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Introduction

In the way of searching new physics Beyond the SM (BSM), we assume that new physics effects
can be parameterized in Standard Model Effective Field Theory (SMEFT) when we expand
the effective Lagrangian by the power of expansion parameter Λ, where Λ is assumed to be the
typical energy scale of new physics.

The first two chapterof this thesis are based on Hong Minh’s thesis [1] which provide a lot
of techniques to calculate several physical quantities of interest for a given scattering process
(e+ + e− → t+ t̄) in both QED and SM.

This bachelor thesis aims to provide an overall perspective for SMEFT as well as studying
the effects of several dimension-six (D6) operators in this framework. More specifically, we
concentrate on the scattering process e+ + e− −→ t+ t̄ and fully polarized top-quark decay in
SMEFT. From this process, the effects of D6 operators can be obtained via physical observables
such as forward-backward asymmetry (for scattering process), W-boson spin observables (for
polarized top-quark decay into massive b-quark and polarized W-boson with leptonic decay).

This thesis is presented in the following chapters:

• Chapter 1: Scattering process e+ + e− −→ t + t̄ in QED
We start to calculate this process in the simple case, QED, from this we can perform the
calculation for several physical quantities of interest which is usefull for the next chapters.

• Chapter 2: Scattering process e− + e+ → t + t̄ in SM
We improve our calculation in SM case, also we depict the graph of several physical
observables.

• Chapter 3: Scattering process e− + e+ → t + t̄ in SMEFT
This is the main chapter of this thesis, we perform an overview of SMEFT, introduce the
dimension-six operators, mass eigenstates basic in SMEFT, and of crouse, we re-calculate
the Feynman rules which relevant with our process in SMEFT. Then we apply the new
Feynman rules to calculate our scattering process.

• Chapter 4: Fully polarized top-quark decays in SMEFT
In this chapter we introduce the spin density matrix of W-boson and the method to
calculate spin observables via this matrix. After that we consider the production of
polarized W-boson resulting from fully polarized top-quark decay in SMEFT. The results
will help us imporve the sensitivity for top-quark new physics.
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Chapter 1

Scattering process e+ + e− −→ t + t̄
in QED

1.1 Lagrangian of the process e+ + e− −→ t + t̄ in QED

Quantum Electrodynamics is a quantum field theory that describes the the interaction between
charged fermions and photons. Based on this theory, the full QED Lagrangian which relates
to our process:

LQED = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 + ψ̄[iγµDµ −mf ]ψ. (1.1.1)

The full Lagrangian in (1.1.1) is a combination of three part which provides the coupling of the
electromagnetic current to the photon field, as well as a general propagator. Let’s us introduce
briefly each part of this Lagrangian:

• The free electromagnetic field with the gauge-fixing term:

Lfullgf = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2, (1.1.2)

where the first term is the well know classical electromagnetic field Lagrangian with the photon
field Aµ and the field strengths F µν = ∂µAν − ∂νAµ. The next term is the gauge-fixing term
with ξ is a real constant called the gauge-fixing parameter. This part will help us derive the
general propagator which presented in the following section.

• The fermionic sector

Lfermion = ψ̄[iγµDµ −mf ]ψ. (1.1.3)

According to gauge theory, the interaction of charged fermions with each other could be derived
by requiring the invariance of Lagrangian under the local gauge transformation. In order to
keep this requirement, we replaced the normal derivative ∂µ into covariant derivative Dµ which
defined as:

Dµ = ∂µ − ieQfAµ. (1.1.4)

Substituting equation (1.1.4) into (1.1.3) we obtain the free fermionic component as well as the
interaction term between the gauge vector field and the electromagnetic current,

Lfermion = ψ̄
[
i/∂ −m

]
ψ + eψ̄γµψAµ. (1.1.5)
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General photon propagator with gauge-fixing parameter

1.1.1 General photon propagator with gauge-fixing parameter

Now we concerntrate on the gauge field with gauge-fixing term, let’s first apply the Euler-
Lagrange equation for (1.1.2) as below:

∂Lfullgf

∂ [∂σAλ]
= −1

4

[
∂Fµν

∂(∂σAλ)
F µν + gαµgβν

∂Fαβ
∂(∂σAλ)

Fµν

]
+

∂

∂ [∂σAλ]

[
− 1

2ξ
(∂µA

µ)(∂νA
ν)

]
= F λσ − 1

2ξ
gλσ [∂νA

ν + ∂µA
µ] ;

∂Lfullgf

∂Aλ
= 0.

With these equations, we obtain the equation of motion of the form:[
�gλρ −

(
1− 1

ξ

)
∂λ∂ρ

]
Aρ = 0. (1.1.6)

The Feynman propagator of the vector field, Dµν(x − y), is the solution of inhomogeneous
equation of motion (1.1.6) with a point-like source [3]:[

�gµρ −
(

1− 1

ξ

)
∂µ∂ρ

]
Dρν(x− y) = gµν δ

4(x− y). (1.1.7)

By using Fourier-transformation to express (1.1.7) in momentum-space,[
�gµρ −

(
1− 1

ξ

)
∂µ∂ρ

] ∫
d4p

(2π)4
Dρν(q)e

−iq(x−y) = gµν

∫
d4p

(2π)4
e−iq(x−y), (1.1.8)

we obtain the algebraic equation for photon propagator Dρν(q) as follow:[
−q2gµρ +

(
1− 1

ξ

)
qµqρ

]
Dρν(q) = gµν . (1.1.9)

Notice that Dρν(q) has a form of a second rank tensor and depend on two Lorentz indices, thus
we can guess that the structure of Dρν(q) should depend on momentum vectors and the metric
tensor. The most general form of photon propagator should be:

Dρν(q) = A(q2)qρqν +B(q2)gρν (1.1.10)

Substituting (1.1.10) into (1.1.9) and equalizing both sides of this equation, we get:

⇒


−B(q2)q2gµν = gµν[
−A(q2) + A(q2)

(
1− 1

ξ

)
+B(q2)

1

q2

(
1− 1

ξ

)]
q2qµqν = 0

⇔


B(q2) = − 1

q2

A(q2) =
1− ξ
q4

(1.1.11)

Therefore, we have gotten a formula for massless propagator, which is

iDρν(q) =
−i

q2 + iε

[
gρν − (1− ξ)qρqν

q2

]
. (1.1.12)
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Feynman rules in QED

As we can see, without the gauge-fixing term, equation (1.1.9) has no solution, and hence
the propagator for massless gauge field can not be defined. One thing to notice that the gauge-
fixing term does not satisfy gauge invariant, however, this term can only affect the photon
propagator (which is not a physical quantity), therefore breaking the gauge symmetry in this
case can be acceptable. Moreover, as a consequence of gauge invariant for all physical quantities
(observables), we shall see that the Feynman amplitude must be ξ − independent. Also, the
cancellation of gauge-fixing parameter will be performed in the next section.

1.2 Feynman rules in QED

1.2.1 Vertex factor of QED

As we shall see, the last term of (1.1.5) dictates the coupling of the charged current jµ = eψ̄γµψ
to the gauge vector field Aµ. Nevertherless, this is just a special case for the interaction of
elesctrons (positrons), in general, for the Dirac particles with electric charge eQf , the Lagragian
interaction takes the form

LintQED = −eQf ψ̄f (x)γµψf (x)Aµ(x). (1.2.1)

For instant, an electron has Qe = −1, and an up quark has Qt = +2/3. Notice that, the
Lagrangian in (1.2.1) is represented in space coordinate, let’s now Fourier transform the fermion
and gauge field to momentum space:

LintQED = −eQf
˜̄ψf (p1)γµψ̃f (p2)Ãµ(q)e−i(p1+p2+q)x = −eQf

˜̄ψf (p1)γµψ̃f (p2)Ãµ(q). (1.2.2)

Since the conservation of momentum must be satisfied at each vertex,

p1 + p2 + q = 0, (1.2.3)

thus, the exponential factor is vanished. Therefore, in the Feynman rules for interaction ver-
tices, all external momenta are considered to be incoming.

1.2.2 Feynman rules in QED

After collecting all informations of the full QED Lagragian, we now introduce a list of Feynman
rules in QED as follow:

• Vertex factor in QED:

ψf

ψ̄f

p2

p1

q
Aµ

= −ieQfγ
µ (1.2.4)

• Photon propagator in Rξ gauge:

γ
=
−i
q2

[
gµν − (1− ξ)qµqν

q2

]
(1.2.5)
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Feynman amplitude

• Fermion external lines:

– Fermion:

Incoming: (p) = u(p) (1.2.6)

Outgoing: (p) = ū(p) (1.2.7)

– Anti-fermion:

Incoming: (p) = v̄(p) (1.2.8)

Outgoing: (p) = v(p) (1.2.9)

1.3 Feynman amplitude

According to the Feynman rules listed in the previous section, we can draw all possible diagrams
which contribute to the scattering process e+ + e− −→ t + t̄. In case of our process, there is
only one Feynman diagram pointed out in Figure (1.1).

γ

e−(p1)

e+(p2) t̄(p4)

t(p3)

Figure 1.1: The Feynman diagrams of process e− + e+ −→ t+ t̄ in QED.

It is noticeable that we denote the four-momenta and spin indices of e−, e+, t, t̄ to be (p1, s),
(p2, s

′), (p3, r) and (p4, r
′), respectively. Besides, top-quark is described by the triplet colour

state, thus the colour indices for top and anti-top quark are sequentially α, β. In order to
preserve the charged colour, i.e the summation of all charged colour in final state is zero (since
electrons in initial state do not carry charged clour), the delta function δαβ is included. Thus,
all colour indices can be contracted. By applying the Feynman rules, we can write down
immediately the Feynman amplitude of our process as follow:

M = [v̄s′(p2)(ieγµ)us(p1)]× −i
q2

[
gµν − (1− ξ)qµqν

q2

]
×
[
ūαr (p3)

(
−i2

3
eγν
)
vβr′(p4)

]
δαβ

= −i2e
2

3q2
[v̄s′(p2)γµus(p1)][ūαr (p3)γµv

β
r′(p4)]δαβ + i(1− ξ)2e2

3q4
[v̄s′(p2)/qus(p1)][ūαr (p3)/qv

β
r′(p4)]δαβ

(1.3.1)

It is clear that the first term of (1.3.1) is ξ-independent while the second term depends on the
gauge-fixing parameter. This term can be simplified by using the identity,

qµ [v̄s′(p2)γµus(p1)] = v̄s′(p2)
[
/p2 + /p1

]
us(p1) = v̄s′(p2) [−me +me]us(p1) = 0, (1.3.2)
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Feynman amplitude

p1 = (E, ~p1)

p2 = (E,−~p2)

p4 = (E,−~p4)

p3 = (E, ~p3)

θ

Figure 1.2: The scattering process e− + e+ −→ t+ t̄ in CMS.

and analogous identity for another fermion line. Notice that we have taken advantage the
principle of momentum conservation, i.e q = p1 + p2 = p3 + p4, and the Dirac equations at
each vertex. Now, we can see that the gauge-fixing parameter is completely cancelled. From
identity (1.3.2), we obtain the ξ-independent Feynman amplitude as follow:

M = −i2e
2

3q2
[v̄s′(p2)γµus(p1)][ūαr (p3)γµv

β
r′(p4)]δαβ. (1.3.3)

In most experiments the initial state of electron and positron beams are unpolarized, moreover,
we also ignore the spin states of outgoing beams. Therefore, we have to take average the squared
amplitude on initial spin indices s, s′ and sum over top quark spin indices r, r′. Taking the
hermitian conjugate of (1.3.3), the unpolarized squared amplitude is presented as

|M0|2 =
1

2
· 1

2

∑
s,s′

∑
r,r′

∑
αβ

MM†

=
e4

9q4

∑
s,s′,r,r′

[v̄s′(p2)γµus(p1)ūs(p1)γνvs′(p2)] [v̄r′(p4)γνur(p3)ūr(p3)γµvr′(p4)]

=
e4

9q4
Tr
[
( /p2 −me)γ

µ( /p1 +me)γ
ν
]
Tr
[
( /p4 −mt)γν( /p3 +mt)γµ

]
. (1.3.4)

Notice that we have used a bit Dirac algebra to derive this equation, all of the techniques for
calculating the traces in (1.3.4) have been mentioned in [2], then we get a result:

|M0|2 =
32e4

3s2
[(p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3) +m2

t (p1 · p2)], (1.3.5)

with an approximation me ' 0, since mt � me. To obtain a more explicit formula, let’s choose
to work specifically in CM frame and express the vectors p1, p2, p3, p4 and q in terms of the
basic kinematic variables in that frame. All information about energy and momentum of each
particles is shown in Figure (1.2). Here is several kinematic relations in CM frame:

=⇒



|~k| =
√
E2 −m2

t

p1 · p3 = p2 · p4 = E2 − ~p · ~k = E2 − E|~k|cosθ
p1 · p4 = p2 · p3 = E2 + ~p · ~k = E2 + E|~k|cosθ
q2 = s = (p1 + p2)2 = p2

1 + 2p1 · p2 + p2
2 = 4E2

p1 · p2 = 2E2

p3 · p4 = E2 + |~k|2,

(1.3.6)
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Physical results

notice that an approximation me ' 0 gave us |~p|2 = E2 and p2
1 = p2

2 = m2
e = 0. Substituting

these kinematic relations into (1.3.5), we obtain the Feynman squared amplitude, which is

|M0|2 =
64e4E2

3s2

[
E2 + |~k|2cos2θ +m2

t

]
. (1.3.7)

1.4 Physical results

1.4.1 Total cross-section

For the two body reaction process, the differental cross-section formular is given by

dσ

dΩ
=

|M0|2
64π2 (Ee− + Ee+)2

|~k|
|~p|

⇒ dσ

d(cosθ)
=

∫ 2π

0

dφ
|M0|2

64π2 (Ee− + Ee+)2

|~k|
|~p| =

e4|~k|
6πEs2

[
E2 + |~k|2cos2θ +m2

t

]
. (1.4.1)

Integrate over θ angle, we obtain the total cross-section as follow:

σT =

∫ 1

−1

dσ

d(cosθ)
d(cosθ) =

e4|~k|
3πEs2

[
E2 +

|~k|2
3

+m2
t

]
. (1.4.2)

As we know, the number of events in a scattering process is directly proportional to the
total cross-section, where L is a proportional factor, which often called Luminosity. Hence, the
total number of top quarks generated in the annihilated reaction for the pair of electron and
positron will be measured by the total cross-section in (1.4.2).

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

s (GeV)

σT [fb]

Figure 1.3: The total cross-section of process e− + e+ −→ t+ t̄ in QED.

The dependence of the total cross-section, σT , on the total initial energy-
√
s is presented in

figure (1.3). From this figure, we can see that the threshold energy to produce the pair top,
anti-top have to larger than 2mt ' 346.42 GeV.
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Physical results

1.4.2 Angular distribution of top-quark

In order to obtain more informations about our scattering process at each energy level, let us
looking for their distribution. One of a crucial distribution we need to consider is the angular
distribution which help us can adjust the detector to obtain most of outgoing particles. We
notice that this scattering process is symmetric azimuthal, therefore the angular distribution
is nothing but the integration of the differential cross-section with regards to φ, we shall have:

dσ

dθ
=

e4|~k|
6πEs2

[
E2 + |~k|2cos2θ +m2

t

]
sin θ. (1.4.3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

50

100

150

200

θ /rad

dσ/dθ [fb]

(a)
√
s = 500 GeV

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

θ /rad

dσ/dθ [fb]

(b)
√
s = 3 TeV

Figure 1.4: The angular distribution of process e− + e+ −→ t+ t̄ in QED.

From figure 1.3, we will choose two values of
√
s for comparision:

√
s = 500 GeV where the

cross-section is maximum, and
√
s = 3 TeV for ultra-relativistic particles. We can see that

figure 1.4 illustrates the angular distribution for our process in QED at two difference energy
levels, 500 (GeV) and 3 (TeV), respectively. These distributions are perfectly symmertic in
non-ultra- and ultra-relativistic cases.

1.4.3 Transverse- and longitudinal-momentum distributions

Transverse momentum distribution:
Another necessary distribution is the transverse and longitudinal momentum distribution of
top-quark. We can accquire this quantities by switching from angular distribution to transverse
(longitudial) momentum distribution, the transformation formular is given by

p(kt) =
∑
i

p(θi)Ji =
∑
i

p(θi)
dθ

dkt(θ)

∣∣∣∣∣
θ=θi

(1.4.4)

Beside, for the transverse momentum, we still have:

kt = |~k|sinθ ⇒


θ1 = arcsin

kt

|~k|
θ2 = π − arcsin kt

|~k|

(1.4.5)
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Here we have introduced the factor Ji which called Jacobian, the explicit form is:∣∣∣∣ dθdkt
∣∣∣∣ =

1

|~k||cosθ|
=

1

|~k|
√

1− sin2θ

⇒
∣∣∣∣ dθdkt |θ=θ1

∣∣∣∣ =

∣∣∣∣ dθdkt |θ=θ2
∣∣∣∣ =

1

|~k|
√

1− k2t
|~k|2

=
1√

|~k|2 − k2
t

(1.4.6)

Substitute equation (1.4.6) into (1.4.4), we shall have:

dσ

dkt
=
∑
i

dσ

dθ
|θ=θi

∣∣∣∣ dθdkt |θ=θi
∣∣∣∣

=
2∑
i=1

e4|~k|
6πEs2

[
E2 + |~k|2cos2θi +m2

t

]
sin θi

1√
|~k|2 − k2

t

=
e4kt (2E2 − k2

t )

3πEs2

√
|~k|2 − k2

t

(1.4.7)

Longitudinal momentum distribution:
Similarity calculation, we could find the longitudinal momentum distribution of top-quark, for
the longitudinal momentum we have:

kl = |~k|cosθ ⇒


θ1 = arccos

kl

|~k|
θ2 = −arccos kl

|~k|

(1.4.8)

Since θ ∈ [0, π], the associated Jacobian is:∣∣∣∣ dθdkl |θ=θ1
∣∣∣∣ =

1

|~k||cosθ1|
=

1√
|~k| − k2

l

(1.4.9)

Finally, we obtain the longitudinal momentum distribution of top-quark in CM frame:

dσ

dkl
=
dσ

dθ
|θ=θ1

∣∣∣∣ dθdkl |θ=θ1
∣∣∣∣

=
e4|~k|

6πEs2

[
E2 + |~k|2 k

2
l

|~k|2
+m2

t

]√
1− k2

l

|~k|2
1√

|~k|2 − k2
t

=
e4

6πEs2

[
E2 + k2

l +m2
t

]
(1.4.10)

Combining all ingredients, we now depicts the graph 1.7 of transverse (longgitudinal) momen-
tum distribution of top-quark at threshold

√
s = 500 GeV:

1.4.4 Rapidity and pseudo-rapidity distributions of top-quark

Rapidity distribution:
Basicaly, rapidity is defined as:

y =
1

2
Ln

[
E + kl
E − kl

]
⇒
{
~k ‖ Oz ⇔ y → ±∞
~k ⊥ Oz ⇔ y → 0

(1.4.11)
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(a) Transverse momentum distribution
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(b) Longitudinal momentum distribution

Figure 1.5: Transverse and longitudinal momentum distribution at
√
s = 500 GeV.

