z, — [ e’iquM where ¢ is the momentum of meditators.
Similar for A,, we have

Q™ 2 VECV (erote,) [ew (—i) 2+ s (—ia) A,]
= —iv/20°"v(eq, 0" Pre) lewZ, + swA,] . (3.46)
Note that the operator Q¢V'T also contain the couplings of fermion and gauge boson
QW —iv/20*u(eq, 0" Pre) lewZ, + swA, (3.47)

The calculation for the operator Q? is completely the same with QY and we can obtain the
contribution

Q® > —iv2C°Pu(eq,0™ Pre) (s Z, — ey A,) (3.48)
Q°Pt o —iV20 P u(eq, ot Pre)(sw Z, — e Ay). (3.49)
For the Q¥ operator
Q" = C(p"iD,p) (1,7"1,)
_ _ — _ _ _
= CMip" (8, +ig Y B, + igWiT" — 0, +ig'Y B, + igW . T" ) o([,7"1,)
, _

. 2 [ Y9 L) (o)
5 950 <0 %> {7(—5WZ# + ewA,) — f(CWZ“ - SWA;J} (\%) (Ve 6) v <é>

2
vt o, _ _
= C"pll—Z [(7'sw + gow)Z, + 0.A,] evter. (3.50)

For the Q¥"® operator
Q™ = Cigh (7' D, — Dy yplly 'y ,)
5 e (00 35) [P BY +igWiT!) + (ig ByY +igW, T')7’| (

2
v
— C‘plgf [(g"sw + gew) Z, + 0.A,] (eryer)

2
_ C“Pl3% 32 + Q'QZM(éV’LPLe)- (3.51)
For the (Q¥¢ operator
Q% = C*ip' (D, — §u>(p(ép7#er)

. " o - 0\, _
D C¥% (0 7§) (2ig'Y B, + 2igW,T?) (\%) (erY"er)
1
= —0@6502 [(—Q’SW — gew) 2, + O.A,J (ey" Pre)
2

= CW% 9% + g*Z,,(ev" Pre). (3.52)
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3.3.2 Vertex factor of lepton and Goldstone boson

Since our process has neutral mediators, so we will ignore all ”"charge” Goldstone boson. The
Lagrangian containing the mixed terms of lepton and Goldstone boson reads

L == Teenp — el + O (phiD,0) (B (3.53)
+ CPB (N D) 1,711, + C# (1D, (e ey ). (3.54)

First, we need to obtain the coupling in SM. Before doing that, we to rotate the fermion fields by
the unitary matrices in order to diagonalize lepton and quark masses

%{ = wa%o (3-55)

where 1 stand for v, e, u, d. X denote for left- and right-handed. The unprimed field is the mass
eigenstate fields.

~Teelpp — 'Rl = —[LUIT Ugeryp — pler(UiT.Ur) Ly,
0 . v,
(5 s / . _ 10\ 5 1t e
S5 (ue eL> en (\/%Z ¢O> (0 i )eRPe <€L> .

After diagonalizing the lepton masses, we have the identity [V = \/5@, the SM Lagrangian then
v

becomes
e . e — . e — 1
—im—é(PR — Pped’ = —@m—6756<1>0 = —Zm—675e (1 - ZC"”DUQ) G°. (3.56)
v v v

The contribution of operator Q¥'!,

Q™" = gl (D, — D,)p(iy"l,)
. y ) 0 Z e ‘
> O <0 \%(U - ZCI)O)) (O — 04) (%(v + i@0)> (Ve eL) 7 <€VL>

) i 1 ) 1 1 —
— ¥ {ﬁ(aﬂ%ﬁ(v +1i0°%) + + 5 i®" ) 750 0)} eLyter
= —C?"(0,0")ey" Pre
_ iC(pll,UgGOéfy,U«PLe. (357>

The contribution of operator Q%'3,

Q" = Cigh (7D, — D)ol 4,

. . — 0 o Ve
200 ) 05 (o L) () (1)

— ¥ _L Oiv—i 0 1 v 41 OL —erter

—C {ﬂ(@ucb)\/i( P0) — \/_<+(I))\/_( )}( Ver)

= —C*"30(0,0")ey" Pre

= iC*PvdGey" Pre. (3.58)
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For the ()¥¢ operator
Q7 = C*igh(D, — D)pl(ey'ey)

2exi(0 =) (0,-9,) (7( : @0)) (Ery"er)

[ 1 , 1 o i
= C%% [E(%@O)E(v +i®Y) + E(U - Z(IDO)E(@MQDO)} erY'er
= —C“Oev((?M(I)O)é'y“PRe

= iC*vdG ey" Pre. (3.59)

3.3.3 Four-fermion vertex

There are three four-fermion operators in Table. (3.3) contribute to our process. The corresponding
Lagrangian reads

L= Oll(l_p'Yulr)(Z_S'V#lt> + C“(epuer) (e er) + Oee(l_p%tlr)@sV”@t)‘ (3.60)
The operators Q.. have four cases for our coupling;:

(ervuer)(BrYuttr)s  (BrYulir)(€rVuer), (BrVuer)(€RVulr), (ERVubr)(BrYuer). (3.61)

Note that for the last two cases we can use the Fierz identity * (€,7,e,)(€svuet) = (€p7uer)(EsTuer)-
So in the coupling we have: 4iC¢; (" Pr)c(7v" Pr),

However, we can not apply directly the Fierz transformation for Q) since this term not only have
the Dirac indices but also have the SU(2) indices. Thus we have two cases @y for our coupling:

(ervuer) (Bryutir); (Brvuir)(@ryuer). (3.62)

Another two cases which are not applied Fierz identity directly are

(7 o) (M> (7 )" () (7 z) <> (7 ) <M> (3.63)

But after we expand it, we can get four terms without SU(2) indices. Two of them are

(ervupr)(Bryuer), (Bryuer)(@Lyupin), (3.64)

and they are Fierz transformable. So in the coupling we have 4iCY, (v PL)c(v" PL),.

Similar to operator @y, the operator @), has SU(2) indices as well. We will have two cases:

(ervuer) (LrY" pir)- (Bryupr)(€ry'er). (3.65)

IFor futher reading of Fierz transformation, please find the paper [7]
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The other cases after SU(2) expansion are (erv,ur)(firy*er) and (firyu.er)(€ry pr). The Fierz
transformation for @);, in the first case is:

(Eyuir)(frY"er)

1. _ _ _ _ _ _ _
=1 [4(ecer) (hrpr) — 2(eLvuer)(Ery"pr) — 2(eLyuy er) (RrY"Y 1) — 4(ery’er) (iry u)]

B _i [4 (ePre) (iPrp) — 2 (ePryu(Pr — Pr)Pre) (iPry"(Pr — Pr)Prp)

—4 (éPR(PR — PL)PRG) (/_LPL(PR - PL)PL/L):|
= 2 [4(ePre) (RPum) + 4 (ePre) (iPo)]
= —2(ePge) (aPLp). (3.66)

