Playing with GLoBES

Tran Van Ngoc

Neutrino Group IFIRSE - ICISE

NuGroup Meeting, January 18, 2018

Outlines

- The rules for given code
- The rules for updated code

2 Precision measurement of $heta_{23}$ and Δm_{31}^2

- Problem 1: Warm-up
- Problem 2: Spectral analysis vs. total rates
- Problem 3: The octant degeneracy
- 3 Generic three-flavor effects: θ_{13} and δ_{CP}
 - Problem 6: Confidence regions in the $\theta_{13} \delta_{CP}$ plane
 - Problem 7: Improving the sensitivity by anti-neutrino running
 - Problem 8: Improving the sensitivity by incorporating reactor results

- In this presentation, I will follow the instruction in the package *T2K-tutorial*.
- *T2K-tutorial* is used for precision measurement of oscillation parameters θ_{23} and Δm_{31}^2 , and later for θ_{13} and δ_{CP} .

- In this presentation, I will follow the instruction in the package *T2K-tutorial*.
- *T2K-tutorial* is used for precision measurement of oscillation parameters θ_{23} and Δm_{31}^2 , and later for θ_{13} and δ_{CP} .
- The plots in Problems are arranged as the following: the first one is for the given code from the tutorial, the second and third ones are for update systematic uncertainties and statistics respectively (with some change in code also).

- In this presentation, I will follow the instruction in the package *T2K-tutorial*.
- *T2K-tutorial* is used for precision measurement of oscillation parameters θ_{23} and Δm_{31}^2 , and later for θ_{13} and δ_{CP} .
- The plots in Problems are arranged as the following: the first one is for the given code from the tutorial, the second and third ones are for update systematic uncertainties and statistics respectively (with some change in code also).
- The plots are exported using gnuplot package

- In this presentation, I will follow the instruction in the package *T2K-tutorial*.
- *T2K-tutorial* is used for precision measurement of oscillation parameters θ_{23} and Δm_{31}^2 , and later for θ_{13} and δ_{CP} .
- The plots in Problems are arranged as the following: the first one is for the given code from the tutorial, the second and third ones are for update systematic uncertainties and statistics respectively (with some change in code also).
- The plots are exported using gnuplot package

Precision measurement of θ_{23} and Δm_{31}^2 00000000 Generic three-flavor effects: θ_{13} and δ_{CP} 00000000

Introduction

The rules for given code

Table 2: Number of events and reduction efficiency of "standard" 1ring e-like cut and π^0 cut for 5 year exposure (5 × 10²¹ p.o.t.) OA2°. For the calculation of oscillated $\nu_e, \Delta m^2 = 3 \times 10^{-3} \text{ eV}^2$ and $\sin^2 2\theta_{\mu e} = 0.05$ is assumed.

OAB 2°	ν_{μ} C.C.	ν_{μ} N.C.	Beam ν_e	Oscillated ν_e
1) Generated in F.V.	10713.6	4080.3	292.1	301.6
2) 1R e-like	14.3	247.1	68.4	203.7
3) e/π^0 separation	3.5	23.0	21.9	152.2
4) 0.4 GeV< $E_{rec} < 1.2$ GeV	1.8	9.3	11.1	123.2

Table 3: Summary of the event rate of the NC candidates. f(X) is the fraction of the events from X interaction.

Beam	#NC Events	Beam exposure	$f(\nu_{\mu} \text{NC})$	$f(\nu_{\mu} \text{CC})$	$(\nu_e \text{CC})$
WBB	315	1 years	0.88	0.09	0.03
$LE2\pi$	250	5 years	0.80	0.13	0.07
OA2°	700	5 years	0.84	0.09	0.07

Taken from: hep-ex/0106019

Precision measurement of θ_{23} and Δm^2_{31} 00000000 Generic three-flavor effects: θ_{13} and δ_{CP} 00000000

Introduction

The rules for given code

```
rule(#NU_E_Appearance_QE)<
    /* Signal channels and associated
systematical errors */
    @signal = 0.50498@#nu_e_appearance_QE
    @signalerror = 10. : 0.0001 /* Format is
<normalization error> : <energy "tilt" error> */
    /* Background channels and associated
systematical errors */
    @background = 0.00032671
@#nu_mu_disappearance_CC : 0.0056373@#NC_bckg :
0.50498@#nu_e_beam : 0.50498@#nu_e_bar_beam
    @backgrounderror = 0.05 : 0.05 /* follow hep-
ph/0504026: 5 per cent background tilt error */
```