On the orther hand, the rapidity can be represented in term of longitudinal momentum:

y = arctanh
kl
E
⇒ kl = E tanh(y) (1.4.12)

This definition would allow us to switch from longitudinal momentum distribution to rapidity
distribution. By using repeatly the procedure of changing variables, we shall have:

p(y) =
∑
i

p(kil)
dkil
dy(kl)

(1.4.13)

The associated Jacobian is: ∣∣∣∣dkldy |kl=E tanh y

∣∣∣∣ = E
(
1− tanh2y

)
(1.4.14)

Finally, the rapidity ditribution of top-quark in CM frame is presented as follow:

dσ

dy
=
dσ

dkl
|kl=E tanh y

∣∣∣∣dkldy |kl=E tanh y

∣∣∣∣
=

e4

6πs2cosh2y

[
E2(1 + tanh2y) +m2

t

]
(1.4.15)

Pesudo-rapidity distribution:
Furthermore, physicstis also use pseudo-rapidity to describe ultra-relativistic particles that is
defined as:

η =
1

2
Ln

(
|~k|+ kl

|~k| − kl

)
(1.4.16)

Notice that we could also express pseudo-rapidity as a function of θ:

η = −Ln
(
tan

θ

2

)
⇒ θ = 2arctan(e−η) (1.4.17)

Let’s switch from angular distribution to pseudo-rapidity distribution as follow:

p(η) = p(θ)|θ=2arctan(e−η)

∣∣∣∣ dθ

dη(θ)
|θ=2arctan(e−η)

∣∣∣∣ (1.4.18)
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The associated Jacobian is:∣∣∣∣ dθ

dη(θ)
|θ=2arctan(e−η)

∣∣∣∣ =

∣∣∣∣ −2e−η

1 + e−2η

∣∣∣∣ =
−2

eη + e−η
=
−1

cosh η
(1.4.19)

Thus, we obtain the pseudo-rapidity distribution:

dσ

dη
=

e4|~k|
6πEs2cosh2η

[
E2 +m2

t + (E2 −m2
t )tanh2η

]
(1.4.20)
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(a) Rapidity distribution
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(b) Pesudo-rapidity distribution

Figure 1.6: Rapidity and pseudo-rapidity distribution for
√
s = 500 GeV.

Although pseudo-rapidity distribution looks like rapidity, however, their numerical values is
not similar. Because of the mass of top-quark, the heaviest particle with mt ' 173.21 GeV,
hence we cannot ignore the mass of top-quark at level

√
s = 500 GeV. Thus, let us consider

the high energy case compare with this mass:

-10 -5 0 5 10
0

1

2

3

4

5

y

dσ/dy [fb]

(a) Rapidity distribution
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4

5

η

dσ/dη [fb]

(b) Pesudo-rapidity distribution

Figure 1.7: Rapidity and pseudo-rapidity distribution for
√
s = 3 TeV.

Now we can see, the two distributions are similar with each other.
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Chapter 2

Scattering process e− + e+ −→ t + t̄
in SM

2.1 An overview of Standard Model

The Standard Model is the particular physical model which summarise our present knowledge
of the elementary constituents of matter and their interactions. Based on the framework of
Quantum Field Theory and group theory, it is invariance under the local gauge transformations
with the symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y , with color group SU(3)C for the strong
interaction and with SU(2)L⊗U(1)Y for the electroweak interaction spontaneously broken by
the Higgs mechanism. More specifically, the interaction between each elementary particles are
described by gauge vector bosons, with gluons for the strong interaction and W±, Z, γ for the
electroweak interaction. Besides, in the Standard Model, the fermion fields are classified into
three generations of Leptons and Quarks which are mentioned by a table below:

Standard Model of Elementary Particles

Fermions Gauge Bosons Higgs Boson

Quarks
u c t g

H
d s b γ

Leptons
νe νµ ντ W±

e µ τ Z

I II III Three generation of fermions

Table 2.1: Classification of elementary particles in the SM

According to the SM, the gauge bosons W±, Z acquire masses through Higgs mechanism while
fermions gain masses with the help of gauge-invarinat Yukawa interactions and Higgs field.
Notice that in the genuine SM neutrinos are considered as massless and never exist right-
handed neutrino fields. Further information for the formulations of QCD and electroweak
interaction can be found in [3]. Now we move on the full Lagrangian of the Standard Model
as well as their notations and conventions.
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Standard Model Lagrangian

2.2 Standard Model Lagrangian

In the spirit of SUC(3)⊗SUL(2)⊗UY (1) invariant, that symmetry motivates us to write down
the full Lagrangian as follows:

L = Lfermionic + Lgauge + LHiggs + LY ukawa + Lgauge−fixing + LFPG, (2.2.1)

where the combination of kinetic fermion term Lfermionic, the kinetic of gauge field which also
called the pure Yang-Mill field Lgauge, the Higgs sector LHiggs and the Yukawa interaction
LY ukawa gives us the classical SM Lagrangin. In order to quantize this Lagrangian and help
us derive the gauge boson propagator, the gauge-fixing term and Faddeev-Popov (Ghost) La-
grangian are introduced. Notice that, the Ghost terms just only appear in the higher order
calculations, that means, in the scope of our thesis (at tree-level) these terms are completely
absent. Additionally, although the SM’s classical Lagrangian is gauge invariant, however, the
gauge-fixing terms are not. Fortunately, the full Lagrangian in (2.2.1) preserve another sym-
metry which called BRST symmerty (furhter reading can be found in [2]). Another thing we
should know is that the LY ukawa which responses for the mysterious massive problem of all
matter fields, by expanding this term we are able to collect the mass term of fermions and
their couplings with Higgs field (we will get back to this term in next chapter when calculate
the vertex factors of fermion-Goldstone boson).

In order to be consistent with the next chapters, we will follow the conventions in [4]. Let
us express explicitly the classical Lagrangian of SM as follows:

LSM = −1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (Dµφ)† (Dµφ)−
[
−µ2φ†φ+

λ

2

(
φ†φ
)2
]

+ i
(
l̄L /DlL + ēR /DeR + q̄L /DqL + ūR /DuR + d̄R /DdR

)
−
(
l̄LΓeeRφ+ q̄LΓuuRφ̃+ q̄LΓddRφ+ h.c

)
. (2.2.2)

Notice that the sign convention for covariant derivative is

Dµ = ∂µ + igsτ
AGA

µ + ig2τ
IW I

µ + ig1Y Bµ, (2.2.3)

where τA =
1

2
λA and τ I =

1

2
σI are the generators of SU(3) and SU(2) group, respectively,

besides, λA, σI are sequentially the Gell-Mann and Pauli matrices. Also, Γe,u,d (Yukawa cou-
plings) are 3×3 matrices in generation space. The notation Y stands for the weak hypercharge,
their eigenvalues have been listed in the Table 2.2.

Also, the field strengh tensors are given by
GA
µν = ∂µG

A
µν − ∂νGA

ν − gsfABCGB
µG

C
ν

W I
µν = ∂µW

I
µν − ∂νW I

ν − g2ε
IJKW J

µW
K
ν

Bµν = ∂µBν − ∂νBµ.

(2.2.4)

It is crucial to notice that the gauge boson can be collected by expanding the kinetic term of
Higgs field. However, to diagonolize the mass terms (identify the physical gauge fields), let us
introduce a tranformation from weak eigenstates to mass eigenstates as follow:

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (2.2.5)(

Zµ
Aµ

)
=

(
cosθw sinθw
−sinθw cosθw

)(
W 3
µ

Bµ

)
, (2.2.6)
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Vertex factor of process e− + e+ −→ t+ t̄ in SM

Fermions Scalars

Field ljLp =

(
νp
ep

)
L

eRp qαjLp =

(
uαp
dαp

)
L

uαRp dαRp φj

Hypercharge Y −1

2
−1

1

6

2

3
−1

3

1

2

Table 2.2: SM hypercharge. Chronologically, j = 1, 2, α = 1 · · · 3, p = 1 · · · 3 are isospin, colour
and generation indices.

where θw is Weinberg angle, and tanθw = g1/g2. With these transformations, the mass of W±,
Z boson and photon (Aµ) are presented as

MW =
g2v

2

MZ =
1

2
v
√
g2

1 + g2
2 =

g2v

2cw
MA = 0

, (2.2.7)

for convenience, we denote sw, cw abbreviate for sinθw and cosθw. And last but not least, the
convention for complex conjugate of Higgs field is

φ̃j = εjk
(
φk
)∗
, with ε12 = +1 (totally anti-symmetric tensor). (2.2.8)

2.3 Lagrangian of the process e− + e+ −→ t + t̄

Arcorrding to SM Lagrangian as present in the previous section, we could write down La-
grangian sectors which coresspond to our process:

Lprocess = Lfermion + Lgauge + LHiggs + Lgauge−fixing, (2.3.1)

in term of this Lgrangian process, equation (2.3.1) is a combination of four essential part
which help us derive the interaction of the fermion current with gauge fields, as well as general
propagator. In case of our process, the requirement of charge conservation has to include
and therefore the weak interaction must be mediated by neutral gauge bosons like Z-boson or
photon. For simplicity, we just only consider the combination of W 3

µ and Bµ in term of gauge-
field Lagrangian as well as their coressponding gauge-fixing terms. Notice that the matter
fields in our process are electron and top-quark, hence we can expand the fermion sector as

Lfermions =
∑
f

iL̄f /DLf +
∑
f

iR̄ /DRf

= il̄L1 /DlL1 + iēR1 /DeR1 + iq̄L3 /DqL3 + iūR3 /DuR3, (2.3.2)

we denote that lL1, qL3 are left-handed leptons and quarks which are

EL =

(
νe
e

)
L

; QL =

(
t
b

)
L

. (2.3.3)
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Vertex factor of process e− + e+ −→ t+ t̄ in SM

2.4 Vertex factors of process e− + e+ −→ t + t̄

2.4.1 Neutral-current coupling constant

The interaction of neutral-current mediated by Z-boson and photon could be extracted in the
kinetic term of fermionic sector. Since the interaction terms are hidden in the part that involes
W 3
µ and Bµ gauge fields, it is reasonable that we can introduce a neutral covariant derivative

DN
µ as follow: 

DN
µ ψ

L
f =

(
ig2

σ3

2
W 3
µ + ig1Y Bµ

)
ψLf

DN
µ ψ

R
f = (ig1Y Bµ)ψRf ,

(2.4.1)

substituting (2.4.1) into (2.3.2) the Lagrangian interaction mediated by neutral bosons is:

Lneutralint = −L̄fγµ
(
g2
σ3

2
W 3
µ + g1Y Bµ

)
Lf − R̄fγ

µ (g1Y Bµ)Rf . (2.4.2)

By using the relation between W 3
µ , Bµ and physical fields like Zµ, Aµ as we known in (2.2.6),

we obtain the expression of Lagrangian interaction:

Lneutralint = −L̄fγµ
[
g2
σ3

2
(cwZµ + swAµ) + g1Y (−swZµ + cwAµ)

]
Lf

− R̄fγ
µ [g1Y (−swZµ + cwAµ)]Rf

= −L̄fγµ
[
g2

cw

(
c2
wI3 − s2

wY
)
Zµ + g2swQfAµ

]
Lf

− R̄fγ
µ

[
− g2

cW
s2
wY Zµ + g2swY Aµ

]
Rf , (2.4.3)

where I3 is an eigenvalues of σ3/2 operator. Substituting all fermion types of our process and
collecting all suitable terms we will derive a coupling constants.

Left-handed fermions

1. For Lf =

(
νe
e

)
L

:

iL̄eγ
µDN

µ Le = − (ν̄e ē)L γ
µ

[
g2

cw

(
c2
wI3 − s2

wYe
)
Zµ + g2sw (I3 + Ye)Aµ

](
νe
e

)
L

= − g2

cw

[
c2
wI

3
e − s2

wYe
]
Zµ (ēLγ

µeL)− gswQeAµ (ēLγ
µeL)

⇒ Linte−L = − g2

cw

[
−1

2
+ s2

W

]
Zµ (ēLγ

µeL) + g2swAµ (ēLγ
µeL) . (2.4.4)

2. For Lf =

(
t
b

)
L

:
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iQ̄eγ
µDN

µ Qe = −
(
t̄e b̄

)
L
γµ
[
g2

cw

(
c2
wI3 − s2

WY
)
Zµ + g2sw (I3 + Y )Aµ

](
t
b

)
L

= − g2

cw

[
c2
wI

3
t − s2

wY
]
Zµ (t̄Lγ

µtL)− g2swQtAµ (t̄Lγ
µtL)

⇒ Linttop−L = − g2

cW

[
1

2
− 2

3
s2
w

]
Zµ (t̄Lγ

µtL)− 2

3
gswAµ (t̄Lγ

µtL) . (2.4.5)

Right-handed fermions: In this case we just consider only eR and tR as below:∑
e,t

iR̄fγ
µDN

µ Rf = −ēRγµ
[
− g2

cw
s2
wY Zµ + g2swY Aµ

]
eR − t̄Rγµ

[
− g2

cw
s2
wY Zµ + g2swY Aµ

]
tR

= − g2

cw
s2
wZµ (ēRγ

µeR) + g2swAµ (ēRγ
µeR)

+
2g2

3cw
s2
wZµ (t̄Rγ

µtR)− 2

3
g2swAµ (t̄Rγ

µtR) . (2.4.6)

We also notice that the quantum number, isospin, can be calculated through the weak hyper-
charge (listed in Table 2.2) with the help of Gell-Mann-Nishijima relation, Q = I3 + Y . The
electric charge of electron and top quark are -1 and +2/3, respectively. Now we combinding
all ingredients which yields:

Le−int = − g2

cw

[
−1

2
+ s2

w

]
Zµ (ēLγ

µeL) +
g2

cw
s2
wZµ (ēRγ

µeR) + g2swAµ (ēLγ
µeL + ēRγ

µeR)

= geLZµ (ēLγ
µeL) + geRZµ (ēRγ

µeR) + eAµ (ēLγ
µeL + ēRγ

µeR) (2.4.7)

Lt−int = − g2

cw

[
1

2
− 2

3
s2
w

]
Zµ (t̄Lγ

µtL) +
2g2

3cw
s2
wZµ (t̄Rγ

µtR)− 2

3
g2swAµ (t̄Lγ

µtL + t̄Rγ
µtR)

= gtLZµ (t̄Lγ
µtL) + gtRZµ (t̄Rγ

µtR)− 2

3
eAµ (t̄Lγ

µtL + t̄Rγ
µtR) (2.4.8)

Notice that g2sw = e which also called electric charge.

2.4.2 Vertex factors

To derive the vertex factor of our process, we need to perform the Lagrangian interation form
similar with eēAµ, which mentioned in V-A theory, by the way of using Chialrity operators:

ψL = PLψ =
1− γ5

2
ψ

ψR = PRψ =
1 + γ5

2
ψ

(2.4.9)

Let us transform a bit general Lagrangian interaction to convert like a form vector-axial:

Lint = gLAµ(ψ̄Lγ
µψL) + gRAµ(ψ̄Rγ

µψR)

= gLAµψ
†1− γ5

2
γ0γµ

1− γ5

2
ψ + gRAµψ

†1 + γ5

2
γ0γµ

1 + γ5

2
ψ

= Aµ

[
1

2
(gL + gR)(ψ̄γµψ)− 1

2
(gL − gR)(ψ̄γµγ5ψ)

]
(2.4.10)

= Aµ

[
1

2
gV (ψ̄γµψ)− 1

2
gA(ψ̄γµγ5ψ)

]
, (2.4.11)
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from (2.4.11) we can express the Lagrangian interaction of electron and top quark as follow:

Le−int = Zµ

{
1

2

(
− g2

2cw
[−1 + 4sw]

)
[ēγµe]− 1

2

(
g2

2cw

)
[ēγµγ5e]

}
+ Aµ

[
1

2
(2g2sw)

]
(ēγµe), (2.4.12)

Lt−int = Zµ

{
1

2

(
− g2

2cw
[
1

2
− 4

3
sw]

)
[t̄γµt]− 1

2

(
− g2

2cw

)
[t̄γµγ5t]

}
+ Aµ

[
1

2

(
−4

3
g2sw

)]
(t̄γµt). (2.4.13)

More convenience, all coupling constants of neutral-current interacting with Z-boson and pho-
ton are summerized in the Table 2.3 below:

fermions gL gR gV gA

Z-boson
e µ τ − g2

cw

(
−1

2
+ s2

w

)
− g2
cw
s2
w − g2

2cw
(−1 + 4s2

w) g
2cw

u c t − g2
cw

(
1
2
− 2

3
s2
w

)
2
3
s2
w
g2
cw

− g2
2cw

(1
2
− 4

3
s2
w) − g2

2cw

Photon
e µ τ g2sw g2sw 2g2sw 0
u c t −2

3
g2sw −2

3
g2sw −4

3
g2sw 0

Table 2.3: Summerize EW coupling mediated by Z-boson and photon

2.5 Propagator of Z-boson

Analogous with QED case, next step, we will find the propagator of Z-boson. The kinetic and
mass temrs of Z-boson are proceeded via expanding the gauge and Higgs kinetic sector of SM
Lagragian (2.2.2), then combinding with the gauge-fixing terms we shall have:

LZ = −1

4
(∂µZν − ∂νZµ) (∂µZν − ∂νZµ) +

1

2
m2
ZZµZ

µ +
1

2ξZ
(∂µZµ)2 (2.5.1)

Applying Euler-Lagrange equation for (2.5.1) provide the equation of motion as[(
� +m2

Z

)
gµρ −

(
1− 1

ξZ

)
∂µ∂ρ

]
Dρν(x− y) = gµν δ

4(x− y), (2.5.2)

by Fourier transform, we have[(
−q2 +m2

Z

)
gµρ +

(
1− 1

ξZ

)
qµqρ

]
Dρν(q) = gµν . (2.5.3)

Now we see, (2.5.3) has a similar form with (1.1.9), then applying the same procedure as we
have done in QED case, the general propagator of Z-boson is

Dρν(q) =
−1

q2 −m2
Z

[
1− (1− ξZ)

qρqν
q2 − ξZm2

z

]
. (2.5.4)

It is crucial to notice that the propagator (2.5.4) will generate a divergence where
√
s = mZ .