So now we will have —2i(Pg)(Pp),CY, in the coupling. Similar to the case (firyuer)(ErY"ir).
Thus the coupling corresponding to operator Q' is

iCle (7" PL)o(" Pr) + iC1 (v PL)u(r" Pr)e = 20 | (PL)u(Pr)eCl, + (PL)o(PR)uCl |

3.4 Feyman rules

After find all interaction terms for our process, we are now able to write down the Feynman rules
for the couplings of our process in SMEFT. The Feynman rules for propagators are not mentioned
here since we have rescaled the fields to make the the kinetic terms in SMEFT the same with that
of SM. And it lead to the unchanged propagators. It must be understood that all couplings below
have incoming momentum.

st 1 =2212,.2
1gg o g g-v ©WDB,_ i

= 7T Tz - Y
VR @

V2g'v
/gQ + 912 I
V2gv
/§2 + §/2 v

+ (CSW*U‘“’PL + CSWU’“’PR>

(ch*aWPL + CgBaWPR) , (3.67)

- _fu_ B :%75 - gcﬂpoe,}ﬁ _ Ug (PLCépll + PLCépll + P}{c;pe) ’ (368)
v
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1gg'v _ _ _
N gg_ CeWB ((9/2 . QQ)VMPL . 2927“PR)

+ T — Qv (C:W*UWPL + CSWU“”PR>
V3 g
V24
+ ﬁqy
g°+g

I
+ 5+ g7 (C2 Py + CE%y Py + C29" Pr) (3.69)

(CeBram Py + CePor Py

=4iCL (v Pp)e("Pr)y + 4iCE (V" Pr)e (7" Pr)y

+iC (Y Pp)e(7" Pr)yu + iC. (4" PL) (7" Pr).
= 24 [(P1)u(Pr)Cl, + (Pr)e( Pr)uCl (3.70)

3.5 The independence of Feynman amplitude on gauge fix-
ing parameters

We have apparently discussed the properties of gauge fixing parameters in Chap.1 . In this sec-
tion, we will check that if the Feynman amplitude of the diagrams in Fig.(3.1) depend on those
parameters or not. Therefore, we will only focus on terms in propagators that contain gauge-fixing
parameters only. Note that we will not use any approximation of m; = 0, where my is the fermion’s
mass. First, the Feynman for the diagram which mediated by photon reads

et "

Figure 3.1: Feynman diagrams containing gauge fixing parameters of process e™ +e~ — putu™ in
SMEFT
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VE+a? (g W
\/ng eBx _uo e o —1 q qy
+qu <CeB o' P, + CP ot PR> us(p) 2 \9w ~ (1 57) £
Zggl . 29291202 WEB v L V2 \/_g/v
/72+f/2fy (g% + g2)3/2 i /G2 + 72 9
g g g g
55
. \/_g?} (CeB* pr + CeB VpPR)

We can see that the terms containing gauge-fixing parameter in photon propagator proportion to
qu- Now look at the first coupling, it is obvious that two terms consist of * will vanish when we
multiply by g,

M, =0y (p) (CBW*U‘“UP n CeWU“UPR)

i, (k) <CeW* v p, +CeW l/pP>

v (K. (3.71)

0y (P)(D)us(p) = 0e () (W + P)us(p) = 00 (p) (=me + me)us(p) = 0. (3.72)

For the rest terms in that coupling, it will be canceled out since (¢,q,)0’* = 0. Hence, our

amplitude does not depend on &,. For &z, it is more complicated, the amplitude for Z and
Goldstone boson read

My =
1
/g2 _|_g/2
V2gv

igg'v* o _
(" = %0"PL = 20%"Pe) + 5 GO (07 = 900" PL = 299" )

~/
—_— (CQW*J‘”P + C’eWGWPR> \/_g Y

N VET

1.
+ 5“)2\/W <Cfl17“PL + CEBAM Py + CfW”’R)] us(p)

—1 mepy
X | —5——=3 Juv — 1-— €Z 5 s —9
¢ —m3 ( w = )qz—fzm%)

Vgl (p )

<CeB*O_;wPL + OeBO_mrP )

i -2 —12 v
W (g — )P
\/ﬁ’v
’ Vg iga ’

12 v igg'v* WB ((=12 -2\ v 9 v
—QQIIYPR)‘I'WC% ((g'—g)vPL—ngPR)

V25
VET R

<OeW* VpPL+CeW VpP> (OeB* l/pP +CeB VpP>

1 - = = 14 v e _ UV
+ 5@1)2\/92 + g ((J;f% Py + C$By" Py + C¢y PR>] vy (K, (3.73)
—5..( % 5 E @D 5 pll @ll pe v
MGO Vs (p) |: v 7 40 mery + Ug <PLCe + PLOe + PRCe >:| us(p) [q2 —_ fzm%]
(k) {%fﬁ . chmﬁ v (Pch’” + PLCet 4 PRC’f@ﬂ o (K. (3.74)
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After some calculations, we can write the parts containing £, of two above amplitudes of the form

zmem”(l - §Z)

M€ = us p Uy k 5Ur’ K
g2 + gl2 gg € 1 2 —/2 pll pl3 pe pll pl3 pe
T Tty (7°+3*)(C +CEP =g+ O + O = O |, (3.75)
5 Zmemu _ , / 5 — k 5 , k/
MGO 72— fzm2z [Us (p )7 US(p)} [UT( )'7 Up ( )]
1 C«pD Cg&ll Cgol3 cve Cgoll C«pl?) Cve 3.76
ﬁ - T+( e tCTT =00+ i + v M ) ( : )
Let’s now temporarily denote (C#"' + C# — O 4+ C91 4 C$ — C%°) as A.
1 1-¢ P +g% gge 1 _ 1 C¥P
¢ £~ Z NA |+ = — A
My + Ma, ¢* — &zmiy q2—m2z( i T2 Ty KA T

(3.77)

Using the form of my in Eq.(3.40) and the property C&

ilson

1 qq’ 1
mZOWilson =3V 92 + gIZ,U (1 + <99 ) (1 + ZC@DUZ) OWilson

= 0 of the Wilson coefficients, we have

2 §2+g/2
1
- 5 V g2 +gl2UCWilson- (378)
Eq(3.77) will be rewritten as
M+ Mg,
1 1 C¥P

~ — A gZ mZ+1 + -

q* — &Ezmy q2—mz v?

1—E&2 1|3 +G% 5, 99€ 5, 1, 5 o 4 o0 Lo o _p\ 4D
72— o? 1 U+TU +§(9 + g ) C —g(g +g%)v°C
Z
¢ mez 1 P 1-¢&7 1 2 1 _12y, 4 D

= A S _ Cc¥

q—f’zm { @ —m v2 2 +q2—m22112 Mz 8<g g

ZmZ 1 1_€Z 2 OSOD 2 1—€Z 2

= 5 A — + = 1+—2_72mz— 5 v 1+—_ 5 My

q° é"zm ¢ —my v q= —my ¢* —my

1 Aq fzmz 1| ¢*=&my C“}szqz —&{am3
TP ¢ —m3 UZ_QQ_mQZ 2 ¢ -my
1 1 Cceb

= — A+ 5 [1- v? (3.79)

q* —my v 2

That is what we expected when the Feynman amplitude is independent on gauge fixing-parameters.
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3.6 Z boson decay width

Another quantity that we are interesting in is the decay width of Z boson in SMEFT. In the
previous section, we can see that the Z propagator have the term ¢ — m?% in the denominator
and it leads to divergence in the total cross-section. To avoid that, the solution was introduced
in Chap. 2 that we used the Breit-Wigner propagator instead. But the Breit-Wigner propagator
does contain the decay width of Z boson, that is the first reason for this section. The second is that
we already have the accurate value of Z decay width by experiment, thus it is the great quantity
for us to constraint the value of Wilson coefficients. We shall use the coupling of Z with fermions

in [5], some of them were checked in Sec.(3.3).

