Study Status

Nguyen Thi Kim Ha
Ho Chi Minh University of Science

NuGroup Meeting, April 13th 2018

Non-unitary mixing matrix

(1) Introduction
(2) The effective Lagrangian
(3) Neutrino oscillations in vacuum

Introduction

The $n \times n$ mixing matrix will indeed to be unitary to preserve probability, the same is not true for any given $m \times m$, with $m<n$

$$
U_{\text {PMNS }}^{\text {Extended }}=\left(\begin{array}{ccc}
(\overbrace{\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1}^{3 \times 3} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)}^{\cdots} & \cdots & U_{\mu n} \\
\vdots & \vdots & \vdots \\
U_{\tau n} \\
U_{s_{n} 1} & U_{s_{n} 2} & U_{s_{n} 3}
\end{array} \cdots\right.
$$

The effective Lagrangian

The effective low-energy Lagrangian in the mass basic

$$
\begin{align*}
\mathcal{L}_{\text {eff }}= & \frac{1}{2}\left(\bar{\nu}_{i} i \partial \nu_{i}-\bar{\nu}^{c}{ }_{i} m_{i} \nu_{i}+h c\right) \\
& -\frac{g}{2 \sqrt{2}}\left(W_{\mu}^{+} \bar{\eta}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) N_{\alpha i} \nu_{i}+h c\right) \\
& -\frac{g}{2 \cos \theta_{W}}\left(Z_{\mu} \bar{\nu}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right)\left(N^{\dagger} N\right)_{i j} \nu_{j}+h c\right)+\cdots \tag{1}
\end{align*}
$$

The relation between mass and flavour eigenstates

$$
\begin{equation*}
\nu_{\alpha}=N_{\alpha i} \nu_{i} \tag{2}
\end{equation*}
$$

Mass eigenstates are orthonormal $\left\langle\nu_{i} \mid \nu_{j}\right\rangle=\delta_{i j}$
Flavour eigenstates are not orthonormal

$$
\left\langle\nu_{\beta} \mid \nu_{\alpha}\right\rangle=\left(\tilde{N} \tilde{N}^{\dagger}\right)_{\beta \alpha} \neq \delta_{\alpha \beta}
$$

where \tilde{N} is the normalization factor

The effective Lagrangian in the flavour basis

$$
\begin{align*}
\mathcal{L}_{\text {eff }}= & \frac{1}{2}\left(i \bar{i}_{\alpha} \partial\left(N N^{\dagger}\right)_{\alpha \beta}^{-1} \nu_{\beta}-\bar{\nu}_{\alpha}\left[\left(N^{-1}\right)^{t} m N^{-1}\right]_{\alpha \beta} \nu_{\beta}+h c\right) \\
& -\frac{g}{2 \sqrt{2}}\left[W_{\mu}^{+} \overline{\bar{l}}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{\alpha}+h c\right] \\
& -\frac{g}{2 \cos \theta_{W}}\left[Z_{\mu} \bar{\nu}_{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\alpha}+h c\right]+\cdots \tag{3}
\end{align*}
$$

Neutrino oscillations in vacuum

We have

$$
\begin{align*}
\left|\nu_{\alpha}\right\rangle= & \frac{1}{\sqrt{\left(N N^{\dagger}\right)_{\alpha \alpha}}} \sum N_{\alpha i}^{*}\left|\nu_{i}\right\rangle=\sum_{i} \tilde{N}_{\alpha i}^{*}\left|\nu_{i}\right\rangle \tag{4}\\
\left|\nu_{\alpha}(L)\right\rangle & =\sum_{i} \tilde{N}_{\alpha i}^{*}\left|\nu_{i}(L)\right\rangle=\sum_{i} \tilde{N}_{\alpha i}^{*} e^{-i \phi}\left|\nu_{i}(0)\right\rangle \\
& =\sum_{i} \tilde{N}_{\alpha i}^{*} e^{-i \phi}\left(\tilde{N}_{\beta i}^{*}\right)^{-1}\left|\nu_{\beta}\right\rangle \tag{5}
\end{align*}
$$

The probability amplitude of flavour transition $\nu_{\alpha} \rightarrow \nu_{\beta}$ after distance L

$$
\begin{align*}
A_{\nu_{\alpha} \rightarrow \nu_{\beta}} & =\left\langle\nu_{\beta} \mid \nu_{\alpha}(L)\right\rangle=\sum_{i} \tilde{N}_{\alpha i}^{*} e^{-i \phi} \tilde{N}_{\beta i} \\
& =\frac{1}{\sqrt{\left(N N^{\dagger}\right)_{\alpha \alpha}\left(N N^{\dagger}\right)_{\beta \beta}}} \sum_{i} N_{\alpha i}^{*} i^{-i \phi} N_{\beta i} \tag{6}
\end{align*}
$$

The oscillation probability

$$
\begin{align*}
P_{\nu_{\alpha} \rightarrow \nu_{\beta}}= & \left|A_{\nu_{\alpha} \rightarrow \nu_{\beta}}\right|^{2}=\frac{1}{\left(N N^{\dagger}\right)_{\alpha \alpha}\left(N N^{\dagger}\right)_{\beta \beta}}\left|\sum_{i} N_{\alpha i}^{*} e^{-i \phi} N_{\beta i}\right|^{2} \\
= & \frac{1}{\left(N N^{\dagger}\right)_{\alpha \alpha}\left(N N^{\dagger}\right)_{\beta \beta}}\left(\sum_{i}\left|N_{\alpha i}^{*}\right|^{2}\left|N_{\beta i}\right|^{2}\right. \\
& +2 \sum_{j>i} \operatorname{Re}\left[N_{\alpha i}^{*} N_{\beta i} N_{\alpha i} N_{\beta i}^{*}\right] \cos \frac{\Delta m_{j i}^{2} L}{2 E} \\
& \left.-2 \sum_{j>i} \operatorname{Im}\left[N_{\alpha i}^{*} N_{\beta i} N_{\alpha i} N_{\beta i}^{*}\right] \sin \frac{\Delta m_{j i}^{2} L}{2 E}\right) \tag{7}
\end{align*}
$$