However, this divergence will appear if the mass of mediated gauge bosons, mgauge−boson, larger
than the threshold energy of their corresponding process. Fortunately, the threshold energy of
our process is 2mt > mZ , thus this divergence will not happen.
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2.6 Feynman rules

• Photon propagator:

γ
= − i

q2

[
gµν − (1− ξA)

qµqν
q2

]
(2.6.1)

• Z-boson propagator:

Z = − i

q2 −m2
Z

[
gµν − (1− ξZ)

qµqν
q2 − ξm2

Z

]
(2.6.2)

Notice that, in this chapter we set ξ →∞ (unitary gauge) when calculate, in the next section
we shall work with general propagators in Rξ-gauge. The Feynman rules for external lines are
the same with QED. Collecting all informations from the Lagrangian interaction, the vertex
factors are

• The vertex factors

e−

e+

p2

p1

q
Aµ

= ieγµ (2.6.3)

e−

e+

p2

p1

q
Zµ

= i
1

2
γµ
(
geV − geAγ5

)
(2.6.4)

t

t̄

p2

p1

q
Aµ

= −i2
3
eγµ (2.6.5)

t

t̄

p2

p1

q
Zµ

= i
1

2
γµ
(
gtV − gtAγ5

)
(2.6.6)
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2.7 Total cross-section

γ

e−(p1)

e+(p2) t̄(p4)

t(p3)

+

e+(p2)

e−(p1)

Z

t̄(p4)

t(p3)

Figure 2.1: The Feynman diagrams of process e− + e+ −→ t+ t̄ in SM.

Base on the propagators and all vertices which calculated before, we are able to write down
all contributing diagrams of process e+ + e− → tt̄ up to tree level. In unitary gauge, there are
two diagrams performed in the figure 2.1 contribute to our process, by appying Feynman rules,
the Feynman amplitude is

M =Mγ +MZ , (2.7.1)

with Mγ and MZ are:

Mγ = [v̄s′(p2)(ieγµ)us(p1)]

[−i
s

(
gµν − (1− ξA)

qµqν
s

)] [
ūr(p3)

(
−i2

3
eγν
)
vr′(p4)

]
δαβ

(2.7.2)

MZ =

[
v̄s′(p2)

i

2

(
geV γ

µ − geAγµγ5
)
us(p1)

] [ −i
s−m2

Z

(
gµν −

qµqν
m2
Z

)]
×
[
ūr(p3)

i

2

(
gtV γ

ν − gtAγνγ5
)
vr′(p4)

]
δαβ, (2.7.3)

notice that δαβ appeare for colour charge conservation, with this colour indices are contracted.
We also have the law of conservation momentum at all vertices, which could be exploited as
q = p1+p2, thus we can use the Mandelstam variables, s = q2. Let us transform a bit to simplify
eqs.(2.7.2) and (2.7.3). First of all, we prove that the Feynman amplitude of γ−diagram is
ξ−independent, the terms which proportion with gauge-fixing parameter are

Mgf
γ = i

2(1− ξA)e2

3s2
[v̄s′(p2)/qus(p1)][ūr(p3)/qvr′(p4)]. (2.7.4)

By using the same identites like 1.3.2, we shall have

v̄s′(p2)/qus(p1) = v̄s′(p2)( /p1 + /p2)us(p1) = mev̄s′(p2)us(p1)−mev̄s′(p2)us(p1) = 0, (2.7.5)

from 2.7.5 we can see that Mγ does not depend on ξA. At this point, we obtain:

Mγ = −i2e
2

3s
[v̄s′(p2)γµus(p1)] [ūr(p3)γµvr′(p4)] δαβ. (2.7.6)

22



Physical results in SM

With the same procedure have done before, the Feynman amplitude term of Z-boson also
simplified as below:

Mgf
Z =

−i
4(s−m2

Z)m2
Z

[
v̄s′(p2)(geV /q − geA/qγ5)us(p1)

] [
ūr(p3)(gtV /q − gtA/qγ5)vr′(p4)

]
, (2.7.7)

here we introduce a new identity

qµv̄s′(p2)γµ(1− γ5)us(p1) = 0− v̄s′(p2)( /p1 + /p2)γ5us(p1)

= 2mev̄s′(p2)γ5us(p1), (2.7.8)

and so do with second term, combinding all pices of (2.7.7), we obtain:

Mgf
Z = i

memt

(s−m2
Z)m2

Z

[v̄s′(p2)geAγ
5us(p1)][ūr(p3)gtAγ

5vr′(p4)] ' 0. (2.7.9)

Since, the mass of electron is tiny compare with Z-boson and the energy threshold to happen
this sacttering, therefore we can set me ' 0, approximately, hence equation (2.7.9) is vanished.
The Feynman amplitude for Z-boson is

MZ =
i

4(s−m2
Z)

[
v̄s′(p2)

(
geV γ

µ − geAγµγ5
)
us(p1)

] [
ūr(p3)

(
gtV γµ − gtAγµγ5

)
vr′(p4)

]
δαβ.

(2.7.10)

With all ingredients were calculated explicitly, we shall have the Feynman squared amplitude
by taking a sum average of initial spin indices, the sum over spin and colour indices of out-going
top-quark as follow:

|M0|2 = 3 · 1

2
· 1

2

∑
s,s′r,r′

(
|Mγ|2 + |MZ |2 +MγM†

Z +MZM†
γ

)
, (2.7.11)

with colour indices have been contracted, summing over colour indices yields the factor 3. This
Feynman squared amplitude have been calculated by FORM [5], after that we calculate the
total cross-section with Mathematica 10.4.

2.8 Physical results

In two-body phase space, the differential cross-section given by

dσ

dΩ
=

|M0|2
64π2 (Ee− + Ee+)2

|~k|
|~p|

⇒ σT =

∫ 1

−1

dσ

d(cosθ)
d(cosθ) =

∫ 1

−1

∫ 2π

0

|M0|2
64π2 (Ee− + Ee+)2

|~k|
|~p|dφ d(cosθ). (2.8.1)

Before we present the result of total cross-section, let us briefly introduce the input parameters.
In this thesis, we have used data from PDG [6] which are listed as follows:

MW = 80.385 GeV; MZ = 91.1876 GeV;

Mtop = 173.21 GeV; GF = 1.166378.10−5 GeV−2. (2.8.2)

From these input parameters, we can calculate straightforward another physical constant. Re-
markable that, we also have some following relations:
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cosθw =
mW

mZ

;
g2

2cosθw
=
(√

2GFm
2
Z

)1/2

; tanθw =
g1

g2

, (2.8.3)

moreover, some physical constants can be expressed in term of these parameters as

e =
g1g2√
g2

1 + g2
2

; v =
(√

2GF

)−1/2

. (2.8.4)

Now we can depict the dependence of the total cross-section on the center of mass energy as
figure 2.2. In this figure, we also plot the QED cross-section to help us comparision. As we can

Total cross-section

SM

QED
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100
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Figure 2.2: The total of process e− + e+ −→ t+ t̄ in SM and QED.

see, the total cross-section is raising significantly from the threshold energy of our process and
reach a peak when

√
s = 400 ∼ 500 GeV with the maximum value approximate 717 [fb]. From

figure 1.2, we can choose
√
s = 500 GeV to point out some relevant distributions. We also

present some distributions as we have done in QED case. Firstly, we present the comparision
of angular distribution between QED and SM in figure 2.3:
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s = 500 GeV
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Figure 2.3: The angular distribution in SM and QED.
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Figure 2.4: The forward-backward asymmetry.

From figure 2.2 we can easily verify that the angular distribution in SM is considerably asym-
metric while in QED this asymmetry never appear. In order to understand this asymmertry,
physictis introduced a quantity called the forward-backward symmetry, AFB, which defined as:

AFB =
σF − σB
σF + σB

=
σF − σB
σT

, (2.8.5)

where we have

σF =

∫ π/2

0

dσ

dθ
dθ, and σB =

∫ π

π/2

dσ

dθ
dθ. (2.8.6)

From this formula, we can plot the forward-backward asymmetry as a function with respect to√
s as figure 4.1. Now we move on another distribution such as transverse- and longitudinal-

momentum distribution, rapidity and pseudo-rapidity distribution as follows:
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(a) Transverse momentum distribution
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(b) Longitudinal momentum distribution

Figure 2.5: Transverse- and longitudinal-momentum distribution for
√
s = 500 GeV.
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Figure 2.6: Rapidity and pseudo-rapidity distribution for
√
s = 500 GeV.

At relativistic high energy, the rapidity and pseudo-rapidity distributions are
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Figure 2.7: Rapidity and pseudo-rapidity distribution for
√
s = 3 TeV.
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Chapter 3

Scattering process e− + e+→ t + t̄
in SMEFT

3.1 An introduction to SMEFT

Until nowadays, the Standard Model for strong and electroweak interactions has been tested
with very high accuracy experiments and yielded a great results in phenomenological predic-
tions. Since the Higgs boson has been discovered, the picture of Standard Model has become
the theory of spontaneous symmetry breaking at an Electroweeak Scale (EW) with the vaccum
expectation value-v ' 246 GeV. Nevertheless, if we consider the Standard Model just describes
well physical phenomenas at EW scale, the signal of new physics beyond the SM may be hidden
in the experimental errors of measurements. Thus, we assume that new physics effects can be
parameterized in Standard Model Effective Field Theory (SMEFT) when we expand the effec-
tive Lagrangian by the power of expansion parameter Λ. Notice that the effective Lagrangian
is valid up to a certain energy scale Λ.

Based on effective Lagrangian techniques, the general Lagrangian contains higher-dimensional
operators can be written as an expansion in (1/Λ):

LSMEFT = L(4)
SM +

1

Λ

∑
i

C
(5)
i Q

(5)
i +

1

Λ2

∑
i

C
(6)
i Q

(6)
i +O

(
1

Λ3

)
, (3.1.1)

where L(4)
SM is nothing but the SM Lagrangian which contains only dimension-two and -four

operators. In the rest terms of (3.1.1), we denote that Q
(n)
i is the dimension-n operators and the

corresponding dimensionless coupling constant (Willsion coefficients) of each operator is C
(n)
i .

Remarkable that, the theory vaild above the energy scale Λ should satisfy the requirements
below [4]

• The effective Lagrangian in (3.1.1) should be SUc(3)⊗SUL(2)⊗UY (1) invariant, therefore,
all dimension-n operators also satisfy this group structure too,

• all the SM degrees of freedom should be incorporated either as fundamental or composite
fields,

• up to energy scale Λ, SMEFT does not appear any additional fields. Besides, effective
field theory should behave consistently with SM when reduce to low-energy cases.
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An introduction of Standard Model Effective Field Theory

In the scope of this thesis, we concentrate on the effective Lagrangian constructed in a complete
set of gauge invariant operators up to dimension six, which also called ”Warsaw basis” (further
information can be found in [4],[7]). Before we go to further calculation, let us show clearly
our conventions of the following chapters.

3.2 Notations and conventions

In order to derive the new effective Lagrangian and cross-check the Feynman rules in [7], we
followed the notation and conventions of [4]. For convenience, we also absorb the energy scale
Λ by re-defining the Willsion coefficients as

C
(5)
i

Λ
→ C

(5)
i , and

C
(6)
i

Λ2
→ C

(6)
i . (3.2.1)

We have used the SM Lagrangian and the covariant derivative in the previous chapter again
(since it is consistent with [4]’s conventions). Other new conventions are the Hermitian deriva-
tives which defined as follow:

φ†i
←→
Dµφ ≡ iφ†

(
Dµ −

←−
Dµ

)
φ, and φ†i

←→
DI
µφ ≡ iφ†

(
τ IDµ −

←−
Dµτ

I
)
φ, (3.2.2)

whereas φ†
←−
Dµφ ≡ (Dµφ)† φ. From these conventions, we now can expand all dimension-six

operators listed in Tables 3.1 and 3.2.

X3 φ6 and φ4D2 ψ2φ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qφ

(
φ†φ
)3

Qeφ

(
φ†φ
)

(l̄
′
pe
′
rφ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qφ�

(
φ†φ
)
�
(
φ†φ
)

Quφ

(
φ†φ
)

(q̄
′
pu
′
rφ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QφD

(
φ†Dµφ

)∗ (
φ†Dµφ

)
Qdφ

(
φ†φ
)

(q̄
′
pd
′
rφ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2φ2 ψ2Xφ ψ2φ2D

QφG φ†φGA
µνG

Aµν QeW (l̄
′
pσ

µνe
′
r)τ

IφW I
µν Q

(1)
φl (φ†i

←→
Dµφ)(l̄

′
pγ

µl
′
r)

QφG̃ φ†φG̃A
µνG

Aµν QeB (l̄
′
pσ

µνe
′
r)φBµν Q

(3)
φl (φ†i

←→
DI
µφ)(l̄

′
pτ

Iγµl
′
r)

QφW φ†φW I
µνW

Iµν QuG (q̄
′
pσ

µντAu
′
r)φ̃G

A
µν Qφe (φ†i

←→
Dµφ)(ē

′
pγ

µe
′
r)

QφW̃ φ†φW̃ I
µνW

Iµν QuW (q̄
′
pσ

µνu
′
r)τ

I φ̃W I
µν Q

(1)
φq (φ†i

←→
Dµφ)(q̄

′
pγ

µq
′
r)

QφB φ†φBµνB
µν QuB (q̄

′
pσ

µνu
′
r)φ̃Bµν Q

(3)
φq (φ†i

←→
DI
µφ)(q̄

′
pτ

Iγµq
′
r)

QφB̃ φ†φB̃µνB
µν QdG (q̄

′
pσ

µντAd
′
r)φG

A
µν Qφu

φq (φ†i
←→
Dµφ)(ū

′
pγ

µu
′
r)

QφWB φ†τ IφW I
µνB

µν QdW (q̄
′
pσ

µνd
′
r)τ

IφW I
µν Qφd (φ†i

←→
Dµφ)(d̄

′
pγ

µd
′
r)

QφW̃B φ†τ IφW̃ I
µνB

µν QdB (q̄
′
pσ

µνd
′
r)φBµν Qφud i(φ̃†

←→
Dµφ)(ū

′
pγ

µd
′
r)

Table 3.1: Dimension-six operators other than the four-fermion ones taken from [4]

3.3 Mass eigenstates in SMEFT

In this section we perform step by step the identification physical (unphysical) degree of freedom
process with the presence of spontaneous symmetry breaking (SSB). To achive this goal, we
need to represent all fields in mass eigenstates basic. Notice that this procedure will include
the field rescaling steps, our further calculations will use the fields which are rescaled.
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)
Qll (l̄pγµlr)(l̄sγ

µlt) Qee (ēpγµer)(ēsγ
µet) Qle (l̄pγµlr)(ēsγ

µet)

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt) Quu (ūpγµur)(ūsγ
µut) Qlu (l̄pγµlr)(ūsγ

µut)

Q
(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt) Qdd (d̄pγµdr)(d̄sγ

µdt) Qld (l̄pγµlr)(d̄sγ
µdt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt) Qeu (ēpγµer)(ūsγ
µut) Qqe (q̄pγµqr)(ēsγ

µet)

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt) Qed (ēpγµer)(d̄sγ

µdt) Q
(1)
qu (q̄pγµqr)(ūsγ

µut)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt) Q
(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt) Q

(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

(L̄R)(R̄L) and R̄L)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk[(d

α
p )TCuβr ]

[
(qγjs )TClkt

]
Q

(1)
quqd (q̄jpur)εjk(q̄

k
sdt) Qqqu εαβγεjk[(q

αj
p )TCqβkr ]

[
(uγs )

TCet
]

Q
(8)
quqd (q̄jpT

Aur)εjk(q̄
k
sT

Adt) Qqqq εαβγεjnεkm(qαjp )TCqβkr ]
[
(qγms )TClnt

]
Q

(1)
lequ (l̄jper)εjk(q̄

k
sut) Qduu εαβγ[(dαp )TCuβr ]

[
(uγs )

TCet
]

Qlequ l̄jpσµνer)εjk(q̄
k
sσ

µνut)

Table 3.2: Four-fermion operators taken from [4].