We still work on the Center of Mass frame, our process is Z decay to two fermions process
Z — [+ f, where Z, f, f have the the momentum ¢ = (2F,0), k; = (F,k), and ke = (E, —k),
respectively. The Feynman amplitude is then of the form

My = a(kr)gyv(k2)enu(q) (3.80)

and the squared amplitude result reads

1
IM;|? = ngM}. (3.81)

1
We do not have to multiply 1 to squared amplitude since we accept all spin states of the two

1
final particles. The — factor stand for the spin states average of Z boson. In the couplings of Z

boson with fermions in paper [5], we will ignore all operators which are not relevant to our process
et + e~ — put + p~ and only take the operator Q¥"'# into account. Then will obtain the results
for each fermion

=2 =12 —=1,.2
M, | = J —gg my + gggv m3ReCWVE (3.82)
1 9% -9 2 99'(9* — 5°)*0?
2 __ /4 2 2 WB
ML= T ( 6 37 )" gy MY

4g3g/3,v2 9

——— 2 __mZReC*VB (3.83)

@+

1 gl4 g?g/2 g4
M| = PR ﬁ(ﬁmgz + 7m?) -7 (m% + 11mfc) + E(m% - mfc)

gg°v? 2 2 WB g'g’v? 2 2 WB
— W((mz + 11mf)ReC“’ + W@(ﬁmz — me)ReCSD
=5—1,.2

ggv 2 2 WB
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> 11gt oy, G957, N AT
|IMyl* = P 5—4(5mz— 17m7) + 5 (mZ—7mf)+E(mZ—mf)
gg°v? 2 2 WB g°g"v? 2 2 WB
+ W(mz — 7mf)ReC“’ -+ W(l4mz — 26mf)ReC“”
=5~=1,.2
g-gv 2 2 WB
+ W(mz — 7mf)ReC‘p . (385)

We have used the relations |lg|2 = FE? — mfc and ¢> = m% = 4F*. Applying the the differential

decay width in the paper [2]
o 647r2mz”1 — = |M|?, (3.86)

and ingerating over # and ¢, we have

f 167imZ B m_22| f| ' ( ’ )
4m2

Because of the term /1 — —f, so Z boson can not decay to particles with have 2my > my. Then
m

2
Z

we will calculate the total decay width of Z boson with the absence of top quark
r=3r,+re+1r,+1I;+3, + 3+ 3l + 3L'; + 31 (3.88)

The result of Z decay width in SMEFT is a function of C¥?"?5 it’s too long and there is no need
to write it down, but when I set C*W2 = 0, the result is 2.44402 GeV, which is a bit far from
the experimental value 2.4952 GeV. Therefore, I decided to use the result of Nghia’s thesis[8], he
calculated the next-to-leading order (NLO) with QCD corrections to the decay Z — bb, his result
reads

Faen =To (1+2)). (3.89)

where I'gep, T'g are the decay width of Z boson at NLO and tree level of SM, respectively. while ay
stand for the strong interaction coupling constant. Eq.(3.89) can apply for all Z — ¢G channels so
I have used the NLOQCD factor for all quarks. I also checked both cases of massless and massive
fermions, and it turned out that the mass of fermion has weak effect on our result. So now to
easily compare with Nghia’s thesis, in which he has used the approximation m; = 0, I will set
m; = 0 for all particles. My result for the decay width of Z to bb at NLOQCD based on Eq.(3.89)
is 0.385748 GeV which agree with that of Nghia and the paper [9]

Moreover, I also use the NLOQCD decay width for SMEFT, since QCD correction factor is the
same for the SM and SMEFT when only operator Q¥"% is kept. Fig.(3.2) shows the values of Z
boson decay width with respect to C*" 5 in many models, the way we chose the value of C¥W5

will be discuss more in Sec.(3.9). The input parameters, which I chose from Particle Data Group
[10], are

my = 91.1876(GeV), myw = 80.385(GeV),
Gr = 1.1663787.107°(GeV ™ ?), a, = as(my) = 0.1181.
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Note again that I have used the approximation m; = 0 for all fermions. Since our result in SMEFT
is a function of Wilson coefficients, so we can change the value of those coefficients to get the result
close to the experimental value, this case is changing C¥"'5.

265 — —
- —— experimental value

| = SM-Born

2.60 | —— SMEFT-Born 1

| —— SM-NLOQCD

S 2555 —— SMEFT-NLOQCD ;

3 ,
N exp.error

2.50 7 ]

245 .

I | I I I I | / I I I I I I I | I I I I | 1

-0.10 -0.05 0.00 0.05 0.10

ReT™"

Figure 3.2: The values of Z decay width

3.7 Feynman amplitude

W et p
Figure 3.3: Feynman diagrams of process et +e~ — putp~™ in SMEFT

The notations of spins and momentums is the same with previous chapters. But for easy

following, we now mention again that we have denoted the four momenta and spin indices of

e et u,ut tobe (p,s),(p,s), (k,r), (K, 1), respectively. ¢ = p+p' = k + k' is the momentum
of the mediators. The Feynman amplitudes for diagrams in Fig.(3.3) reads
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5 99 ig*g™v® WB \/—ng W w
My =0 (pf) | ALy = T o o (CEV 0 Py + GV oo )
Y ) gz +§'2 (g +g/2)3/2 m
\/5@1} eBx _uo e o —1 e
+—,—g +g/2 (C Bx yp Py, +C B yn PR) us(p) ? (glw _( g’y) M )
— Zgg, v Zg g/2U2 ©WB_ v \/_glv eW % ovP eW ovP
R By S E Y 0 (G0 P G o )
55
_ ;/_ivg& a0 (CeB* upp + CeB upPR) (k/) (390>
My =
_ ( /) ; (( — ) ,U«P 2—/2 MP ) _'_ ﬂcg&WB ((—/2 . —2) MP 2_2 'U’P
(FAVY /—g2 —{—9/2 g g i L — 4977 R 2(g2 +g,2)3/2 g g )y L — 297 R)