3.3.1 Higgs sector

The full Lagrangian of Higgs field including dimension-six operators is

LHiggs = (Dµφ)† (Dµφ)−
[
−µ2

(
φ†φ
)

+
λ

2

(
φ†φ
)2
]

+ Cφ
(
φ†φ
)3

+ Cφ�
(
φ†φ
)
�
(
φ†φ
)

+ CφD
(
φ†Dµφ

)∗ (
φ†Dµφ

)
. (3.3.1)

First of all, we consider the Higgs potential within the correction of dimension-six operators

V(φ) = −µ2
(
φ†φ
)

+
λ

2

(
φ†φ
)2

+ Cφ
(
φ†φ
)3
, (3.3.2)

where µ2, λ > 0. Obviously, V(φ) does not minimize with the field configuration φ = 0, instead,
this potential reaches an extremum (minimum) at non-zero configuration given by

∂V

∂φ
= 0 ⇒ φ†φ =

λ−
√
λ2 − 12µ2Cφ

6Cφ
, (3.3.3)

notice that we choose this root to obtain the finite results when taking the limit of Cφ → 0.
By expanding (3.3.3) around the small value of Cφ, we have the following vaccum state

〈φ〉 =
1√
2

(
0

v

)

with v =

√
2µ2

λ
+

3µ3

√
2λ5/2

Cφ,

(3.3.4)

notice that v is called the vaccum expectation value (vev). From now on, we just only use this
vev for all expressions and Feynman rules.
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In spite the fact that the Lagrangian in (3.3.1) invariant under the gauge transformation of
SU(2)L⊗U(1)Y , however, the vaccum configuration 〈φ〉 is not. Fortunately, this vaccum state
still invariant under the transformation of U(1)Q group, the electromagnetic subgroup which is
generated by the charge Q. These things mean that the SU(2)L ⊗ U(1)Y symmetry has been
spontaneously broken down to U(1)Q symmetry. Expanding the Higgs doublet field around
the vaccum, we shall have:

φ = 〈φ〉+ Φ =
1√
2

(
0
v

)
+

 Φ+

1√
2

(H + iΦ0)

 =

 Φ+

1√
2

(v +H + iΦ0)

 , (3.3.5)

where H is the scalar Higgs field, whereas Φ+,Φ0 are unphysical degree of freedom which com-
monly called Goldstone-bosons and can be eliminated by choosing a particular gauge transfor-
mation (unitary gauge). Substituting Higgs doublets (3.3.5) into Higss sector of Lagrangian
(3.3.1), notice that the contribution of each operators for Higgs sector will be represented in
the appendix A.1, thus we have:

LHiggs =
1

2

[
1 +

1

2
CφDv

2 − 2Cφ�v
2

]
(∂µH)2 +

[
1

2
µ2 − 3

4
λv2 +

15

8
v2Cφ

]
H2

+
1

2

[
1 +

1

2
CφDv

2

] (
∂µΦ0

)2
+
(
∂µΦ−

) (
∂µΦ+

)
. (3.3.6)

In the spirt of presenting the effective Lagrangian (3.3.6) with the standard form

LHiggs =
1

2
(∂µh)2 − 1

2
M2

Hh
2 +

1

2

(
∂µG

0
)2

+
(
∂µG

−) (∂µG+
)
, (3.3.7)

we have to rescale the following fields as below

h ≡
(

1 +
1

4
CφDv

2 − Cφ�v2

)
H, G0 ≡

(
1 +

1

4
CφDv

2

)
Φ0, G± ≡ Φ±, (3.3.8)

and hence we now obtain the kinetic terms which were canonically normalized with h,G0, G±

are sequentially Higgs-field and Goldstone-fields. Furthermore, the squared mass of Higgs
boson now is corrected with the constribution of dimension-six operators:

M2
H = 2µ2

[
1− µ2

λ2
(3Cφ − 4λCφ� + λCφD)

]
, (3.3.9)

substituting the new vev in (3.3.4) we shall have

M2
H = λv2 −

[
3Cφ − 2λCφ� +

λ

2
CφD

]
v4. (3.3.10)

3.3.2 Gauge sector

In order to identify the physical gauge bosons, we now concentrate on the gauge sector within
SMEFT Lagrangian as follows:

Lfullgauge = −1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (Dµφ)† (Dµφ)

+ CφG
(
φ†φ
)
GA
µνG

Aµν

+ CφW
(
φ†φ
)
W I
µνW

Iµν + CφB
(
φ†φ
)
BµνB

µν + CφWB

(
φ†τ Iφ

)
W I
µνB

µν

+ CφD
(
φ†Dµφ

)∗ (
φ†Dµφ

)
, (3.3.11)

30



An introduction of Standard Model Effective Field Theory

whereas τ I are the Pauli matrices. Substituting Higgs doulet in (3.3.5) into (3.3.11), let us
consider the full correction up to dimension six operators of the kinetic terms of gauge fields:

LEW = −1

4

(
1− CφGv2

)2
GA
µνG

Aµν − 1

4

(
1− CφWv2

)2
W I
µνW

Iµν − 1

4

(
1− CφBv2

)2
BµνB

µν ,

(3.3.12)

notice that we have temporarily ignored the mixing terms. One can easily see that, we can
re-write this part in canonical normalized form by rescaling the fields as follow

W̄ I
µ = (1− CφWv2)W I

µ

B̄µ = (1− CφBv2)Bµ

ḠA
µ = (1− CφGv2)GA

µ

(3.3.13)

One important things to notice that rescaling these fields does not break the gauge symmetry,
besides, they also preserve the form of covariant derivative, which is

D̄µ = Dµ = ∂µ + iḡsτ
AGA

µ + iḡ2τ
IW̄ I

µ + iḡ1Y B̄µ, (3.3.14)

with ḡ1 =
g1

1− CφBv2
, ḡ2 =

g2

1− CφWv2
, and ḡs =

gs
1− CφGv2

. (3.3.15)

Remarkable that we will use the new rescaled-fields and -coupling constants for all calculations
and Feynman rules. Expanding (3.3.11), we now foucus on the electroweak part, which reads

LfullEW = −1

4

(
W̄ 1
µνW̄

1µν + W̄ 2
µνW̄

2µν
)

+
1

2
· ḡ

2
2v

2

4

(
W̄ 1
µνW̄

1µν + W̄ 2
µνW̄

2µν
)

− 1

4

(
W̄ 3
µν B̄µν

) [ 1 CφWBv
2

CφWBv
2 1

](
W̄ 3µν

B̄µν

)
− 1

2
· v

2

4

[
1 +

1

2
CφDv

2

] (
W̄ 3
µ B̄µ

) [ ḡ2
2 −ḡ1ḡ2

−ḡ1ḡ2 ḡ2
1

](
W̄ 3µ

B̄µ

)
(3.3.16)

In order to diagonal simultaneously the kinetic and the mass terms, let us introduce a following
transformations [7]:

W±
µ =

1√
2

(
W̄ 1
µ ∓ iW̄ 2

µ

)
(
W̄ 3
µ

B̄µ

)
=

(
1 −ε/2
−ε/2 1

)(
cosθ̄ sinθ̄

−sinθ̄ cosθ̄

)(
Zµ

Aµ

)
,

(3.3.17)

with the identity

ε ≡ CφWBv
2 (3.3.18)

Additionally, the weak mixing angle has been modified as [7]

tanθ̄ =
ḡ1

ḡ2

+
ε

2

[
1− ḡ2

1

ḡ2
2

]
, (3.3.19)
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thus, sinθ̄ and cosθ̄ are straightforward calculated, their explicit form are
sinθ̄ =

ḡ1√
ḡ2

1 + ḡ2
2

[
1 +

ε

2
· ḡ2

ḡ1

· ḡ
2
2 − ḡ2

1

ḡ2
2 + ḡ2

1

]

cosθ̄ =
ḡ2√
ḡ2

1 + ḡ2
2

[
1− ε

2
· ḡ1

ḡ2

· ḡ
2
2 − ḡ2

1

ḡ2
2 + ḡ2

1

]
.

(3.3.20)

Chronologically, the masses of W± boson, Z boson, and photon corrected by dimension-six
operators are presented as follow:

MW =
ḡ2v

2

MZ =
1

2

√
ḡ2

1 + ḡ2
2 v

[
1 +

1

4
CφDv

2

](
1 + ε

ḡ2ḡ1

ḡ2
2 + ḡ2

1

)
MA = 0

(3.3.21)

3.3.3 Gauge-Goldstone mixing terms

In this chapter, we will work in Rξ-gauge, thus we have to consider the Goldstone-boson
diagrams. Before we calculate the Goldstone-boson propagators, let us consider the ”unwanted”
gauge-goldstone mixing terms in Lagrangian (3.3.11):

LGoldstone ⊃
(
D̄µφ

)† (
D̄µφ

)
+ CφD

(
φ†D̄µφ

)∗ (
φ†D̄µφ

)
. (3.3.22)

To convenience, we introduce some notation:

D̄µφ =
[
∂µ + iḡ2τ

IW̄ I
µ + iḡ1Y B̄µ

]
[〈φ〉+ Φ] = [∂µ + iPµ] [〈φ〉+ Φ]

= ∂µΦ + iPµΦ + iPµ〈φ〉 (3.3.23)

From this notation, we expand (3.3.22) and collect the mixing terms of two fileds like-Pµ∂
µΦ

and their hermitian conjuagates. The Lagrangian corresponding with these mixing terms is

LGoldstone = −i ḡ2v

2
√

2
W̄ 1
µ

(
∂µΦ+ − ∂µΦ−

)
+

ḡ2v

2
√

2
W̄ 2
µ

(
∂µΦ+ + ∂µΦ−

)
− ḡ2v

2

[
1 +

1

4
CφDv

2

]2

W̄ 3
µ∂

µΦ0 +
ḡ1v

2

[
1 +

1

4
CφDv

2

]2

B̄µ∂
µΦ0 (3.3.24)

Using the relatations in (3.3.17) to transform these gauge fields into physical gauge fields
(represent these fiels in mass eigenstates basic), yield the result

LGoldstone = iMW

(
W+
µ ∂

µG− −W−
µ ∂

µG+
)
−MZZµ∂

µG0. (3.3.25)

We will return to eq (3.3.25) when calculate the propagator of Goldstone-bosons in Rξ-gauge.

3.3.4 Yukawa interactions

For our process, the matter fields are nothing but electron and top-quark, and hence in this
section we just only consider the terms which relevant with our matter fields (the full fermion
sector and further calculation can be found in [7]). In order to explain the mass term of fermion
fields, the Yukawa interaction up to dimension-six for our process can be written as follows:
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LY ukawa = −
(
l̄iLΓije e

j
Rφ+ φ†ēiRΓ†ije ljL

)
+
(
φ†φ
) (
l̄iLC

ij
eφe

j
Rφ
)

+
(
φ†φ
) (
φ†ēiRC

†ij
eφ l

j
L

)
−
(
q̄iLΓiju u

j
Rφ+ φ†ūiRΓ†iju qjL

)
+
(
φ†φ
) (
q̄iLC

ij
uφu

j
Rφ
)

+
(
φ†φ
) (
φ†ūiRC

†ij
uφ q

j
L

)
, (3.3.26)

where Ceφ, Cuφ are general complex 3 × 3 matrices, i, j = 1 · · · 3 are generation indices. Sub-
stituting the Higgs doublet into (3.3.26) and collecting the mass terms, we shall have

Lmass = −ēiL
v√
2

(
Γe − Ceφ

v2

2

)ij
ejR − ūiL

v√
2

(
Γu − Cuφ

v2

2

)ij
ujR + h.c, (3.3.27)

notice that we have not obtained the mass of fermion field yet, because the mass matrices are
not diagonalized. To diagonalized, we rotate the fermion fields by the unitary matrices:

ψX = UψXψ
mass
X

ψ̄X = ψ̄massX U †ψ,

(3.3.28)

where ψmassX stand for mass eigenstates fields, ψ = e, u and X = L,R. In mass eigenstates, the
mass matrices are digonalized as

U †e
v√
2

(
Γe − Ceφ

v2

2

)ij
Ue = M ij

e = diag (me,mµ,mτ )

U †u
v√
2

(
Γu − Cuφ

v2

2

)ij
Uu = M ij

u = diag (mu,mc,mt) .

(3.3.29)

We will use equation (3.3.29) when calculate the vertex factor of fermion-fermion-Golstone
boson in the next section.

3.4 Effective interactions

In this section we focus on pointing out key point steps to derive the effective Lagrangian for
each interaction vertices. We can find the contribution of all dimension-six operators in the
appendix A. In order to derive the effective interactions, let us perform several intermediate
steps as follows:

• For each interaction vertex, we select all operators which can be contribute to our vertex.
In our scattering process, the operators contributing to fermion-gauge interaction appear
in column ψ2Xφ and ψ2φ2D of Table 3.1, while the four-fermion interaction operators
can be found in Table 3.2.

• For each operators, we need consider all possible case which contribute to the effective
Lagrangian. We can do this step by taking hermitian conjugate, or using Fierz transfor-
mation. Then, we can expand these operators with all ingredient in the previous sections.
Our process just focus on the interaction of fermion-W 3

µ , Bµ and Φ0 fields, after expand-
ing the operators which coressponds with these fields, we have to express them in mass
eigenstates basic that already presented in section 3.3.

• Remarkable that we are still in the coordinates space, let Fourier transform the effective
Lagrangian into momentum space. For instant, we will encounter the terms have form
σµνAµν when expanding dimension-six operators, let’s now Fourier transform this term
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∫ ∞
−∞

σµνAµν(x)eiqxd4x =

∫ ∞
−∞

σµν [∂µAν(x)− ∂νAµ(x)] eiqxd4x

= −
∫ ∞
−∞

σµν
[
Aν(x)∂µe

iqx − Aµ(x)∂νe
iqx
]
d4x

= 2i

∫ ∞
−∞

σµνqνAµ(x)eiqxd4x = 2iσµνqνAµ(q), (3.4.1)

notice that we have used the integral by part for the first line and exploited the anti-
symmetric of σµν to obtain the final results. In order to help our calculation easier, let
us introduce some usefull relations:

cw +
ε

2
sw =

ḡ2√
ḡ2

2 + ḡ2
1

[
1 +

ε

2
· ḡ1

ḡ2

· 2ḡ2
1

ḡ2
2 + ḡ2

1

]
, (3.4.2)

cw −
ε

2
sw =

ḡ2√
ḡ2

2 + ḡ2
1

[
1− ε

2
· ḡ1

ḡ2

· 2ḡ2
2

ḡ2
2 + ḡ2

1

]
, (3.4.3)

sw +
ε

2
cw =

ḡ1√
ḡ2

2 + ḡ2
1

[
1 +

ε

2
· ḡ2

ḡ1

· 2ḡ2
2

ḡ2
2 + ḡ2

1

]
, (3.4.4)

sw −
ε

2
cw =

ḡ1√
ḡ2

2 + ḡ2
1

[
1− ε

2
· ḡ2

ḡ1

· 2ḡ2
1

ḡ2
2 + ḡ2

1

]
. (3.4.5)

and keep in mind that ε ≡ CφWBv
2.

• Finally, the we collect the vertex factor in Feynman rules by stripping off the fields
operators and multiplying with factor i.

3.4.1 γee, Zee and G0ee interactions

There are five operators contributing to lepton-gauge interaction of our process. More specif-
ically, QeW , QeB contribute for γee, Zee vertex, Q

(1)
φl , Q

(3)
φl , Qφe contribute for Zee and G0ee

vertex. Notice that we not only expand dimension-six operators but also the SM part which
relevant to our interaction vertices. In this section we just present the original results, the
contribution of each operators are expressed in appendix A.2.

1. γee vertex

After expanding all the contributing operators to the interaction vertex γee, we obtain the effec-
tive Lagrangian including SM contributions and the correction from dimension-six operators,
hence the general γee interaction is

Lγee =
ḡ1ḡ2√
ḡ1

2 + ḡ2
2

[
1− ḡ1ḡ2

ḡ1
2 + ḡ2

2
v2CφWB

]
(ēγµe)Aµ

+ ē

[
−i

√
2ḡ1v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗eWPL + CeWPR) + i

√
2ḡ2v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗eBPL + CeBPR)

]
eAµ.

(3.4.6)

One can easily verify that the first term in (3.4.6) is nothing but the fermion-photon interaction
in SM with the new effective coupling which is re-defined in equation (3.4.7). Additionally, the
rest term in (3.4.6) will be vanished automatically when we restric our calculation to SM case.

ē0 =
ḡ1ḡ2√
ḡ2

1 + ḡ2
2

[
1− ḡ1ḡ2

ḡ2
1 + ḡ2

2

v2CφWB

]
= e0

[
1− ḡ1ḡ2

ḡ2
1 + ḡ2

2

v2CφWB

]
(3.4.7)
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2. Zee vertex

We express the Zee vertex in terms of SM and dimension-six effective operators as

LZee = ē

[
− 1

2
√
ḡ1

2 + ḡ2
2
γµ
[(
ḡ1

2 − ḡ2
2
)
PL + 2ḡ1

2PR
]]
eZµ

+ ē

[
ḡ1ḡ2

2(ḡ1
2 + ḡ2

2)3/2
v2CφWBγ

µ
[(
ḡ1

2 − ḡ2
2
)
PL − 2ḡ2

2PR
]]
eZµ

− iē
[ √

2ḡ2v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗eWPL + CeWPR) +

√
2ḡ1v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗eBPL + CeBPR)

]
eZµ

+ ē

[
1

2
v2
√
ḡ1

2 + ḡ2
2γµ

[(
C1
φl + C3

φl

)
PL + CφePR

]]
eZµ. (3.4.8)

3. G0ee vertex

The effective interaction of Goldstone boson and electron is expressed as follows:

LG0ee = ē

(
− i
v
me

[
1− 1

4
vCφD

]
γ5 + iv/q

[(
C1
φl + C3

φl

)
PL + CφePR

])
eG0, (3.4.9)

notice that the first term of (3.4.9) obtained by expanding the Yukawa interaction which is

LY ukawa = −
[
ēiL

i√
2

(
Γe − Ceφ

v2

2

)ij
ejRΦ0 − ēiR

i√
2

(
Γe − Ceφ

v2

2

)ij
ejLΦ0

]
. (3.4.10)

We present these matter fields in mass eigenstates basic, by using eqs (3.3.28,3.3.29) we have:

LY ukawa = −
[
ēL
ime

v
eRΦ0 − ēR

ime

v
eLΦ0

]
= − i

v
me

[
1− 1

4
CφDv

2

] (
ēγ5e

)
G0, (3.4.11)

notice that Φ0 has been rescaled as (3.3.8).

3.4.2 γtt, Ztt and G0tt interactions

Similarity with the lepton-gauge field interaction cases, we also obtain the effective Lagrangian
for quark-gauge field interaction including SM and dimension-six operators. There are also five
operators contributing to quark-gauge interaction of our process. More specifically, QuW , QuB

contribute for γtt, Ztt vertex, Q
(1)
φq , Q

(3)
φq , Qφu contribute for Ztt and G0tt vertex. Further con-

tribution of each operators can be found in appendix A.3.