2 2q
N \/2—97)/2 o <C:W*O_MUPL + O:WO'MJPR> N \/—Q v /2 <CeB*O_;u7PL + C«eBO_uJP )
VI©+g V3t
1
+ S VP 57 (CEM P+ CE P+ Cé”W“‘Hz)] us(p)
> _iguy _
¢ —m2 +ilzm,
N (k) i (( _ ) vp, — 262~% P ) + i§§,U2 C(,DWB ((—/2 o —2) vp, _ 92~ P )
r \/W g g Y g v IR 2(g2 + g,2)3/2 g g )7 'L g7 I'r
2 2q
+ \/—g'U 2 a0 (CeW* vop, +CeW vp p ) N \/_91) 2 a0 (CeB* vop, +CeB VpPR)
VIt Vi +g
1
+ Eiv2x/§2 + g (C’/f”’y”PL + C/‘fIS’y”PL + C’;fe’y”PRﬂ v (K') (3.91)
= n | Me 5 v D 5 pll pll pe i
May, =vg(P) | = =77 = 7O men” + o (PLOET + PLOZT + PrCE ) | us(p) PRy
— &M,
(k) [%75 - %cwmﬁ _ <PLO;0” + PO PRC;“)} e (k) (3.92)

Ql

r

M = 4iCe, 0y (0) (3 PL)us (p) T (k) (V' Pr)ow (K') + 4iCELT0 (0) (7, Pr)us (0) T (k) (V" Pr)vys (K)
+iCey, 0y (1) (1P s (p) Ty (K) (7" Pr) v (K) + iC 0 (0) (4 Pr)us (p) G () (4 Pr vy (K)
— 2iCl 0y (p') Prus(p)r (k) Prow (K') — 2iC)5 5y (p") Prus(p) i (k) Proy (K') (3.93)

Notice that we used the Breit-Wigner propergator of Z boson to avoid the divergence in our results.
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3.8 Result of squared-amplitude

I have used FORM? to calculate this squared-amplitude. In this result, we obtain some great
things that we expected are the independence on gauge-fixing parameters, the squared-amplitude
is the real number athough the initial set of Wilson coefficients is complex numbers. And the most
important result is that our distributions later are completely the same with SM when we set all
Wilson coefficients equal to zero.

With the approximation m, = m, = 0, we will obtain Mg, = 0, thus

Me,|? = M ML, = MzME =0 (3.94)

The other results are

1 16E*g*g 6402 E4g5g"

4—1]/\/@]2 -7 +g’2) T AT ) ReC?WVB | (1 + cos®d). (3.95)
1\./\/l > = B [C71(1 + cos?0) + Cyacost] (3.96)
4 Z - (q2 o mQZ)2 + fzzmzz Z1 72 ? .

in which we have

49/8 29/4(@/2 _ g2)2 (9/2 _ §2>4

(@*+9%)? (#+9%)? 4@ +75?)7

Cn(V5) =

456 95/ (52 _ 52
_ _(gQ iglz)Re(Cfe + Cﬁe) _ g(ggg+ g/2§ )Re(CﬁB + Cﬁll + CecplS + Cgeoll)
g%(g* — 3%)? e o (@ -g)° 13 11 13 1
— WR@(Cﬁ + C,f ) - wRe(Cﬁ + C;’f + Cf + Cf )
16g°9"  499°(9” — ¢°)* | 49°9"°(9” —9°)* 99'(9” =)'\  cwwn
@+ @ @+ @Y |
(3.97)
s) =— —
z2 v? | (3% + )2 (7% + 72)? 2(g% + )
87" 4g"(g” — 8°)
o Re(cape 4 Cgoe) 4 — — Re(cg@lS 4 Cgoll 4 CLplS + Cgoll)
(7% + 37) e p (g + g?) Iz I e e
29"(9"” — §°)? (8% -g°)°
+ (§/2 + g?) Re(Cie + CZDG> - (g/2 + g ) Re(CSDB + C<.011 + CWIB + Ccpll)
320°5" | 899°(9” —9°)* 89°9°(9” —9°)* 299'(9” —9°)"\ ;_cwn
G2 +3)° (2 +5) (9% + 5°)? (97 +5°)? '
(3.98)

2FORM is a symbolic manipulation system which is used by many HEP physicists. For more information, please
find [11] [12] [13] [14] or read here https://www.nikhef.nl/ form/license/license.html
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1 v
ZWWM} + MMl = P P o (Cz1(1 + c0s20) + C,gacosh) | (3.99)
where
Copr (v 2= m2) | 455" A5G — ") | 075"~ 5°)
721 02 (72 + ¢2)? (7% + §2)? (72 + ¢2)?
a252(35"2 — a2
- g@ggi g2>g ) [(q2 — m3)2Re(CEe + C4B + CoM 4 C2° 4 CEB + O
20 i Am(CE° + CE% 4 Ot + G+ € 4 )|
8—3—/3 ~ ~ _ 2) 512 =2 -
ﬁ (35”7 — 3°) [FZmZImCSOWB — %(q2 - m%)ReC“”WB] , (3.100)
Copl(/a) <2 =) | 865" 8¢°9"(6" ~5") | 26°9°(g" — 5°)"
V22 02 (72 + ) (72 + )2 (72 + )
20°3%(0° +3°) 1, 2 _» e 13 11 e 13 11
A (g% = m)2Re(CE — O — G 4 7 — 7 - o)
20 iz Im(Cp — C% — G o O — €% — )|
8g3§/3 _ B WE
1 ; i E4g2§/2 )
Z(./\/lzl./\/l7 + MVM4> == W [0471(1 =+ cos 0) -+ 0472(:088} s (3102)
where
Cipn(Vs) = 8Re(Cl, + C,) + 32Re(Cg, + CL), (3.103)
Cip2(V/s) = —16Re(CJs, 4 Cy)) + 64Re(C, + C,). (3.104)
1(./\/l M+ MaMb) = h = [Caz1(1 + cos?0) + Cazacost] (3.105)
g Ul - my) + Tmy] T |
where
4
Cyz1(V/s) YD) {(q2 —my) [89/4RGC§Z +g%(g” - g*)Re(C;, + Cg;,) +2(8” - §2)QRngu]
~T 7z |85 ImCs, + g2(” — g%)Im(Cl, + Cly) + 2(8% — g%)*ImCl } :
(3.106)
4
Cin(V5) = {(cf — %) [169*ReC, — 28 (g — g)Re(Cl, + Cly) + 4(g” — g%)*ReCl |
—Tymy [16@’4ImCEZ — 25" (g"” - gQ)Im(Cfe + CL‘;) + 4(g"? — g2)2ImC};ﬂ] } .

(3.107)
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Now we can write the squared-amplitude in a compact form

|IMo|? = A(V/3)(1 4 cos®d) + B(v/s)cosh, (3.108)
in which we have
16E4—4—l4 64 2E4—5—/5 2E4
A(\/E) - 19 3ReC¢WB + . OZl(\/g)

G +3%)* M2+ 7?) (¢ —m%)? +I%m?,

v2E* Eig2g? o
+ = C s)+ ——C s) + C
Pl =g+ 5mg 1 e VI g T
(3.109)
v2E* V2 A
B = _ C _ C
(\/g) (q2 o m2Z>2 + FQZmQZ Z2<\/g) + qQ[(QQ _ mQZ)Q 4 FQZmQZ] VZQ(\/§>
E4§2g/2 E4

Cinz(Vs) + Ciza(Vs). (3.110)

(72 + g?) (¢ — m%)? 4+ T%m?]

3.9 Some distributions for the process e™ +e¢~ — u™ + u~

Before going to this section, some assumptions are needed for us. First, it is convenient to set all
Wilson coefficients that we used for field rescaling equal to zero except for C¥"'# since the decay
width and the mass of Z boson are depend on that coefficient. The next step is classifying all
coefficients in groups, if you pay attention to the squared amplitude, you can see that there are

some operators always appear with each other as a sum. Therefore they have the same contribution

to our process. These groups are [C¥*WF]. [Cf¢, C¢e, [CF1, OB, CEM, CeB), [Cle, Cle), [Ceel,
[C’élu] Since the coefficients in the same group have the same contribution, so we only take one
representative operator for each group into account. Now we have six coefficients to consider, but

it is hard to put many lines in one plot, so I will again separate them into two group

e The Higgs group: The coefficients which their corresponding operators contain Higgs fields:
CPWB (C¥e and C¥'.

e The four-fermion group: The coefficients which were contained in four-fermion operators:
Cé‘;, Cee and Célu
The important notations that we will use now are the dimensionless coefficients which are denoted
by

,02 2

_ — v
CVVVilson = FRQ(CWilson)> IInCVVilson = FIm<CWilSOH)a (3 1 11)

and their possible values are from -0.2 to 0.2, note that in this thesis we only consider the real

part of Wilson coefficients. In most of the cases, I will choose the value of 0.1 for my calculations.

SMEFT
To see how different of SMEFT from SM, we introduce the ratio —Sn As we expect, it must

equal to 1 when all Wilson coefficients are set to be zero. The input parameters for all below
graphics are

my = 91.1876(GeV),  my = 80.385(GeV),  Gp = 1.1663787.107°(GeV~?).  (3.112)
which were chosen from Particle Data Group [10]. Note again that we use the approximation

me =m, = 0.
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3.9.1 Total cross-section

From Eq.(1.12), the cross-section of our process is of the form

do 1 |k ) 1 )
T T =——1A 1 )+ B 9| . 11
dQ 64725 |p| Mo 64725 [ (\/5)( + cos™0) + (\/E)COS } (3.113)
The total cross-section then reads
= /d—ad 0dg = ——A(V5) (3.114)
77 ) @ e T 1asVY :

The result of total cross-section are indicated in Fig.(3.4). Notice that in all below plots, for each
line we will set zero value for all Wilson coefficients except for the coefficient which is denoted for
that line.
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Figure 3.4: Total cross-section of muon in SMEFT when Cywison = 0.1 each time
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Figure 3.5: The SMEFT/SM ratio of total cross-section when /s = 100GeV
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Figure 3.6: The SMEFT/SM ratio of total cross-section for special case v/s = myz GeV

In Fig.(3.5), we can see that the dependence of SMEFT on Wilson coefficients is linear, but the
special case is for C¥?" B since we not only have it in the coupling but also in the mass and decay
width of Z. Therefore our result is not linear depend on C*"5. Comparing Fig.(3.5) and Fig.(3.6),
we see that for the case /s = 100 GeV, the coefficients in four-fermion group have stronger effect
than that of Higgs group. While in the special case /s = my, the contributions of coefficients
in four-fermion group are negligible. Note that in /s = my case, C¢y, and C’il# have the same
contribution so that you can not distinguish them in the graphic.

3.9.2 Angular distribution

The angular distribution reads

do 1 9 .
W= Tors [A(v/s)(1 + cos?0) + B(+/s)cosf] sind. (3.115)
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Figure 3.7: The angular distribution for Cyyijen = 0.1 when /s = 100(GeV)
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3.9.3 Fordward-backward asymmetry

the fordward-backward asymmetry

App = =2 . (3.116)
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Figure 3.9: The fordward-backward asymmertry in SMEFT when Cyyiigon = 0.1
3.9.4 Transverse momentum distribution
The transverse momentum distribution is given by
dky — 16ms E3,/E2 — 2 '
3.9.5 Longitudinal momentum distribution
The longitudinal momentum distribution is of the form
do 1 k? k;
— = A 1+ L | +B(\s)= 11
dk, 32nsE (Vs) ( + E2> + (\/E)E (3.118)
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3.9.6 Rapidity distribution
The rapidity is defined as

1 E+k
= -1 . 3.119
v=3m (51 (3119)
From the original definition, we can write down the another form of it
ki
Yy = arctanhﬁ (3.120)
Thus, the Jacobian then read
k; = Etanhy = | — = E(1 — tanh®y) (3.121)
dy kj=Etanhy
Thus the rapidity distribution of muon is:
do  do dk;
dy dkl k;=FEtanhy dy k;=FEtanhy
1
=39 [A(\/E) (1 + tanhy®) + B(\/E)tanhy] (1 — tanh?y). (3.122)
S
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Application for the spin-density matrix elements of Z boson

4.1 Relations of the Z boson decay angular distributions
with its spin-density matrix elements

A density matrix is a matrix that describes a quantum system in a mixed state, a statistical en-
semble of several quantum states. Density matrix is contradicted with a single state vector which
describes a quantum system in a pure state. We call pure state when a quantum system has one
state vector |¢) only. Nevertheless, it is possible for a system to be in a statistical ensemble of
different state vectors as well. This time we call the system is in a mixed state. For instance,
we have a mixed state of a system when the system have two distinguishable states are [¢;) and
|th9), with the probability for each state is 50%. That means there is 50% probability that the
state vector is |1);) and the rest chance that the state vector is [¢)9). Hence it turns out that
density matrix is the powerful tool to describe the mixed state. Note that a mixed state is not the
same with a quantum superposition. The probabilities in a mixed state are classical probabilities,
dissimilar to the quantum probabilites in a quantum superposition.

Being a spin-1 particle, Z boson’s spin state is described in a form of a 3 x 3 density matrix with
8 observables. We have the number 8 rather than another number since the density matrix of Z
boson has 8 degrees of freedom. Now the main purpose of this section is re-producing the relations
in [15] between the Z boson decay angular distributions and the spin-density matrix elements of
the Z boson (it is noted that Z bosons produced at ete™ or pp collision are polarized). The method
to find those relations was firstly introduced by J.A. Aguilar-Saavedra and J. Bernabeu in 2016
[16] when they used that method for the W boson case.
In addition to the form of 3 x 3 matrix, the density matrix has the other features which are
Hermitian and unit trace. The general form of it reads

=t (S St 3 (T T (A1)

m=—1 m=—2

where 5, is the three spin operators which are given in the spherical basis by

1 .
Sil = :[:E(Sx + ZSy), S(] = SZ, (42)
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and T,, are five irreducible tensors establishing from S,,, as
1
V6

We have used the notation S, , . for the spin operators which have the below forms for the spin-1
particles