1. γtt vertex

First of all, we consider the interaction of top-photon after being generalized as below:

Lγtt = −2

3

ḡ1ḡ2√
ḡ1

2 + ḡ2
2

[
1− ḡ1ḡ2

ḡ1
2 + ḡ2

2
v2CφWB

]
(t̄γµt)Aµ

+ t̄

[
i

√
2ḡ1v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗uWPL + CuWPR) + i

√
2ḡ2v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗uBPL + CuBPR)

]
tAµ

(3.4.12)

2. Ztt vertex

The top-quar electroweak interaction, Ztt vertex, including the SM contributions as well as
the correction from dimension-six operators is presented as
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LZtt = t̄

[
1

6
√
ḡ1

2 + ḡ2
2
γµ
[(
ḡ1

2 − 3ḡ2
2
)
PL + 4ḡ1

2PR
]]
tZµ

− t̄
[

ḡ1ḡ2

6(ḡ1
2 + ḡ2

2)3/2
v2CφWBγ

µ
[(

3ḡ1
2 − ḡ2

2
)
PL − 4ḡ2

2PR
]]
tZµ

+ t̄

[
i

√
2ḡ2v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗uWPL + CuWPR)− i
√

2ḡ1v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗uBPL + CuBPR)

]
tZµ

+ t̄

[
1

2
v2
√
ḡ1

2 + ḡ2
2γµ

[(
C1
φq − C3

φq

)
PL + CφuPR

]]
tZµ. (3.4.13)

3. G0tt vertex

The last effective coupling in case of quark-gauge interaction for our process is

LG0tt = t̄

(
− i
v
mt

[
−1 +

1

4
vCφD

]
γ5 + iv/q

[(
C1
φq − C3

φl

)
PL + CφuPR

])
tG0. (3.4.14)

3.4.3 Four-fermion interactions

First of all, we looking for the operators contribtuting for four-fermion (eett) interaction. There

are 7 operators: Q
(1)
lq , Q

(3)
lq , Qeu, Qlu, Qqe, Q

(1)
lequ and Q

(3)
lequ (their explicit form are expressed in

the Table 3.2). Before expanding these operators, for each operators, we have to determine all
possible contributions for the effective Lagrangian. This is a crucial step to derive the effective
Lagrangian, let us discuss more specifically:

• In the first five operators Q
(1)
lq , Q

(3)
lq , Qeu, Qlu and Qqe, Hermitian conjugation is equava-

lent to transposition of generation indices in each fermionic currents. For our process,
the generation indices of lepton are i = 1 and quark are i = 3, thus the hermitian con-
jugate case in the first five operators do not yield any new contributions. Besides, Fierz
transformation can not apply to these operators, hene there is only one possible case for
each operators.

• For remaining operators, Q
(1)
lequ and Q

(3)
lequ, we can not obtain the hermition conjugation

by running the generation indices. Furthermore, new contribution can be proceeded via
taking hermitian conjuagate of this operators. Let us expand the operator Q

(1)
lequ:

C1
lequQ

(1)
lequ + C1∗

lequQ
(1)†
lequ = C1

lequ

(
l̄jper
)
εjk
(
q̄ksut

)
+ C1∗

lequ

(
ūtq

k
s

)
εjk
(
ērl

j
p

)
, (3.4.15)

for the scattering process e+ +e− → t+ t̄, the generation indices are p = r = 1, s = t = 3.
Additionally, j, k are component indices of left-handed doublet, in case of our process,
j = 2 and k = 1. Expanding (3.4.15) we shall have:

C1
lequQ

(1)
lequ + C1∗

lequQ
(1)†
lequ = C1

lequ

(
ē2
LeR
)
ε21

(
ū1
LuR

)
+ C1∗

lequ

(
ūRu

1
L

)
ε21

(
ēRe

2
L

)
= −C1

lequ (ēPRe) (t̄PRt)− C1∗
lequ (t̄PLt) (ēPLe) . (3.4.16)

Analogous expansion for Q
(3)
lequ operator. More information can be found in A.4.

Now we can write down immediately the four-fermion Lagrangian interaction as follows:
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Leett =
[
C1
lq − C3

lq

]
(ēγµPLe)ss′ (t̄γµPLt)rr′ + Ceu (ēγµPRe)ss′ (t̄γµPRt)rr′

+ Clu (ēγµPLe)ss′ (t̄γµPRt)rr′ + Cqe (t̄γµPLt)rr′ (ēγµPRe)ss′

−
[
C1∗
lequ (ēPLe)ss′ (t̄PLt)rr′ + C1

lequ (ēPRe)ss′ (t̄PRt)rr′
]

−
[
C3∗
lequ (ēσµνPLe)ss′ (t̄σµνPLt)rr′ + C3

lequ (ēσµνPRe)ss′ (t̄σµνPRt)rr′
]
, (3.4.17)

notice that we denote s, s′, r, r′ are sequentially electron, positron, top-quark and anti top-quark
spinor indices.

3.5 Propagators in SMEFT

In order to derive the propagator, the gauge fixing and Faddeev-Popov (ghost) Lagrangian have
been added into classical Lagrangian. Since our calculation just at leading order (tree-level),
we do not consider the ghost terms. In SMEFT, the choice of gauge-fixing terms should be
satisfied the following requirements [7]:

• Eliminate the unpleasant Goldstone-gauge mixing terms as well as in SM.

• Althought the full Lagrangian including gauge-fixing and ghost terms is not gauge in-
variant, instead, preserves the BRST invariant.

• Lead to SM-like propagators in terms of the parameters and fields in mass eigenstates
basic.

The gauge-fixing Lagrangian which relevant to our process is

LGF = − 1

2ξA
(∂µAµ)2 − 1

2ξZ

(
∂µZµ + ξMZG

0
)2
, (3.5.1)

where all Willsion coefficients are absorbed in masses and physical fields, and hence the gauge-
fixing terms have a form look like in SM. Notice that the general propagator of photon and
Z-boson are the same as before (1.1.2), in this section we just perform a process of calculating
the Goldstone-boson propagator. From (3.3.6), (3.3.25) and the gauge-fixing terms in (3.5.1),
we shall have:

LG0 =
1

2

[
∂µG

0
]2 −mZZ

µ∂µG
0 −mZ (∂µZ

µ)G0 − 1

2
ξZm

2
ZG

02
(3.5.2)

Applying the Euler-Lagrange equation we obtain(
� + ξZm

2
Z

)
G0 = 0, (3.5.3)

where the propagator D(x− y) is a solution of the inhomogeneous field equation [3](
� + ξZm

2
Z

)
D(x− y) = −δ4(x− y). (3.5.4)

A solution of propagator can be obtained by using Fourier transformation which yields a result

D(q) =
1

q2 − ξZm2
Z

. (3.5.5)
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3.6 Feynman rules for the process in SMEFT

3.6.1 Propagators in the Rξ-gauges

γ
= − i

q2

[
gµν − (1− ξA)

qµqν
q2

]
(3.6.1)

Z = − i

q2 −m2
Z

[
gµν − (1− ξZ)

qµqν
q2 − ξm2

Z

]
(3.6.2)

G0

=
i

q2 − ξZm2
Z

(3.6.3)

3.6.2 Vertex factors

• Lepton-gauge and -Goldstone boson vertices:

e−

e+

p2

p1

q
Aµ

= i
ḡ1ḡ2√
ḡ1

2 + ḡ2
2

[
1− ḡ1ḡ2

ḡ1
2 + ḡ2

2
v2CφWB

]
γµ

+

√
2ḡ1v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗eWPL + CeWPR)

−
√

2ḡ2v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗eBPL + CeBPR) (3.6.4)

e−

e+

p2

p1

q
Zµ

= − i

2
√
ḡ1

2 + ḡ2
2
γµ
[(
ḡ1

2 − ḡ2
2
)
PL + 2ḡ1

2PR
]

+ i
ḡ1ḡ2

2(ḡ1
2 + ḡ2

2)3/2
v2CφWBγ

µ
[(
ḡ1

2 − ḡ2
2
)
PL − 2ḡ2

2PR
]

+

√
2ḡ2v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗eWPL + CeWPR)

+

√
2ḡ1v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗eBPL + CeBPR)

+ i
1

2
v2
√
ḡ1

2 + ḡ2
2γµ

[(
C1
φl + C3

φl

)
PL + CφePR

]
(3.6.5)
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e−

e+

p2

p1

q
G0

= me

[
1

v
− 1

4
vCφD

]
γ5 − v/q

[(
C1
φl + C3

φl

)
PL + CφePR

]
(3.6.6)

• Quark-gauge and -Goldstone boson vertices:

t

t̄

p2

p1

q
Aµ

= −i2
3

ḡ1ḡ2√
ḡ1

2 + ḡ2
2

[
1− ḡ1ḡ2

ḡ1
2 + ḡ2

2
v2CφWB

]
γµ

−
√

2ḡ1v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗uWPL + CuWPR)

−
√

2ḡ2v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗uBPL + CuBPR) (3.6.7)

t

t̄

p2

p1

q
Zµ

=
i

6
√
ḡ1

2 + ḡ2
2
γµ
[(
ḡ1

2 − 3ḡ2
2
)
PL + 4ḡ1

2PR
]

− i ḡ1ḡ2

6(ḡ1
2 + ḡ2

2)3/2
v2CφWBγ

µ
[(

3ḡ1
2 − ḡ2

2
)
PL − 4ḡ2

2PR
]

−
√

2ḡ2v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗uWPL + CuWPR)

+

√
2ḡ1v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗uBPL + CuBPR)

+ i
1

2
v2
√
ḡ1

2 + ḡ2
2γµ

[(
C1
φq − C3

φq

)
PL + CφuPR

]
(3.6.8)
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Feynman rules for the process e− + e+ −→ t+ t̄ in SMEFT

t

t̄

p2

p1

q
G0

= mt

[
−1

v
+

1

4
vCφD

]
γ5 − v/q

[(
C1
φq − C3

φl

)
PL + CφuPR

]

(3.6.9)

• Four-fermion vertex:

e−s

e+s′

p2

p1

t̄r′

tr

p4

p3

= i
[
C1
lq − C3

lq

]
(γµPL)ss′ (γµPL)rr′

+ iCeu (γµPR)ss′ (γµPR)rr′

+ iClu (γµPL)ss′ (γµPR)rr′

+ iCqe (γµPL)rr′ (γµPR)ss′

− i
[
C1∗
lequ (PL)ss′ (PL)rr′ + C1

lequ (PR)ss′ (PR)rr′
]

− i
[
C3∗
lequ (σµνPL)ss′ (σµνPL)rr′ + C3

lequ (σµνPR)ss′ (σµνPR)rr′
]

(3.6.10)
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3.7 Cancellation of gauge-fixing parameter in Rξ-gauge

As we have done in the two chapter before, in this section we also demonstrate that the Feynman
amplitude is ξ − independence again. In Rξ-gauge, there are 4 diagrams which relevant to our
process which is pointed out in figure 3.1

γ

e−(p1)

e+(p2) t̄(p4)

t(p3)

+

e+(p2)

e−(p1)

Z

t̄(p4)

t(p3)

+

e+(p2)

e−(p1)

t̄(p4)

e−(p1)

G0

+

e+(p2)

e−(p1)

t̄(p4)

t(p3)

Figure 3.1: The Feynman diagrams of process e− + e+ −→ t+ t̄ in SMEFT.

Frirstly, from the Feynman rules listed in the previous section before, we can write down the
Feynman amplitude for photon diagram in figure (3.1) immediately:

Mγ = v̄s
′
(p2)

[
i

ḡ1ḡ2√
ḡ1

2 + ḡ2
2

(
1− ḡ1ḡ2

ḡ1
2 + ḡ2

2
v2CφWB

)
γµ −

√
2ḡ1v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗eWPL + CeWPR)

+

√
2ḡ2v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗eBPL + CeBPR)

]
us(p1)× −i

q2

[
gµν − (1− ξA)

qµqν
q2

]

× ūr(p3)

[
−i2

3

ḡ1ḡ2√
ḡ1

2 + ḡ2
2

(
1− ḡ1ḡ2

ḡ1
2 + ḡ2

2
v2CφWB

)
γν −

√
2ḡ1v√

ḡ1
2 + ḡ2

2
qρσ

νρ (C∗uWPL + CuWPR)

−
√

2ḡ2v√
ḡ1

2 + ḡ2
2
qρσ

νρ (C∗uBPL + CuBPR)

]
vr
′
(p4), (3.7.1)

notice that we need to consider the sign of gauge boson momentum in each vertex carefully,
since in Feynman rules all external momenta are considered to be incoming. Similarity with
QED, we now looking for the part which multiply with the factor i(1− ξA)qµqν/q

4, (3.7.3). As
we can see, the terms which proportional with γµ can be vanished by using the identity 1.3.2,

qµ

[
v̄s
′
(p2)γµus(p1)

]
= v̄s

′
(p2)

[
/p2 + /p1

]
us(p1) = v̄s

′
(p2) [−me +me]u

s(p1) = 0,

and so do for analogous terms. Next, the remaning terms of (3.7.3) will multiply with

σµρqµqρ =
1

2
σµρqµqρ + σρµqρqµ = 0, (3.7.2)

since σµρ is anti-symmetry under the permutation of Lorentz indices while qµqρ is symmetry.
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Mγ
ξ = i

1− ξ
q4

v̄s
′
(p2)qµ

[
i

ḡ1ḡ2√
ḡ1

2 + ḡ2
2

(
1− ḡ1ḡ2

ḡ1
2 + ḡ2

2
v2CφWB

)
γµ

−
√

2ḡ1v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗eWPL + CeWPR) +

√
2ḡ2v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗eBPL + CeBPR)

]
us(p1)

× ūr(p3)qν

[
−i2

3

ḡ1ḡ2√
ḡ1

2 + ḡ2
2

(
1− ḡ1ḡ2

ḡ1
2 + ḡ2

2
v2CφWB

)
γµ −

√
2ḡ1v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗uWPL + CuWPR)

−
√

2ḡ2v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗uBPL + CuBPR)

]
vr
′
(p4)

= 0 (3.7.3)

Again, the Feynman amplitude in photon diagram is ξ − independent as we expect. We now
prove the statement (mentioned in section 3.5) that the ”unwanted” Goldstone-boson can
be eliminated by choosing a particular gauge, Rξ − gauge. Let us begin with the Feynman
amplitude of Z-boson:

MZ = v̄s
′
(p2)

[
− i

2
√
ḡ1

2 + ḡ2
2
γµ
[(
ḡ1

2 − ḡ2
2
)
PL + 2ḡ1

2PR
]

+ i
ḡ1ḡ2

2(ḡ1
2 + ḡ2

2)3/2
v2CφWBγ

µ
[(
ḡ1

2 − ḡ2
2
)
PL − 2ḡ2

2PR
]

−
√

2ḡ2v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗eWPL + CeWPR)−
√

2ḡ1v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗eBPL + CeBPR)

+i
1

2
v2
√
ḡ1

2 + ḡ2
2γµ

[(
C1
φl + C3

φl

)
PL + CφePR

]]
us(p1)× −i

q2 −m2
Z

[
gµν − (1− ξZ)

qµqν
q2 − ξZm2

Z

]
× ūr(p3)

[
i

6
√
ḡ1

2 + ḡ2
2
γµ
[(
ḡ1

2 − 3ḡ2
2
)
PL + 4ḡ1

2PR
]

− i ḡ1ḡ2

6(ḡ1
2 + ḡ2

2)3/2
v2CφWBγ

µ
[(

3ḡ1
2 − ḡ2

2
)
PL − 4ḡ2

2PR
]

−
√

2ḡ2v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗uWPL + CuWPR) +

√
2ḡ1v√

ḡ1
2 + ḡ2

2
qρσ

µρ (C∗uBPL + CuBPR)

+i
1

2
v2
√
ḡ1

2 + ḡ2
2γµ

[(
C1
φq − C3

φq

)
PL + CφuPR

]]
vr
′
(p4) (3.7.4)

First step, we simplify the Z-boson propagator as follows:

−i
q2 −m2

Z

[
gµν − (1− ξZ)

qµqν
q2 − ξZm2

Z

]
=

−i
q2 −m2

Z

(
gµν −

qµqν
m2
Z

+ qµqν

[
1

m2
Z

− 1− ξ
q2 − ξZm2

Z

])
=

−i
q2 −m2

Z

[
gµν −

qµqν
m2
Z

]
− i qµqν

m2
Z(q2 − ξZm2

Z)
(3.7.5)

The first term of (3.7.5) is independent with gauge-fixing parameter, we shall demonstrate that
the combination of the rest terms in (3.7.5) and the Goldstone-boson diagram will be vanished.
In order to make our calculation more clearly, let us simplify the parts which multiply with
the rest terms in (3.7.5) by an indentity:
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MZ−e
ξ = qµv̄

s′(p2)

[
− i

2
√
ḡ1

2 + ḡ2
2
γµ
[(
ḡ1

2 − ḡ2
2
)
PL + 2ḡ1

2PR
]

+ i
ḡ1ḡ2

2(ḡ1
2 + ḡ2

2)3/2
v2CφWBγ

µ
[(
ḡ1

2 − ḡ2
2
)
PL − 2ḡ2

2PR
]

−
√

2ḡ2v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗eWPL + CeWPR)−
√

2ḡ1v√
ḡ1

2 + ḡ2
2
qρσ

µρ (C∗eBPL + CeBPR)

+i
1

2
v2
√
ḡ1

2 + ḡ2
2γµ

[(
C1
φl + C3

φl

)
PL + CφePR

]]
us(p1)

= iMZme

[
1

v

(
1− 1

4
CφDv

2

)
+
(
C1
φl + C3

φl − Cφe
)
v

] [
v̄s
′
(p2)γ5us(p1)

]
, (3.7.6)

and similar calculation for top vertex

MZ−t
ξ = iMZmt

[
1

v

(
1− 1

4
CφDv

2

)
+
(
Cφu − C1

φq + C3
φq

)
v

] [
ūr(p3)γ5vr

′
(p4)

]
. (3.7.7)