1
Tj:Q = S:QH, T:I:l = §[S:|:150 + S()Sj:l], T() [S+1S_1 + S_1S+1 + 253} (43)

1 010 1 0 1 0 10 0
Se=—=11 0 11, Sy=—7=1-1 0 1]/, S.=10 0 0 (4.4)
V2 010 V2i 0 -1 0 00 -1
Substituting eq.(4.4) into (4.2) and (4.3), we can obtain
000 0 -1 0 10 0
Sy =110 0], S5=10 0 -—-1{, So=10 0 0 |,
010 0 0 0 00 -1
000 001 1 1 0 0
T,=10 0 0], T,=10 0 0], Th=—=10 =2 0],
100 0 00 V6 0 0 1
1 0 0 0 1 0 -1 0
T,=—1|1 0 0, Th=—|0 0 1]. (4.5)
V2 0 —1 0 V2 0 0 0
For later convenience, we will define the operators
1 1 1 1
A1 = §<T1 — T_l), Ag = Z(Tl —+ T_l), Bl = §(T2 -+ T_Q), BQ = Z(TZ — T_Q). (46)

From the explicit form of the above operators, we are now able to write each density matrix
elements of Z boson in terms of expected values of observables

P+141 = % + %<S3> + %(Td,

pann = 5 =l(S0) F 150 F [(A1) F idAn)

Poo = % - %(T(J),

p1-1 = (B1) —i(Ba), (4.7)

and the other elements have the forms p,, = p;,. As we will see later, the angular distribution
of Z decay totally depends on those density matrix elements. To figure out that, we first need to
write the amplitude for the decay of Z boson by using the helicity formalism of Jacob and Wick
[17]

Mian, = @D (9,0,0), (4.8)

where m is the third spin component and Ay stand for the helicities of two fermions which are
the production of Z decay. A = A\ — Xy = +1. We use the Z boson rest frame and ¢, 6 are the polar
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and azimuthal angles of fermion respectively. The notation D3, (c, 8,7) is the Wigner D-matrix
[18] which is of the form

Dy, B,7) = (sm/|R(, B,7)|sm) = e7"™ ™" ds,,. (5), (4.9)

where R(a, 3,7) = e~ 1@ =5 =15z i a generic rotation in 3-dimensional space which is built by
compounding operators using Euler angles, and d®,, (8) = (sm/|e”#%|sm) is the Wigner’s small
d-matrix. The amplitude in Eq.(4.8) then becomes

Mm)\l)\2 == a)\l)\2€im¢din)\(9). (410)
The squared amplitude is easily found

|'/\/l|2 = Z pmm/MIn/)\l)\QMm)\l)\Z

m’,m

= 3 P @ng a2l (0)dh 1 (6). (4.11)

The decay width of Z boson in two final particles reads [2]
ar 1
dQ  64mm?

=C D pmalarna e ()0 (0) (4.12)

m,m’mA1 A2

4 2
1— = MP?
my

Note that ay/p —1/2 is different with a_;/5 1,2 and their values are proportional to the right- and
left-handed couplings of Z boson and charged lepton, respectively. It is convenient to denote them
as a; = af/Z 1o and ap = a31/2 12 for short, then we have

a%/Q 12 a1 gg
2 2 = IR (4.13)

2 1
AZ1/9 172 @2 gp

For later apparent calculations, it is necessary to introduce some values of the Wigner’s small
d-matrix elements for spin-1 particles

1+ cosf sinfd 1 — cosf
di,(0) = — dyo(0) = 7 di_,(0) = — dbo(0) = cosh.  (4.14)

The other values of d-matrix elements can derive by using the feature below
&y 0 =) md (0 =d,, (0). (4.15)

The sum in Eq.(4.12) have the below result, note that the mediate calculation steps is too long
and there is no need to explicitly write it down

a2 36 3 V6

—(A;)cosgsin2f — (A,)singsin26 + Zl _T_ ZQ ((S1)cosgsing + (Sa)singsing + <Sg>cose)} :
1+ ag
(4.16)

r 1 T 1 2
d o T a { (— + —0> (1 + cos®0) + (— - —To) sin?0 + (B, )cos2¢sin®6 + (By)sin2¢sin®6
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Integrating the terms in {} bracket, we will get the value of 87 /3. Let’s introduce the factor

12 12
ap — ag dr — 9L,
T o+ a gb + g~ (4.17)

We are now able to write Eq.(4.12) in the normalised distribution form

1 dar 3 [1 ) 11 s - o
T dooshdd ~ 8r {2(1 + cos“0) + (6 \/6<T0>> (1 — 3cos®0) + (B1)cos2¢sin“f + (Bg)sin2¢sin“f
—(Aq)cosgsin26 — (As)singsin26 + n((S;)cosgsing + (Ss)singsind + (Ss)cosd) } .
(4.18)

We have changed it into the normalized form so that we can compare with the form which is
usually used by experimentalist. Because of the term e/ ™) in squared amplitude, the off-
diagonal elements will become zero when we integrate over the azimuthal angle. The polar angle
distribution, therefore, is given by

1 dI' 3 1 dr 1 3(To)
Tdcost 87 I" dcosfd¢ 4\/_

(3cos?0 — 1) + n(S;;)cosH (4.19)

The forward-backward (FB) asymmetry

1
App = T (cosé’ > 0) — [(cosf < 0)]

1 01 dr
- deos) — [ = dcosf
/ I'dc 089 o8 /1 I" dcos6 o8
1 3 1 3
(é*é >—<a—gw%0
3
“n(Ss). (4.20)

The edge-central asymmetry

1 1 1
Agc == |T —|-T —
BC = T [ <|cos<9\ > 2) <|cos<9\ < 2)]
“M21oar L1odr Y21 4dr
= — dcost — dcost — = dcosf
/1 T deosf + /1/2 Tdcosf > /1/2 Tdcosf "
(3 2m (3 omy
2 16v6 2 16v6
3 /3
= g\/;<TO>. (4.21)

All the diagonal density matrix elements have been found already. In order to measure the off-
diagonal one, we need to avoid the vanishment in the azimuthal integral. The issue is that all
off-diagonal elements contain cos¢ or sing. While cos¢ has opposite value between forward- and
backward-part of the trigonometric circle, the value of sing is opposite between upper- and lower-
part of the circle. That is the reason for the cancellation of those terms when we integrate over
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¢. Thus if we can make our function has the same sign in two opposite part of the trigonometric
circle, our integration will remain off-diagonal elements. The solution for this is using function
fi1(¢) = sign(cosep) or fao(¢) = sign(sing). The corresponding results of the multiplication f;(¢),
f2(¢) are denoted as 6;I" and 05"

ld(51F>:/ L_d sign(cosg)de

I' dcosf x T dco sfdo
/2 ;‘dcjsﬁdgb ¢ /2 chos@d¢d¢
= %msgme - %(Aﬁsin?@. (4.22)
2
Fions ~J, Fivogag 000
T 2w
- /0 %dcjsl;dqﬁd(b _/ﬁ %dcil;d¢d¢
= %T](S2>sin9 — %(Agsmze. (4.23)

Because of the sign(sing) and sign(sing) function, when we integrate (4.22) and (4.23) over the
polar angle, we will obtain

3

. o6l [t 1doT 1 B
Afp = T = / fdcos@dcese =7 [[(cos¢ > 0) — I'(cosg < 0)] = ZU(SQ, (4.24)
9ol 1 dosT’ 1 ) ) 3
y _ _ = _ - =
Aty =2 / o deost =  [T(sing > 0) — Dlsing < 0)] = “n(Sa). (4.25)

We have used the notation A%, and A%, since they look like the forward-backward asymmetry
with respect to  and y axes, respectively. So we have just gained two more observables. The rest
observables in (4.22) and (4.23) can be found by calculating the Forward-Backward asymmetries
AL and A%g of §;T, 6T distributions.