Notice that we have used the same tricks as (1.3.2,2.7.8) to obtain these results. Remember
that MZ here is the effective mass of Z-boson in SMEFT, when calculation we keep only the
linear terms of dimension-six operators, any higher order O(C2

6) are neglected. Finally, we
obtain a result

MZ
ξ =

i

q2 − ξZm2
Z

v̄s
′
(p2)me

[
1

v

(
1− 1

4
CφDv

2

)
+
(
C1
φl + C3

φl − Cφe
)
v

]
γ5us(p1)

× ūr(p3)mt

[
1

v

(
1− 1

4
CφDv

2

)
+
(
Cφu − C1

φq + C3
φq

)
v

]
γ5vr

′
(p4). (3.7.8)

For the last step, we write down the Feynman amplitude of Goldstone-boson diagram:

MG0 = v̄s
′
(p2)me

[
me

v
γ5 − 1

4
mevCφDγ

5 + v/qPL(C1
φl + C3

φl) + v/qPRCφe

]
us(p1)× i

q2 − ξZM2
Z

× ūr(p3)

[
−mt

v
γ5 +

1

4
mtvCφDγ

5 − v/qPL(C1
φq − C3

φq)− v/qPRCφu
]
vr
′
(p4) (3.7.9)

By using (1.3.2,2.7.8) and analogous indentities for another fermion lines, we shall have:

MG0 =
−i

q2 − ξZM2
Z

v̄s
′
(p2)me

[
1

v

(
1− 1

4
CφDv

2

)
+
(
C1
φl + C3

φl − Cφe
)
v

]
γ5us(p1)

× ūr(p3)mt

[
1

v

(
1− 1

4
CφDv

2

)
+
(
Cφu − C1

φq + C3
φq

)
v

]
γ5vr

′
(p4) (3.7.10)

Now we can easily verify that (3.7.8) perfectly cancels the Goldstone-boson diagram (3.7.10).
The remaining terms are independent with gauge-fixing parameters ξ.
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The Feynman squared amplitude with FORM

3.8 Feynman squared amplitude with FORM

In this section we will manipulate FORM program to calculate the Feynman square amplitude.
Notice that the mass of electrons are tiny compare with the threshold energy of our process,
that means we can set me ' 0, as a consequence the Goldstone-boson diagram will be elemi-
nated, i.e MG0 = 0. Before we use FORM to evaluate the squared amplitude, let simplify the
Feynman amplitude in each diagrams:

Photon diagram:

Mγ = v̄s
′
(p2) [iē0γ

µ −G1qρσ
µρ (C∗eWPL + CeWPR) +G2qρσ

µρ (C∗eBPL + CeBPR)]us(p1)

× −i
q2

[
gµν − (1− ξA)

qµqν
q2

]
× ūr(p3)

[
−i2

3
ē0γ

ν −G1qρσ
νρ (C∗uWPL + CuWPR)−G2qρσ

νρ (C∗uBPL + CuBPR)

]
vr
′
(p4)δαβ

(3.8.1)

Whereas the compact parameters are

ē0 =
ḡ1ḡ2√
ḡ2

1 + ḡ2
2

[
1− ḡ1ḡ2

ḡ2
1 + ḡ2

2

v2CφWB

]
= e0

[
1− ḡ1ḡ2

ḡ2
1 + ḡ2

2

v2CφWB

]
,

G1 =
v
√

2g1√
ḡ1

2 + ḡ2
2
, G2 =

v
√

2g2√
ḡ1

2 + ḡ2
2
. (3.8.2)

Z-boson diagram:

MZ = v̄s
′
(p2)

[
−iγµ

(
geV + geAγ

5
)

+ iv2CφWBγ
µ
(
zeV − zeAγ5

)
−G2σ

µρqρ [C∗eWPL + CeWPR]−G1σ
µρqρ [C∗eBPL + CeBPR] + iG3γ

µ
(
Cφle

1 + Cφle
2 γ5

)]
us(p1)

× −i
q2 −m2

Z

[
gµν − (1− ξZ)

qµqν
q2 − ξZm2

Z

]
× δαβ

× ūr(p3)
[
iγν
(
gtV + gtAγ

5
)
− iv2CφWBγ

ν
(
ztV − ztAγ5

)
−G2σ

νθqθ [C∗uWPL + CuWPR] +G1σ
νθqθ [C∗uBPL + CuBPR] + iG3γ

ν
(
Cφqu

1 + Cφqu
2 γ5

)]
vr
′
(p4)

(3.8.3)

Here we introduce several compact parameters are listed below:

geV =
3ḡ1

2 − ḡ2
2

4
√
ḡ1

2 + ḡ2
2
, geA =

ḡ1
2 + ḡ2

2

4
√
ḡ1

2 + ḡ2
2
; (3.8.4)

zeV =
ḡ1ḡ2

4(ḡ1
2 + ḡ2

2)3/2
(ḡ1

2 − 3ḡ2
2), zeA =

ḡ1ḡ2

4(ḡ1
2 + ḡ2

2)3/2
(ḡ1

2 + ḡ2
2); (3.8.5)

G3 =
v2

2

√
ḡ1

2 + ḡ2
2; Cφle

1 = C1
φl + C3

φl + Cφe, and Cφle
2 = Cφe − C1

φl − C3
φl. (3.8.6)
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Four-fermion diagram:
In this diagram we need to carefull about the spinor indices for each fermionic currents.

M4f = i
[
C1
lq − iC3

lq

] [
v̄s
′
(p2)γµPLu

s(p1)
] [
ūr(p3)γµPLv

r′(p4)
]
δαβ

+ iCeu

[
v̄s
′
(p2)γµPRu

s(p1)
] [
ūr(p3)γµPRv

r′(p4)
]
δαβ

+ iClu

[
v̄s
′
(p2)γµPLu

s(p1)
] [
ūr(p3)γµPRv

r′(p4)
]
δαβ

+ iCqe

[
v̄s
′
(p2)γµPRu

s(p1)
] [
ūr(p3)γµPLv

r′(p4)
]
δαβ

− i
(
C1∗
lequ

[
v̄s
′
(p2)PLu

s(p1)
] [
ūr(p3)PLv

r′(p4)
]

+ C1
lequ

[
v̄s
′
(p2)PRu

s(p1)
] [
ūr(p3)PRv

r′(p4)
])
δαβ

− iC3∗
lequ

[
v̄s
′
(p2)σµνPLu

s(p1)
] [
ūr(p3)σµνPLv

r′(p4)
]
δαβ

− iC3
lequ

[
v̄s
′
(p2)σµνPRu

s(p1)
] [
ūr(p3)σµνPRv

r′(p4)
]
δαβ (3.8.7)

To compute the unpolarization squared amplitude of our process, we have to take average over
initial spins s, s′ and sum over final spin r, r′ as well as colour indices. More specificly, the
squared amplitude is given by

|M|2 =
3

4

∑
spins

(Mγ +MZ +M4−f ) (Mγ +MZ +M4−f )
† , (3.8.8)

notice that the amplitude of four-fermion diagram is proportional with Willsion coefficients,
thus we can neglect the |M4−f |2 term which will be considered in dimension-eight operators.
Now, our sum includes 8 terms which are: 2 diagonal terms, i.e |Mγ|2, |MZ |2 and 6 interfer-

ences terms (MZM†
γ+M4−fM†

γ+M4−fM†
Z+h.c). The analytic results of squared amplitude

in Rξ-gauge calculated by FORM [5].

For the total cross-section, we also used the formula in chapter 2, which is

dσ

dΩ
=

|M|2
64π2 (Ee− + Ee+)2

|~k|
|~p|

⇒ σT =

∫ 1

−1

dσ

d(cosθ)
d(cosθ) =

∫ 1

−1

∫ 2π

0

|M|2
64π2 (Ee− + Ee+)2

|~k|
|~p|dφ d(cosθ). (3.8.9)

From equation (3.8.9) we are able to calculate the total cross-section numerically. Now, we
move to the next section to study some physical results in SMEFT.

45



Physical results in SMEFT

3.9 Physical results in SMEFT

In first, I have set CφB, CφW , CφD, CφWB and Cφ to zero. With this configuration, we can reuse
the coupling constants, mass of fermions and bosons like Standard Model. In order to explore
the sensitivity of total cross-section with Willsion coefficients as well as for the convenience of
comparision, we have separated these coefficients into three parts:

1. Top-quark electroweak couplings: CuW , CuB, C
1
φq, C

3
φq, and Cφu.

2. Four-fermion couplings: Clu, Ceu, Cqe, C
1
lq, and C3

lq.

3. Lepton electroweak couplings: C1
φl, C

3
φl, and Cφe. In this case we do not count CeB

and CeW since these coefficients are proportional with me in the square amplitude and
are neglected.

To know how much the sensitivity of each operators is, we exported a results following the

ratio
σSMEFT

σSM
. It is important to notice that, we plot a dependence of the physical quantities

with respect to a dimensionless parameters, which is

C̄i = Ci
v2

Λ2
(3.9.1)

where the range of C̄i can be from −0.2 to +0.2. Finally, we depict the effect of each oper-
ators into their corresponding physical observables. We also notice that, for each line in all
figure below the value of all dimensionless parameters (Willsion coeffcients) are zero except the
parameters which denoted in the graph.

3.9.1 Top-quark electroweak couplings

In our process, the measurments are effectively at
√
s = 500 GeV, since the total cross-section

reachs a maximum value at this energy level. First of all, let us point out the ratio
σSMEFT

σSM
for
√
s = 500 GeV as figure 3.2:

CuW
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C1ϕq

C3ϕq

Cϕu
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(b) C̄i = −0.1

Figure 3.2: The dependence of total cross-section on D6 operators for
√
s = 500 GeV (a). The

effectof D6 operators on total cross-section at C̄i = −0.1 (b).
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As we can see, the dependence of total cross-section with respect to the dimensionless coeffi-
cients C̄i is linear. According to figure (3.2a) we can choose the values: C̄uW = C̄uB = C̄1

φq =
C̄φu = C̄φu = −0.1, and notice that we will fix these values to find out which operators are sen-
sitive with physical observables. Therefore, the effect of dimension-six operators are illustrated
in figure (3.2b). We also notice that C

(3)
φl has a same contribution with C

(1)
φq , but it contain the

minus sign thus it is hard to combine all information in one figure, we will try to show more
information as much as possible.

Althought the Willsion coefficients affect the total cross-section, however, if C̄i are small enough,
from figure 3.2 we can not distinguish one from the other. Fortunately, each Willsion coefficient
may be sensitive with one or more another physical observables. That means, we can find an
observable (distribution) which is affected significantly by varying the value of coefficient which
we are considering. In this spirit, we now looking for the forward-backward asymmetry, and
several distributions are depicted as follows:
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Figure 3.3: The dependence of forward-backward asymmetry on D6 operators for
√
s = 500 GeV

(a). The effects of D6 operators on AFB with C̄uW = C̄uB = C̄1
φq = C̄φu = C̄φu = −0.1 each time (b).
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Figure 3.4: The effect of D6 operators on transverse momentum distribution (a), in Log scale (b).
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Figure 3.5: The effect of D6 operators on rapidity- (a) and pseudo-rapidity distribution (b) for√
s = 500 GeV with C̄uW = C̄uB = C̄1

φq = C̄φu = C̄φu = −0.1.

Base on figure 3.3(a) and 3.3(b), these operators are very sensitive with the forward-backward
asymmetry, more specifically, they are sensitive with the asymmetries of cosθ distributions. In
case of of F-B asymmetry and transverse momentum distribution, we temporarily do not draw
C

(3)
φq since their minus value, however we can see the effect of this operator more clearly in the

rapidity and pseudo rapidity distribution at figure 3.5 (a, b).

3.9.2 Four-fermion couplings

First of all, we also draw the dependence of cross-section on four-fermion operators, let us see
figure 3.5. From this figure, we can see that the total cross-section is changed significantly
under the varying of four-fermion operators. In that case, we should chose a small value of
parameters which is Clu = Ceu = Cqe = C1

lq = C3
lq = −0.01. Here is several results of four-

fermion case:
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Figure 3.6: The dependence of total cross-section on Four-fermion operators for
√
s = 500 GeV (a),

the effects of Four-fermion operators with Clu = Ceu = Cqe = C1
lq = C3

lq = −0.01 (b).

Besides, we also plot some asymmetry and distributions as we have done:
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Figure 3.7: The dependence of F-B asymmetry on Four-fermion operators for
√
s = 500 GeV (a),

the effects of Four-fermion operators with Clu = Ceu = Cqe = C1
lq = C3

lq = −0.01 (b).
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Figure 3.8: Transverse momentum distribution (a), transverse momentum in Log scale (b), rapidity
and pseduo-rapidity distribution (c,d) for

√
s = 500 with Clu = Ceu = Cqe = C1

lq = C3
lq = −0.01.
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3.9.3 Lepton electroweak couplings

Analogous with the two previous case, we first consider the effect of C1
φl, C

3
φl, and Cφe on the

total cross-section in figure (3.6a). In here, the values of parameters are choosen as C1
φl, Cφe =

C3
φl = 0.01. With these values, let us consider the F-B asymmtery and several distributions as

follows:
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Figure 3.9: The dependence of total cross-section on D6 operators for
√
s = 500 GeV (a), the

effects of D6 operators with C1
φl, Cφe = C3

φl = 0.01 (b).

C1ϕl

C3ϕl

Cϕe

-0.2 -0.1 0.0 0.1 0.2
-1.0

-0.5

0.0

0.5

1.0

1.5

Civ
2
/Λ

2

AfbSMEFT/AfbSM

(a) C̄i = 0.01

SM

C1ϕl

Cϕe

0 500 1000 1500 2000 2500 3000
0.0

0.1

0.2

0.3

0.4

s (GeV)

Afb

(b) C̄i = 0.01

Figure 3.10: The dependence of F-B asymmetry on D6 operators for
√
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effects of D6 operators with C1
φl, Cφe = C3

φl = 0.01 (b).
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Figure 3.11: Transverse momentum distribution (a), transverse momentum in Log scale (b) for√
s = 500 GeV with C1

φl, Cφe = C3
φl = 0.01.
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√
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Chapter 4

Fully polarized top-quark decays in
SMEFT

In this chapter we consider another process to find new physics above the electroweak energy
scale. More specifically, we consider the process of fully polarized top-quark decay into a
massive b-quark and polarized W-boson with leptonic decay. The prediction of polarization
observables for W-boson can help us select which observables are sensitive to new physics in
the top quark decay. The calculations here are based on [8], [9].

4.1 Spin density matrix methodology

From the characteristic spin-1, the W-boson provides 8 spin observables including three polar-
izations and five alignments (tensor polarizations) [9]. To understand more clearly, let us find
out a minimal set of parameters to describe the spin state of W-boson as follows:

First of all, W-boson spin state can be described by a 3 × 3 density matrix with complex
elements. Besides, this matrix should be Hermitian with unit trace and positive semidefinite,
thus the degree of freedom of this density matrix is

9× 2− 3− 6− 1 = 8, (4.1.1)

which correspond with 8 spin observables of W-boson. By choosing a Cartesian coordinates
(x, y, z) in W-boson rest reference frame, the density matrix can be expressed in terms of the
three spin operator components SM and the five tensor operator components TM as[9]

ρ =
1

3
1 +

1

2

1∑
M=−1

〈SM〉∗SM +
2∑

M=−2

〈TM〉∗TM , (4.1.2)

where 〈SM〉, 〈TM〉 are sequentially expectation values of SM and TM corresponding operators.
We also notice that SM are spin operator components in coordinate system which can be
written in spherical basis

S±1 = ∓ 1√
2

(Sx ± iSy) , S0 = Sz, (4.1.3)

whereas the explicit form of Sx, Sy, Sz are

Sx =
1√
2

0 1 0
1 0 1
0 1 0

 , Sy =
1√
2i

 0 1 0
−1 0 1
0 −1 0

 , Sz =

1 0 0
0 0 0
0 0 −1

 . (4.1.4)
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Furthermore, TM are irreducible second rank tensors which are constructed in terms of SM as

T0 =
1√
6

[
S+1S−1 + S−1S+1 + 2S2

0

]
, T±1 =

1√
2

[S±1S0 + S0S±1] , T±2 = S2
±1. (4.1.5)

For convenience, we introduce a following operators in the Cartesian basis:

A1 =
1

2
(T1 − T−1) , A2 =

1

2i
(T1 + T−1) ,

B1 =
1

2
(T2 + T−2) , B2 =

1

2i
(T2 − T−2) . (4.1.6)

Substituting (4.1.3) and the inverse of (4.1.6), expressing T±1, T±2 in terms of A1,2 ,B1,2 basic,
into the density matrix (4.1.2) we shall have:

ρ =
1

3
1 +

1

2

3∑
i=1

〈Si〉∗Si +
2∑
j=1

〈Aj〉∗Aj +
2∑
j=1

〈Bj〉∗Bj + 〈T0〉∗T0, (4.1.7)

where i = 1, · · · , 3 stand for x, y, z. Using Cartesian basis in (4.1.4) and the identities (4.1.3,
4.1.5) we can directly calculate the explicit matrix form of Aj, Bj and T0, which reads

A1 =
1

2
√

2

 0 −1 0
−1 0 1
0 1 0

 , A2 =
1

2i
√

2

0 −1 0
1 0 1
0 −1 0


B1 =

1

2

0 0 1
0 0 0
1 0 0

 , B2 =
1

2i

 0 0 1
0 0 0
−1 0 0

 , T0 =
1√
6

1 0 0
0 −2 0
0 0 1

 . (4.1.8)

After that, substituting these results into (4.1.7), we obtain the W-boson density matrix pa-
rameterized in terms of expectation values of spin observables, each elements of this matrix
are presented as follows:

ρ±1±1 =
1

3
± 1

2
〈Sz〉+

1√
6
〈T0〉, ρ00 =

1

3
− 2√

6
〈T0〉,

ρ±10 =
1

2
√

2
[〈Sx〉 ∓ i〈Sy〉]∓

1√
2

[〈A1〉 ∓ i〈A2〉] , ρ1−1 = 〈B1〉 − i〈B2〉,
(4.1.9)

and ρm′m = ρ∗mm′ . This matrix will be used to calculate the fully differential decay width of
W-boson. For W± → l±ν, we can manipulate the helicity formalism of Jacob and Wick to
write down the amplitude for W-boson leptonic decay process as follows:

Mmλ1λ2 = aλ1λ2D
1∗
mΛ (φ, θ, 0) , (4.1.10)

where m is spin components of W-boson (m = −1, 0,+1), λ1 and λ2 are helicity indices of l
and ν, respectively. We also notice that aλ1λ2 are constants, Λ = λ1 − λ2 and D1∗

mΛ (φ, θ, 0) is
the so-called Wigner D functions with the explicit form given by

Dj
m′m (α, β, γ) = e−iαm

′
e−iγmdjm′m (β) , (4.1.11)
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where djm′m (β) is Wigner-d matrix elements (real). In W-boson leptoic decay, the mass of
lepton products are approximately considered massless, thus we have (λ1, λ2) = (±1/2,∓1/2)
for W± → l±ν. Now, let us write down the Feynman squared amplitude elements which reads

|Mmm′ |2 =Mmλ1λ2M∗
m′λ1λ2 = |aλ1λ2 |2 ei(m−m

′)φd1
mΛ(θ)d1

m′Λ(θ). (4.1.12)

As we can see, each elements of density matrix is corresponding to one possibilities contribution
of squared amplitude elements. The fully differential decay width of W-boson can presentes as

dΓ

dcosθdφ
= C

∑
m,m′

ρmm′e
i(m−m′)φd1

mΛ(θ)d1
m′Λ(θ), (4.1.13)

with (θ, φ) are polar and azimuthal angles of the charged lepton momentum in W-boson rest
frame, C is a factor including the phase space and the non-zero constant aλ1λ2 . The index
Λ = +1(−1) for W+ or W− decays, in case of Λ = +1 the Wigner-d matrix elements for spin-1
particles have form

d1
11 =

1 + cosθ

2
, d1

01 =
sin θ√

2
, d1

−11 =
1− cosθ

2
, (4.1.14)

for W− boson, we can use the identity

djm′m = (−1)m−m
′
djmm′ = dj−m,−m′ (4.1.15)

Combinding all ingredients, i.e substituting (4.1.9) and (4.1.14) into (4.1.13) we obtain:

dΓ

d cos θdφ
= C

[
1

2

(
1 + cos2 θ

)
+

[
1

6
− 1√

6
〈T0〉

] (
1− 3 cos2 θ

)
+ 〈Sz〉 cos θ

+ 〈Sx〉 cosφ sin θ + 〈Sy〉 sinφ sin θ − 〈A1〉 cosφ sin 2θ − 〈A2〉 sinφ sin 2θ

+〈B1〉 cos 2φ sin2 θ + 〈B2〉 sin 2φ sin2 θ
]
, (4.1.16)

however, this distribution have not been normalized yet, the factor C can be calculated by∫ 1

−1

∫ 2π

0

dΓ

dcosθdφ
dφd(cosθ) = 1 =⇒ C =

3

8π
(4.1.17)

Finally, we obtain the normalized distribution of W+ boson, which is

1

Γ
· dΓ

dcosθdφ
=

3

8π

[
1

2

(
1 + cos2θ

)
+

[
1

6
− 1√

6
〈T0〉

] (
1− 3cos2θ

)
+ 〈Sz〉cosθ

+ 〈Sx〉cosφ sin θ + 〈Sy〉 sinφ sin θ − 〈A1〉cosφ sin 2θ − 〈A2〉 sinφ sin 2θ

+〈B1〉 cos 2φ sin2 θ + 〈B2〉 sin 2φ sin2 θ
]
. (4.1.18)

Althought the distribution (4.1.18) carry all polarized informations of W-boson with an eight-
parameter fit, nevertherless, we can derive another distributions which depend on one or fewer
parameters. From this, the connection for decay distributions and spin observables can be
constructed directly. In this section we focus on the W+ boson, the distribution of W− boson
can be derived from W+ distribution.
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From the overall perspective, the distribution (4.1.18) just only depend on the longitudinal
polarization 〈Sz〉 and the alignment 〈T0〉 when we integrate over the azimuthal angle φ, so it
is reasonable the asymmetry in the cos θ distribution may be sensitive with these parameters.
Firstly, let us consider the forward-backward asymmetry AFB:

AFB =
1

Γ
[Γ(cos θ > 0)− Γ(cos < 0)]

=

[∫ π/2

0

∫ 2π

0

−
∫ π

π/2

∫ 2π

0

]
1

Γ

dΓ

d cos θdφ
dφ sin θdθ =

3

4
〈Sz〉 (4.1.19)

Another interesting asymmetry is an ”edge-central” asymmetry AEC :

AEC =
1

Γ

[
Γ

(
| cos θ| > 1

2

)
− Γ

(
| cos θ| < 1

2

)]
=

[∫ π/3

0

∫ 2π

0

+

∫ π

2π/3

∫ 2π

0

−
∫ 2π/3

π/3

∫ 2π

0

]
1

Γ

dΓ

d cos θdφ
dφ sin θdθ =

3

8

√
3

2
〈T0〉 (4.1.20)

As we can see, from (4.1.19) and (4.1.20) the spin properties of W-boson, the longitudinal
polarization 〈Sz〉 and the alignment 〈T0〉, can be extracted straightfowrad from the experimen-
tial distributions. Furthermore, if 〈Sz〉 and 〈T0〉 are measured the diagonal elements (4.1.9) of
density matrix will be automatically determined.

In order to determine the remaining observables, we need to avoid the cancellation when inte-
grate over φ. To do this, we repalce the integration over θ by an integration using a measure
f(θ) to select the desired events. For instant, let us consider the forward-backward asymmetry
for x− and y−axes, in that case we use

f1(φ) = sign[cosφ]⇒
{
f1(φ) = +1, for events with φ ∈ [−π/2, π/2]

f1(φ) = −1, for events with φ ∈ [π/2, 3π/2]
; (4.1.21)

f2(φ) = sign[sinφ]⇒
{
f2(φ) = +1, for events with φ ∈ [0, π]

f2(φ) = −1, for events with φ ∈ [π, 2π]
(4.1.22)

Integrating with these measures yields the quantities δkΓ, with k = 1, 2, which has an angular
distribution as follows:

1

Γ

d (δkΓ)

d cos θ
=

∫ 2π

0

[
1

Γ

dΓ

d cos θdφ

]
fk(φ)dφ =

3

2π
〈Sk〉 sin θ −

3

2π
〈Ak〉 sin 2θ (4.1.23)

We also do an analohous calculations like the forward-backward asymmetry, integrating over
θ angle, we obtain the following results:

δ1Γ

Γ
=

1

Γ
[Γ(cosφ > 0)− Γ(cosφ < 0)] =

∫ 1

−1

1

Γ

d (δkΓ)

d cos θ
d(cos θ) =

3

4
〈Sx〉, (4.1.24)

δ2Γ

Γ
=

1

Γ
[Γ(sinφ > 0)− Γ(sinφ < 0)] =

∫ 1

−1

1

Γ

d (δ2Γ)

d cos θ
d(cos θ) = −3

4
〈Sy〉 (4.1.25)
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As we expected, 〈Sx〉 and 〈Sy〉 are relative directly with the forward-backward asymmetry for
x- and y-axes. Moreover, we can modify equation (4.1.23) a bit to obtain an observable for
tensor polarizations as follows:

A1
FB =

1

Γ
[Γ(cosφ cos θ > 0)− Γ(cosφ cos θ < 0)]

=

∫ π

0

∫ 2π

0

[
1

Γ

dΓ

d cos θdφ

]
sign[cosφ · cos θ]dφ sin θdθ

=

[∫ π/2

0

∫ π/2

−π/2
+

∫ π

π/2

∫ 3π/2

π/2

−
∫ π/2

0

∫ 3π/2

π/2

−
∫ π

π/2

∫ π/2

−π/2

]
1

Γ

dΓ

d cos θdφ
dφ sin θdθ = − 2

π
〈A1〉,

(4.1.26)

and the same manner to obtain the 〈A2〉 quantity:

A2
FB =

1

Γ
[Γ(sinφ cos θ > 0)− Γ(sinφ cos θ < 0)]

=

∫ π

0

∫ 2π

0

[
1

Γ

dΓ

d cos θdφ

]
sign[sinφ · cos θ]dφ sin θdθ

=

[∫ π/2

0

∫ π

0

+

∫ π

π/2

∫ 2π

π

−
∫ π

π/2

∫ π

0

−
∫ π/2

0

∫ 2π

π

]
1

Γ

dΓ

d cos θdφ
dφ sin θdθ = − 2

π
〈A2〉.

(4.1.27)

In order to determine 〈Bj〉 quantities, let us introduce a measure gk(θ) as follows:

g1(φ) = sign[cos 2φ]⇒
{
g1(φ) = +1, for φ ∈ [−π/2, π/2] ∪ [3π/2, 5π/2]

g1(φ) = −1, for φ ∈ [π/2, 3π/2] ∪ [5π/2, 7π/2]
; (4.1.28)

g2(φ) = sign[sin 2φ]⇒
{
g2(φ) = +1, for φ ∈ [0, π] ∪ [2π, 3π]

g2(φ) = −1, for φ ∈ [π, 2π] ∪ [3π, 4π]
(4.1.29)

Keep in mind that the range of φ is [0, 2π], hence 2φ→ [0, 4π]. At a glance of (4.1.9), all terms
will be eliminated except the terms proportional to 〈Bj〉. Integrating over cosθ we obtain the
azimuthal asymmetries:

A1
φ =

1

Γ
[Γ(cos 2φ > 0)− Γ(cos 2φ < 0)]

=

∫ π

0

∫ 2π

0

[
1

Γ

dΓ

d cos θdφ

]
sign[cos 2φ]dφd(cos θ)

=

∫ π

0

[∫ π/2

−π/2
+

∫ 5π/2

3π/2

−
∫ 3π/2

π/2

−
∫ 7π/2

5π/2

]
1

Γ

dΓ

d cos θdφ
dφd(cos θ) = − 2

π
〈B1〉, (4.1.30)

analogous for g2(θ) we shall have

A1
φ =

1

Γ
[Γ(sin 2φ > 0)− Γ(sin 2φ < 0)]

=

∫ π

0

[∫ π

0

+

∫ 3π

2π

−
∫ 2π

π

−
∫ 4π

3π

]
1

Γ

dΓ

d cos θdφ
dφd(cos θ) = − 2

π
〈B2〉. (4.1.31)
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For W− boson, the differential decay distribution can be proceeded via replacing sin θ → − sin θ
and cos θ → − cos θ. All relations between asymmetries and spin observables in (4.1.19),
(4.1.20), (4.1.24), (4.1.25), (4.1.26), (4.1.27), (4.1.30) and (4.1.31) remain a same form as W+

boson, instead, with extra minus for AFB and δkΓ, more specifically we have:

=⇒



AFB =
1

Γ
[Γ(cos θ > 0)− Γ(cos < 0)] = −3

4
〈Sz〉

AEC =
1

Γ

[
Γ

(
| cos θ| > 1

2

)
− Γ

(
| cos θ| < 1

2

)]
=

3

8

√
3

2
〈T0〉

δ1Γ

Γ
=

1

Γ
[Γ(cosφ > 0)− Γ(cosφ < 0)] = −3

4
〈Sx〉

δ2Γ

Γ
=

1

Γ
[Γ(sinφ > 0)− Γ(sinφ < 0)] = +

3

4
〈Sy〉

A1
FB =

1

Γ
[Γ(cosφ cos θ > 0)− Γ(cosφ cos θ < 0)] = − 2

π
〈A1〉

A2
FB =

1

Γ
[Γ(sinφ cos θ > 0)− Γ(sinφ cos θ < 0)] = − 2

π
〈A2〉

A1
φ =

1

Γ
[Γ(cos 2φ > 0)− Γ(cos 2φ < 0)] = − 2

π
〈B1〉

A1
φ =

1

Γ
[Γ(sin 2φ > 0)− Γ(sin 2φ < 0)] = − 2

π
〈B2〉

(4.1.32)

4.2 Fully polarized top-quark decays

The main purpose of this section is to calculate the production of W-boson density matrix
resulting from fully polarized top-quark decays in SMEFT.

4.2.1 Effective Wtb interaction

As the way we did in previous chapter before, we also expand the covariant derivative in
SM part and the dimension-six operators in SMEFT which are QuW , QdW and Qφud. The
effective Lagrangian include SM contributions and the correction from dimension-six operators
are presented as follows:

LfullWtb = − ḡ2√
2
b̄γµ

[
PL +

1

2
C3∗
φudv

2PR

]
tW−

µ − b̄i2σµνqν
[
C3∗
dWvPL + C3

uWvPR
]
tW−

µ

− ḡ2√
2
t̄γµ
[
PL +

1

2
C3
φudv

2PR

]
bW+

µ + t̄i2σµνqν
[
C3
dWvPR + C3∗

uWvPL
]
bW+

µ (4.2.1)

Chronologically, the first line of (4.2.1) describes the top-quark decay process, the last line in
nothing but the hermitian conjuagate which desribe the process of anti top-quark decay. In
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order to consistent with [8] and cross-check with the results of [9] let us parameterized the
Lagrangian interaction of top-quark decay as follows:

LWtb = − ḡ2√
2
b̄γµ [VLPL + VRPR] tW−

µ −
ḡ2√

2
b̄
iσµνqν
MW

[gLPL + gRPR] tW−
µ

− ḡ2√
2
t̄γµ [V ∗LPL + V ∗RPR] bW+

µ +
ḡ2√

2
t̄
iσµνqν
MW

[g∗LPR + g∗RPL] bW+
µ (4.2.2)

whereas the parameters in Lagrangian (4.2.2) are

VL = Vtb, VR =
1

2
C3∗
φud

v2

Λ2

gL =
√

2C3∗
dW

v2

Λ2
, gR =

√
2C3

uW

v2

Λ2
. (4.2.3)

It is noticeable that Vtb is the Cabibbo-Kobayaski-Maskawa matrix element which has a value
Vtb ' 1. Besides, we also normalized the σµνqν term in mass scale MW = ḡ2v/2. All contri-
bution of dimension six operators for Wtb vertex can be found in appendix A.3. From (4.2.2)
we can see that all new physics effects can be parameterized by four parameters which are
connected directly with dimension-six operators. Note that, the parameterization (4.2.1) is
called EFT framework, while (4.2.2) is called the anomalous coupling framework.

4.2.2 Polarized squared amplitude

The main purpose of this section is calculating the production of polarized W+ boson via fully
polarized top-quark decay. The Feynman diagram of this process is

b(pb)

t(pt)

W+
µ

Figure 4.1: The Feynman diagram for top-quark decays.

For our process, we choose top-quark rest frame and setting the positive of z-axis in the
direction of W-boson momentum ~q. Thus, the W-boson polarization vectors in our top-quark
rest frame are 

ε0µ =
1

MW

(q, 0, 0, EW )

ε+1
µ = − 1√

2
(0, 1, i, 0)

ε−1
µ =

1√
2

(0, 1,−i, 0)

(4.2.4)
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For polarized top-quark, let us define a spin four-vector which is parameterized as [8]

stµ = (0, sinθ cosφ, sinθ sinφ, cosθ) (4.2.5)

For the kinematic variables, we define the four energy-momentum vector of top-quark, b-quark
and W-boson as follows:

ptµ = (mt, 0, 0, 0) , pbµ = (Eb, 0, 0,−q) , pWµ = (EW , 0, 0, q) , (4.2.6)

notice that we can set mb ' 0 in two-body decays phase space, approximately, thus the explict
form of EW and Eb are

EW =
1

2mt

(
m2
t +m2

W

)
, Eb = q =

1

2mt

(
m2
t −m2

W

)
. (4.2.7)

With all ingredients we now can write down the Feynman amplitude of t → Wb process and
their hermitian conjugate as follows:

Mi (t→ Wib) = ūλb(pb)i
ḡ2√

2

[
−γµ (V ∗LPL + V ∗RPR) + i

σµνqν
MW

(g∗LPR + g∗RPL)

]
uλt(pt)ε

i∗
µ (pW ),

M∗
j (t→ Wjb) = εjν(pW )ūλt(pt)i

ḡ2√
2

[
γµ (VLPL + VRPR) + i

σµνqν
MW

(gLPL + gRPR)

]
uλb(pb),

(4.2.8)

where qν = (pt−pb)ν is W-boson momentum. Chronologicaly, λt, λb = [−1/2,+1/2] are helicity
indices of top quark and bottom quark, i, j = [−1, 0,+1] are W+ boson helicity indices. Re-
member that our process is fully polarized top-quark decay into massive b-quark and polarized
W-boson, thus we just only sum over final spin state of b-quark. We also notice that quarks
have three colour states, in case of our process, we need to take average the initial colour states
and sum over final colour states. Combinding all informations, the polarized squared amplitude
elements are

Mij = 3 · 1

3

∑
λb

Mi (t→ Wib)M∗
j (t→ Wjb)

=
ḡ2

2

4
Tr

{(
/pb +mb

)[
γµ (V ∗LPL + V ∗RPR)− iσ

µνqν
MW

(g∗LPR + g∗RPL)

] (
1 + γ5/st

) (
/pt +mt

)
×εi∗µ (pW )εjν(pW )

[
γµ (VLPL + VRPR) + i

σµνqν
MW

(gLPL + gRPR)

]}
. (4.2.9)

To derive the polarized squared amplitude (4.2.9) we have used the indentity:

u (pt, λt) ū (pt, λt) =
1

2

(
1 + γ5/st

) (
/pt +mt

)
(4.2.10)

Notice that in (4.2.9) we do not ignore the mass of b-quark, instead, we will performe the final
result with respect to mb order. The analytical result of polarized squared amplitude up to
high order of mb are

Mi (t→ Wib)M∗
j (t→ Wjb) =

ḡ2
2

4
m2
tρij, (4.2.11)
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where ρij is the density matrix elements of W+ boson. Each matrix elements have a form:

ρ00 = A0 + 2
|~q|
mt

A1 cos θ,

ρ±1±1 = B0(1± cos θ)± 2
|~q|
mt

B1(1± cos θ),

ρ±10 = ρ∗0±1 =

[
mt√
2MW

(C0 + iD0)± |~q|√
2MW

(C1 + iD1)

]
sin θe∓iφ,

ρ±1∓1 = 0. (4.2.12)

The explicit form of each dimensionless parameters in (4.2.12) are

A0 =
m2
t

M2
W

(
|VL|2 + |VR|2

)
(1− x2

w) +
(
|gL|2 + |gR|2

)
− 2

mt

MW

Re [VLg
∗
R + VRg

∗
L] (1− x2

w)

+ 2
mt

MW

xbRe [VLg
∗
L + VRg

∗
R] (1 + x2

w)− 4xbRe [gLg
∗
R + VLV

∗
R]

+ x2
b

[
−(|gL|2 + |gR|2)

(
2 + 2

m2
t

M2
W

+
m4
t

M4
W

)
+ 4

mt

MW

Re [VLg
∗
R + VRg

∗
L]

]
− 4

m2
t

M2
W

x3
bRe [gLg

∗
R] ,

A1 =
m2
t

M2
W

(
|VL|2 − |VR|2

)
−
(
|gL|2 − |gR|2

)
− 2

mt

MW

Re [VLg
∗
R − VRg∗L]

+ 2
mt

MW

xbRe [VLg
∗
L − VRg∗R]− x2

b

m4
t

M4
W

(|gL|2 − |gR|2)(1 + 2x2
w),

B0 =
(
|VL|2 + |VR|2

)
(1− x2

w) +
m2
t

M2
W

(
|gL|2 + |gR|2

)
(1− x2

w)− 2
mt

MW

Re [VRg
∗
L + VLg

∗
R] (1− x2

w)

− 4xbRe [VLV
∗
R + gLg

∗
R] + 2

mt

MW

xbRe [VLg
∗
L + VRg

∗
R] (1 + x2

w) + 4
mt

MW

x2
bRe [VLg

∗
R + VRg

∗
L]

− 2
m2
t

M2
W

x2
b(|gL|2 + |gR|2)(1 + x2

w)− m2
t

M2
W

x2
b(1− x2

w)(|gL|2 + |gR|2)− 2
m2
t

M2
W

x3
bRe[gLg

∗
R],

B1 = −
(
|VL|2 + |VR|2

)
+

m2
t

M2
W

(
|gL|2 − |gR|2

)
+ 2

mt

MW

Re [VLg
∗
R − VRg∗L]

+ 2
mt

MW

xbRe [VLg
∗
L − VRg∗R]− m2

t

M2
W

x2
b(|gL|2 − |gR|2),

C0 =
(
|VL|2 + |VR|2 + |gL|2 + |gR|2

)
(1− x2

w)− mt

MW

Re [VRg
∗
L + VLg

∗
R] (1− x4

w)

− 2xbRe [VLV
∗
R + gLg

∗
R] (1 + x2

w) + 4xbxwRe [VLg
∗
L + VRg

∗
R]

− 2x2
b

m2
t

M2
W

(|gL|2 + |gR|2)(1− 2x2
w) + 2x2

b

mt

MW

Re [VLgR + gLVR] (1 + x2
w)

− 2x3
b

m2
t

M2
W

Re [gLg
∗
R] (1 + x2

w),

C1 = −2
(
−|VL|2 + |VR|2 + |gL|2 − |gR|2

)
+ 2

mt

MW

Re [−VRg∗L + VLg
∗
R] (1 + x2

w)

− 4x2
b

m2
t

M2
W

[
(|gR|2 − |gL|2)(1− x2

w) + (|gL|2 + |gR|2)x2
w

] 1

m2
t −M2

W

, (4.2.13)
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D0 =
mt

MW

Im [VRg
∗
L + VLg

∗
R] (1− x2

w),

D1 = −2
mt

MW

Im [VLg
∗
R − VRg∗L] (1− x2

w)− 4xbIm [VLV
∗
R + gLg

∗
R] + 4x2

b

mt

MW

Im [VLg
∗
R + gLV

∗
R]

+ 4x3
b

m2
t

M2
W

Im [gLg
∗
R] , (4.2.14)

notice that xb = mb/mt and xw = MW/mt. The dimensionless parameters in (4.2.13) are
matching with [8] up to O(mb) order. By synchronizing the density matrix in (4.2.12) with
the density matrix parameterized by expectation values of spin observables, we can obtain the
information of polarized quantities. However, the density matrix (4.2.12) have not normalized
yet, to do this we exploit the unit trace condition:

C

∫ 1

−1

∑
i

ρiid(cos θ) = 1 (4.2.15)

Substituting the matrix elements in (4.2.12) we obtain the normalized factor as follows:

C =
1

2 [A0 + 2B0]
(4.2.16)

After that, integrating over cos θ and synchronizing with (4.2.12) we shall have

〈Sz〉 = 4
q

mt

B1

A0 + 2B0

, 〈Sx〉 =
π

2

mt

MW

C0

A0 + 2B0

, 〈Sy〉 = −π
2

q

MW

D1

A0 + 2B0

,

〈T0〉 =

√
2

3

B0 − A0

A0 + 2B0

, 〈A1〉 = −π
4

q

MW

C1

A0 + 2B0

, 〈A2〉 =
π

4

mt

MW

D0

A0 + 2B0

〈B1〉 = 〈B2〉 = 0. (4.2.17)

Now we can see that eight spin-observables are clacuated implying the appearence of dimension-
six operators. In order to probe a new physics effect, gR is the best candidate since its inter-
ference terms with VL are not multiply with the tiny factor xb.

4.3 Physical results

The goal of probing new physics motivated us to look for the numerical vaule of each spin
observables in (4.2.17). In order to cross-checked the results of Ref. [9] we first using their
input parameters which is consistency with Ref. [10] as follows:

mtop = 172.5 GeV, MW = 80.385 GeV, mb = 4.18 GeV (4.3.1)

For the numerical values of gR, we chose two values to explore the effect of the real and imag-
inary part of gR. Here we present the prediction of W-boson spin observables in polarized
top-quark decay including dimension-six operators:
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< S1 > < S2 > < S3 > < T0 > < A1 > < A2 >

Ref. [9] 0.510 0 -0.302 -0.445 0.255 0

SM Results 1 0.510 0 -0.303 -0.445 0.255 0

δ[%] 0% 0% 0.3% 0% 0% 0%

Ref. [9] 0.500 0 -0.278 -0.472 0.249 0

gR = 0.03 Results 1 0.499 0 -0.281 -0.472 0.249 0

δ[%] 0.2% 0% 1.08% 0% 0% 0%

Ref. [9] 0.507 -0.084 -0.284 -0.434 0.253 -0.042

gR = 0.10i Results1 0.508 -0.084 -0.312 -0.434 0.254 - 0.042

δ[%] 0.2% 0% 9.85% 0% 0.3% 0%

Table 4.1: Cross-check with Ref. [9] for W spin observables in polarized top-quark decays with
the input parameters in 4.3.1.

Here we denote δ[%] =
∣∣∣Results1−Ref.[9]

Ref.[9]

∣∣∣ × 100 is a relative deviation. As we can see, most of

result in Table 4.1 agree with Ref. [9] except 〈S3〉 values in case of gR = 0.03 and gR = 0.10i.
We are trying to re-check this values again and contact with the authors of Ref. [9] to let them
check their results.

From the Table 4.1, the measurement of these spin observables of W-boson will help us select
which physical quatities are sensitive with the anomalous coupling gR as well as increase the
sensitivity for new physics effects in top-quark.
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Summary and outlook

Summary

In this part we summarize all what we have done in this thesis. First of all, let us consider the
scattering process e+ + e− −→ t+ t̄ in the first three chapters:

• We first calculated this process in case of QED, SM and also generate several distributions
to help us compare. In SM, we could depict the forward-backward asymmetry which does
not appear in QED. Notice that, we have worked in unitary-gauge.

• We have used program FORM [5] to calculate the Feynman squared amplitude in both
SM and SMEFT case. The total cross-section has been calculated by Mathematica 10.4,
we also used this program to plot the graphs in this thesis.

• For SMEFT, we have cross-checked the new Feynman rules and agreed with [7]. Fur-
thermore, in case of SMEFT, we have calculated this process in Rξ-gauge. After that we
study the effect of dimension-six operators on forward-backward asymmetry and some
distributions.

For the final chapter we obtain the following results:

• We have re-constructed the density matrix of W-boson and identified eight spin-observables
of W-boson by the angular distributions and asymmetries.

• We applied this method to polarized top-quark decays and re-producted the prediction
for numerical values of W spin observables. Most of results agreed with [9] except the
longitudinal polarization 〈S3〉 with the relative deviation of 9.85% in case of gR = 0.1i.

Outlook

• In this thesis, the total cross-sections are considerd unpolarization, in the future we may
re-calculate with polarized case.

• In chapter 3, we have just calculated theoretically. The purpose of this chapter is to
show the effect of Willsion coefficients, however we have not compare with experimental
measurements. In future we need to fit these parameters using expermental data.
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Appendix A

Further calculations in SMEFT

A.1 Operators for Higgs sector

(Dµφ)† (Dµφ) ⊃ 1

2
(∂µH) (∂µH) +

(
∂µΦ−

) (
∂µΦ+

)
+

1

2

(
∂µΦ0

) (
∂µΦ0

)
(A.1)

CφQφ ⊃ Cφ

[
1

4
v4H2 +

1

2
v4H2 + v4H2

]
= Cφ

15

8
v4H2 (A.2)

Cφ�Qφ� ⊃ Cφ�
[
∂µ
[
(φ†φ)∂µ(φ†φ)

]
− ∂µ(φ†φ)∂µ(φ†φ)

]
= −Cφ�v2(∂µH)(∂µH) (A.3)

CφDQφD ⊃ CφD

[
1

4
v2(∂µH)2 +

1

4
v2(∂µΦ0)2

]
(A.4)

A.2 Operators for γee, Zee and G0ee vertex

CeWQeW + C∗eWQ
†
eW ⊃ −CeW

v√
2

[
Zµν

(
cw +

ε

2
sw

)
+ Aµν

(
sw −

ε

2
cw

)]
(ēLσ

µνeR)

− C∗eW
v√
2

[
Zµν

(
cw +

ε

2
sw

)
+ Aµν

(
sw −

ε

2
cw

)]
(ēRσ

µνeL) (A.1)

CeBQeB + C∗eBQ
†
eB ⊃ CeB

v√
2

[
−Zµν

(
sw +

ε

2
cw

)
+ Aµν

(
cw −

ε

2
sw

)]
(ēLσ

µνeR)

+ C∗eB
v√
2

[
−Zµν

(
sw +

ε

2
cw

)
+ Aµν

(
cw −

ε

2
sw

)]
(ēRσ

µνeL) (A.2)

C
(1)
φl Q

(1)
φl ⊃ C

(1)
φl

[
−v∂µΦ0 +

v2

2
ḡ2

(
Zµ

[
cw +

ε

2
sw

]
+ Aµ

[
sw −

ε

2
cw

])
−v

2

2
ḡ1

(
−Zµ

[
sw +

ε

2
cw

]
+ Aµ

[
cw −

ε

2
sw

])]
(ēLγ

µeL) (A.3)

(A.4)
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C
(3)
φl Q

(3)
φl ⊃ C

(3)
φl

[
−v∂µΦ0 +

v2

2
ḡ2

(
Zµ

[
cw +

ε

2
sw

]
+ Aµ

[
sw −

ε

2
cw

])
−v

2

2
ḡ1

(
−Zµ

[
sw +

ε

2
cw

]
+ Aµ

[
cw −

ε

2
sw

])]
(ēLγ

µeL) (A.5)

CφeQφe ⊃ Cφe

[
−v∂µΦ0 +

v2

2
Zµ

(
ḡ2

[
cw +

ε

2
sw

]
+ ḡ1

[
sw +

ε

2
cw

])
+
v2

2
Aµ

(
ḡ2

[
sw −

ε

2
cw

]
− ḡ1

[
cw −

ε

2
sw

])]
(ēRγ

µeR) (A.6)

A.3 Operators for γtt, Ztt and G0tt vertex

CuWQuW + C∗uWQ
†
uW ⊃ CuW

v√
2

[
Zµν

(
cw +

ε

2
sw

)
+ Aµν

(
sw −

ε

2
cw

)]
(t̄Lσ

µνtR)

+ C∗uW
v√
2

[
Zµν

(
cw +

ε

2
sw

)
+ Aµν

(
sw −

ε

2
cw

)]
(t̄Rσ

µνtL) (A.1)

CuBQuB + C∗uBQ
†
uB ⊃ CuB

v√
2

[
−Zµν

(
sw +

ε

2
cw

)
+ Aµν

(
cw −

ε

2
sw

)]
(t̄Lσ

µνtR)

+ C∗uB
v√
2

[
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(
sw +

ε

2
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)
+ Aµν

(
cw −

ε

2
sw

)]
(t̄Rσ

µνtL) (A.2)

C
(1)
φq Q

(1)
φq ⊃ C

(1)
φq

[
−v∂µΦ0 +

v2

2
ḡ2

(
Zµ

[
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ε

2
sw

]
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[
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ε

2
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2
ḡ1

(
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[
sw +

ε

2
cw

]
+ Aµ

[
cw −

ε

2
sw
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µtL) (A.3)

C
(3)
φq Q

(3)
φq ⊃ C

(3)
φq

[
v∂µΦ0 − v2

2
ḡ2

(
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[
cw −

ε

2
sw

])]
(t̄Lγ

µtL) (A.4)

CφuQφu ⊃ CΦu

[
−v∂µΦ0 +

v2

2
Zµ

(
ḡ2

[
cw +

ε

2
sw

]
+ ḡ1

[
sw +

ε

2
cw

])
+
v2

2
Aµ

(
ḡ2

[
sw −

ε

2
cw

]
+ ḡ1

[
cw −

ε

2
sw

])]
(t̄Rγ

µtR) (A.5)

A.4 Operators for four-fermion vertex

C
(1)
lq Q

1
lq ⊃ C

(1)
lq (ēγµPLe)ss′ (t̄γµPLt)rr′ (A.1)

C
(3)
lq Q

3
lq ⊃ −C(3)

lq (ēγµPLe)ss′ (t̄γµPLt)rr′ (A.2)

CeuQeu ⊃ Ceu (ēγµPRe)ss′ (t̄γµPRt)rr′ (A.3)
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CluQlu ⊃ Clu (ēγµPLe)ss′ (t̄γµPRt)rr′ (A.4)

CqeQqe ⊃ Cqe (t̄γµPLt)rr′ (ēγµPRe)ss′ (A.5)

C
(1)
lequQ

(1)
lequ + C

(1)∗
lequQ

(1)†
lequ ⊃ −

[
C1∗
lequ (ēPLe)ss′ (t̄PLt)rr′ + C1

lequ (ēPRe)ss′ (t̄PRt)rr′
]

(A.6)

C
(3)
lequQ

(3)
lequ + C

(3)∗
lequQ

(3)†
lequ ⊃ −

[
C3∗
lequ (ēσµνPLe)ss′ (t̄σµνPLt)rr′ + C3

lequ (ēσµνPRe)ss′ (t̄σµνPRt)rr′
]

(A.7)

A.5 Feynman squared amplitude

Diagonal terms:

∣∣M̄γ

∣∣2 =
64E2e4

0

3s2
(1− 2G1G2Re [CφWB])

[
E2 + k2cos2θ +m2

t

]
− 64E2e3

0

s2
mt (G1Re[CuW ] +G2Re[CuB])

[
k2 + 3E2 +m2

t

]
(A.1)

∣∣M̄Z

∣∣2 =
48E2

(s−M2
Z)2

[
(geV

2 + geA
2)(gtV

2
+ gtA

2
)(E2 + k2cos2θ)

+ 8EkcosθgeV g
e
Ag

t
V g

t
A +m2

t (g
e
V

2 + geA
2)(gtV

2 − gtA
2
)
]

+
48E2G3

(s−M2
Z)2

Re
[
Cφu − C1

φq + C3
φq

] [
gtA(geV

2 + geA
2)(E2 + k2cos2θ −m2

t ) + 4EkcosθgeV g
e
Ag

t
V

]
+

48E2G3

(s−M2
Z)2

Re
[
C1
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φq + Cφu
] [
gtV (geV
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e
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A

]
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(s−M2
Z)2

Re
[
Cφe − C1

φl − C3
φl

] [
geA(gtV

2
+ gtA

2
)(E2 + k2cos2θ)

+4EkcosθgeV g
t
V g

t
A −m2

tg
e
A(gtA

2 − gtV
2
)
]

− 48E2G3

(s−M2
Z)2

Re
[
C1
φl + C3

φl + Cφe
] [
geV (gtV

2
+ gtA

2
)(E2 + k2cos2θ)

+4EkcosθgeAg
t
V g

t
A −m2

tg
e
V (gtA

2 − gtV
2
)
]

+
96E2mt

(s−M2
Z)2

(G2Re[CuW ]−G1Re[CuB])

×
[
gtV (geA

2 + geV
2)(3E2 + k2 +m2
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e
Ag

t
A

]
+
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×
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[
(geAz

e
A − geV zeV )(gtA

2
+ gtV

2
) + (geA

2 + geV
2)(gtAz

t
A − gtV ztV )

]
+4gtV g

t
A(−geAzeV + geV z

e
A) + 4geV g

e
A(−gtAztV + gtV z

t
A)
}

+
96E2m2

t

(s−M2
Z)2

v2Re [CφWB]
[
(geAz

e
A − geV zeV )(−gtA

2
+ gtV

2
)− (geA
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2)(gtAz

t
A + gtV z

t
V )
]

(A.2)
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Interference terms:

M4−fM†
γ +M†

γM4−f =
16E2e0

s
Re [Cqe + Clu] (−k2cos2θ + 2Ekcosθ − E2 −m2

t )

+
16E2e0

s
Re
[
−Ceu + C3

lq − C1
lq

]
(k2cos2θ + 2Ekcosθ + E2 +m2

t )

(A.3)

MZM†
γ +M †

γMZ =
64E2e2

0

s(s−M2
Z)
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geV g

t
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M4−fM†
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