1d (51 1d 51
ALp =
FB /0 r dcosQ osf = / r dcos@ 0s

[ (cosf > 0, cosp > 0) — I'(cosh > 0, cosp < O)]

= I
—_

— — [['(cost < 0.cosg > 0) — I'(cosf < 0, cosg < 0)]

—_
—

= — [[(cosbcosp > 0) — I'(cosbcosd < 0)]
= (205 - L ) - (§<51> " 1<A1>)

_ _; A (4.26)

/\*1

l\D

In the same manner, we can get

A p = % [['(cosbsing > 0) — ['(cosBsing < 0)] = —%<A2>. (4.27)
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Although we have the sign function in addition, we still not be able to avoid the cancelltion
of the terms containing (B;) and (Bs). Therefore, we must change a bit our sign functions to
f3(¢) = signcos2¢, fi(¢) = signsin2¢. Then, the 63" distribution reads

1d(65T) /2” 1 dr
= = - 2¢)d
I’ dcosf o T dcos@dngSlgn(COS ¢)do
T1odr T1odr T1 dr T1odr
= ——d ———dop — ———d¢p — ——d
/: " dcosfdo ¢+/347r I" dcosfd¢ ¢ /Z I dcosfd¢ ¢ /5; ' dcosfdo ¢
= %(Bl>sin29. (4.28)

After the total integration over the polar angular, it yields

1
Aé = /_1 %C;(jjsl;) dcost) = % [F(coquﬁ > 0) — I'(cos2¢ < 0)} = %(BQ. (4.29)

Similar to the case of f4(¢) = signsin2¢, we have

A% = = [[(sin2¢ > 0) — D(sin2¢ < 0)] = %(Bﬁ. (4.30)

M=

4.2 7 boson spin-density matrix elements using spinor he-
licity amplitudes method

In ordinary way, when we calculate amplitude of scattering process, we usually write down the
amplitude using Feynman rules. After that, we square the amplitude and sum over the spins of
external states. Then using the trace theorems to obtain the squared-amplitude in a more compact
form without v matrix. This basic technique is widely used in many textbooks, but it can create
many issues at a deeper level since the Feynman amplitude for the process with many diagrams is
much more complicated to square. For the spinor helicity amplitude method, it was first introduced
by J.D. Bjorken and M. Chen [19] in 1966. In this method, we must choose a specific polarization
states of the external particles, then write all spinors or gauge boson polarization vectors in explicit
form. Next, find the individual helicity amplitude corresponding with each polarized external state
and sum over the squares of polarized amplitudes. It is so different with the squared-amplitude
method when we squared each helicity amplitude and then sum over all possible squared helicity-
amplitudes later. We are able to do that because the helicity-amplitudes for each external state
are independent and not interfere with each other. !

4.2.1 Squared amplitude of Z boson squared amplitude method

Our goal is not using the squared amplitude method, but we need to use it since it is necessary
for us to compare the results of two methods together. First, we consider the Z boson that was
created by ee collider. Hence, our Feynman diagram is

'For further discussion on that, please see [20]
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With the coressponding momentum of Z boson is as previous chapters: ¢ = p + p’. The Feynman
amplitude reads
i

M = vy (p/) 9

(v = gav"°)us(p)r,, (4.31)
where €),(q) is the Z boson polarization vector, the squared-amplitude is then given by

?

M[* = }1 2. [us(p> (_1) M(gv — 947’ vy (p’)w(Q)] {“s’ ()57 (9v = 947" )us(p)es, ()

2
s,8" A
(4.32)
Now, using the trace theorems like the former chapters, also the below identities
- a"q”
> hl@)es(a) = —g + LL and @)k la) = o, (4:33)
A=1 4
we are able to obtain
1 2(p".q)(p-q - puiov
M2 =23 ) [PEOPD )| s agugaie g . (434
Z

Now if we work on the CM frame like chapter 1, and choose the case of on-shell Z boson, i.e.
q®> = m% = 4E?, the squared amplitude becomes

M = (g7 + g3) E. (4.35)

4.2.2 Squared amplitude of Z boson using helicity amplitude method

As I have introduced above, first, we must choose a basis for the polarization states of the external
particles, note that the momentum notation is unchanged from Chap. 1, where ¢* = m%

p = (E,p)=(E,0,0,—E), " = (B, —p) = (E,0,0,E), ¢" = (2E,0). (4.36)

and the Z boson polarization vectors reads

1 1
e = (0,0,0,1), el = ——(0,1,1,0), e’ = —(0,1,—1,0). 4.37
0= ( ) T \/5( ) \/5( ) (4.37)
Before we construct the Dirac spinor, we need to consider some definitions. The Weyl spinors are
defined as

! “Pat ipy) (4.38)

x+(p) = ! ('ﬁl ﬂ’z) C o x_(p) = (
V20P1(IP1 + p2) \Pe TPy V2IpI(pT +p.) \ 1P+ P
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which satisfy the equation

XA(P) v (p) = Sax (4.39)
Hx+(p) = £x=(p), (4.40)
where H = % is the helicity operator. Then the Dirac spinors can be constructed from the Weyl
spinor as follows
po + AlpIxa(p) po — Alplx-(p)
ux(p) = , v(p) = . 4.41
) ( PESYNG il WSy v N 4
First, we need to find the explicit form of Weyl spinor. Using Eq.(4.40), we have
ap -1 0
T X+\P) = X+\P) = X+\P)- 4.42

Thus the spinor above must have the form x, (p) = (2 with a is an arbitrary number. But our
(4.39)

Weyl spinor have to obey the normalize condition
the other three Weyl spinors using the same trick

X+<p>:<$), x<p>=(3), X+(PI):<(1)>7 x(p’>=®. (4.43)

From (4.41), the expression of Dirac spinors is

, therefore we can obtain x, (p) spinor and

ur(p) =V2E | o |, w(p)=Vv2E [, v(p))=—V2E

oo~ o
o~ oo
— o oo

e

—

B\

S~—

|

|

§‘

&5
oo o

(4.44)

With all explicit forms of spinors and polarization vectors, we are now able to compute the helicity
amplitude

i

AN 8 s) =1y (p’)2 (gv " — gAy“w‘r’)us(p)a;u. (4.45)
The results turn out with no surprise when almost all terms vanish except for two cases
A(1,1,-1) = —iBEV2(gy — ga), A(=1,-1,1) = —iEV2(gy + ga). (4.46)

The squared amplitude then becomes

1 * / / 1 * *
T D AN AN S s) = T [A*(1,1,-1)A(L, 1, —1) + A*(—1, -1, 1)A(~1, —1,1)]

8,8,

= E*(gy + 92) (4.47)

which agrees with the squared amplitude in the previous subsection.
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4.2.3 7 boson spin-density matrix elements

The next step is calculating Z boson density matrix. The relation between density matrix elements
and helicity amplitudes is indicated by the formula

pij =Y _aA(i,s,5)Aj, 5, s) (4.48)

where a is a constant. For the cases of Z boson, we have two non-zero elements since there are
only two helicity amplitudes of Z remain in above subsection. Thus, the density matrix elements
of Z boson reads

p11 = a2E*(gv — ga)?, p_1-1 = a2E*(gy + ga)? (4.49)

and all other elements are canceled out. Notice that the density matrix have the feature of unit
trace, therefore

1
11 =a2F%*(2¢% +24%) =1 = 4.50
P11t p1-1=a (29v +292) =a 4E2(g‘2,+gi) ( )
Using Eq.(4.7), we rewrite the density matrix elements as
1 1 1 1 gvga
— -4+ 2(S —(T)) = = — 4.51
P11 3+2< 3>+\/6< 0> 9 g‘g/_i_gz‘v ( )
11 1 1 gvga
4y ==—={S —{(Ty) = = . 4.52
P—1-1 3 2< 3>+\/6< 0> 2—'_9‘2/_1_9124 ( )
The observables values are now obtained
2 1
(Sy) = —=Iv9A (Tp) = —=. (4.53)

V6

while all other observables vanish. Note that if we change the basis states of the external particles,
such as

gy + 93

p“:(E,ﬁ):(E70,O,E), p/M:(Ea_ﬁ)):(Evaoa_E)? (454)

then our results are quite different when (S3) value has the opposite sign. This is because when
we change the basis, our spinors form will change which leads to different helicity amplitudes.

4.3 7 boson spin-density matrix elements using squared
amplitude method

As T have mentioned, our purpose to write the normalised distribution of Z decay in Eq.(4.18) is
that we can compare with the cross-section distribution in normalised form. From [21] [22] [23], the
normalised cross-section distribution using by experimentalist in the CollinsSoper (CS) reference
frame [24] is parameterised in terms of eight coefficients Vj_7

1 do 3
o dcosfd¢ 167

{(1 + cos?6) + %Vg(l — 3co0sf) + Vicosgsin26 + %VgCOS2¢Sin20 + Vscos¢gsing

+Vicost + Vssin2¢sin®f + Vsingsin26 + Visingsing } . (4.55)
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Comparing with Eq.(4.18), we have these relations

2 2
Vo= 37 2\/;<T0>; Vi = —2(Ay), Vo = 4(By), Vs = 2n(S1),

Now our mission is finding the normalized distribution of the cross-section using the amplitude-
squared method, then compare with the relation produced above to obtain density matrix elements
of Z boson.

First, we have already found the squared amplitude of process e +e~ — Z — u* + u~ with the
only meditator is Z boson in Eq.(2.31)

4
Mzl = S5xof? [(98 + 63)° (B + [Kkfcos®0) + (g — gh)m? +8¢%g% Elklcosd|  (4.57)

Using the approximation m, = m, = 0, we can find the total cross section as

do et
70 = iz ol [(93 +92)° (1 + cos®0) + 89%950080} :
4
e
=0 = IXol* (9% + 92)° (4.58)

The nomalised distribution of cross-section is then reads

1 do 3
odcosfdg 167

8 2 2
(1 + cos®0) + QL%COSQ . (4.59)
(gv + 83)

Comparing with Eq.(4.55) and using the relations in Eq.(4.56), we have

8q% g> 2 2
Vi =2n(Ss) = (gf/:—g%)w Vo = 37 2 §<To> =0 (4.60)
2 2
— 2
where n = 9123 g; = — 29V9A2 . we can obtain
9r + 97 9y t 94
2gvga 1

while all other observables equal to zero which is totally the same with the results in helicity
method.

4.4 The so-called ”spin-density matrix” of Z boson and
photon in SM

Using the above method, If we can find the normalized angular distribution for the process e™ +
e~ — ut 4+ p~ which mediated by Z boson and photon, we will able to derive the so-called density
matrix elements. We use the word ”so-called” since it is not actually the density matrix while it
has two mediators. Based on the result in Eq.(2.39) of Chapter 2

do etlk|

0= 6252 [G1(s)|k[?cos?0 + Ga(s)E* + 4G5(s)E[k|cosf] . (4.62)
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We will find the total cross-section of our process with two mediators using approximation m,, = 0
as

4

== 362_7r EGl(s) + 2G2(5)] . (4.63)

Note that the approximation m, = 0 leads to G1(s) = G2(s). The nomalised distribution of
cross-section is then reads
1 do 3

z - — |1 2
~20 " 1o {( + cos’0) +

0056} . (4.64)

Using the same trick, Now we compare with Eq.(4.55) and use the relations in Eq.(4.56), we have

4G3(S) 2 2
Vi = 2n(Ss) Crls) Vo 5 3< 0) =0 (4.65)
Then two observables values read
1 2G5(s
(To) = —= (53 = 25a(s) (4.66)

7

Note that in both Z and Z-photon density matrix, there are only two non-zero observable. While
(Tp) in both cases have the same value and it is a constant. Thus, let’s focus on the (S;3) value,
it is just a number in Z density matrix while it becomes a function on the threshold energy /s in
the so-called Z-photon density matrix. The values of (S3) are indicated in Fig.(4.2), we can see
that the intersection is at v/s = my, so the so-called density matrix of Z and photon will becomes
the density matrix of Z boson when the threshold energy equal to mass of Z boson.

6:, —Z—photonf
— Z

-2F ]
_4} ]
—6} ]
L 1 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1
20 40 60 80 100 120 140
Vs (GeV)

Figure 4.1: The values of (S3) in two density matries
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4.5 The so-called ”spin-density matrix” of Z boson and

photon in SMEFT

Using the result in Chap.3, we have the cross-section of the process e +e~ — u*+ = in SMEFT
as follows
do 1 [A(Vs)(1 + cos0) + B(v/s)cost] (4.67)
dQ  64m2s ’ '
and the total cross-section reads
1
= A . 4.
0= 5 AWVS5) (4.68)
Now, we are able to find the normalized distribution of cross-section as
1 do 3 B(1/s)
——=—1(1 29 0] . 4.69
~90 " Ton (1+ cos )+A(\/§)cos (4.69)
Once again, we compare with Eq.(4.55) and use the relations in Eq.(4.56)
B(Vs)
Vi =2n(Ss) = , (4.70)
A(V/s)
2 2
Vo==—24/=(Tp) =0 4.71
o= 2 -~ 2/3(m) (1.71)
Then two observables values then read
1 B(Vs)
7)) = —, Sg) = — Y2, 4.72
10 B T
— sm
5- — " L
- ° — sMm
. E:H ) . Eleeu
g 0 $ o
<l & s
L g —— 6"
S| 1 0 \_ :
I S S S S S S ] 1o m 11 I I
0 50 100 150 200 0 50 100 150 200
s (Gev) Vs (Gev)

Figure 4.2: The values of (S3) in SMEFT when the Cyyiison = 0.1
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