Precision measurement of θ_{23} and Δm^2_{31} 00000000 Generic three-flavor effects: θ_{13} and δ_{CP} 00000000

Introduction

The rules for given code

```
rule(#NU_MU_Disapperance_QE)<
    @signal = 0.9@#nu_mu_disappearance_QE
    @signalerror = 0.025 : 0.0001
    @background = 0.0056373@#NC_bckg
    @backgrounderror = 0.2 : 0.0001
    @sys_on_function = "chiTotalRatesTilt"
    @sys_off_function = "chiSpectrumTilt"
>
```

The rules for given code

```
rule(#NU_E_Appearance_CC) <
    @signal = 0.50498@#nu_e_appearance_CC
    @signalerror = 0.05 : 0.0001
/* follow hep-ph/0504026: 5 per cent norm errors
for appearance */</pre>
```

```
@background = 0.00032671
@#nu_mu_disappearance_CC : 0.0056373@#NC_bckg :
0.50498@#nu_e_beam : 0.50498@#nu_e_bar_beam
@backgrounderror = 0.05 : 0.0001
/* do not use 0.05 for BG tilt here, since
introduced twice uncorrelated then! */
```

Introduction	
00000000	00

Precision measurement of θ_{23} and Δm_{31}^2

Introduction

The rules for updated code (PhysRevD.96.092006)

TABLE XIV. Event reduction for the ν_e CC selection at the far detector. The numbers of expected MC events divided into five categories are shown after each selection criterion is applied. The MC expectation is based upon three-neutrino oscillations with the parameters as shown in Table XIII.

		$ u_{\mu} + ar{ u}_{\mu}$	$\nu_e + \bar{\nu}_e$	$\nu + \bar{\nu}$	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	$\nu_{\mu} \rightarrow \nu_{e}$	
ν -beam mode	MC total	CC	CC	NC	CC	CC	Data
Interactions in FV	744.89	364.32	18.55	326.16	0.39	35.47	
FCFV	431.85	279.88	18.09	98.72	0.38	34.78	438
Single ring ^a	223.49	153.40	11.15	28.68	0.32	29.95	220
Electronlike ^b	66.94	6.46	11.06	19.53	0.31	29.57	70
$E_{\rm vis} > 100 {\rm MeV}^{\rm c}$	61.78	4.59	11.01	16.81	0.31	29.06	66
$N_{\text{Michel-e}} = 0^{\text{d}}$	50.60	0.97	8.97	14.24	0.31	26.11	51
$E_{\mu}^{\rm rec} < 1250 {\rm MeV}^{\rm e}$	40.71	0.25	4.26	10.85	0.22	25.14	46
Not π^0 -like ^f	28.55	0.09	3.68	1.35	0.18	23.25	32
$\bar{\nu}$ -beam mode							
Interactions in FV	312.38	164.04	9.00	132.75	4.30	2.29	
FCFV	180.48	123.24	8.75	42.05	4.20	2.24	170
Single ring	96.06	73.21	5.51	11.87	3.74	1.73	94
Electronlike	21.55	2.31	5.48	8.36	3.70	1.71	16
$E_{\rm vis} > 100 {\rm MeV}$	20.05	1.83	5.46	7.39	3.68	1.69	14
$N_{\text{Michel-e}} = 0$	16.40	0.33	4.71	6.24	3.66	1.46	12
$E_{\nu}^{\rm rec} < 1250 {\rm MeV}$	11.40	0.08	1.89	4.83	3.42	1.19	9
Not π^0 -like	6.28	0.02	1.58	0.60	3.04	1.05	4

Iran Van Ngoc

TABLE XV. Event reduction for the ν_{μ} CC selection at the far detector. The numbers of expected MC events divided into four categories are shown after each selection criterion is applied. The MC expectation is based upon three-neutrino oscillations with the parameters as shown in Table XIII.

		$ u_{\mu}$	$\bar{\nu}_{\mu}$	$ u_{\mu} + ar{ u}_{\mu}$	$\nu_e + \bar{\nu}_e$	$\nu + \bar{\nu}$	
v-beam mode	MC total	CCQE	CCQE	CC nonQE	CC	NC	Data
Interactions in FV	744.89	100.17	6.45	257.70	54.41	326.16	
FCFV	431.85	78.75	4.85	196.28	53.25	98.72	438
Single ring ^a	223.49	73.49	4.70	75.21	41.41	28.68	220
Muonlike ^b	156.56	72.22	4.65	70.06	0.47	9.16	150
$p_{\mu} > 200 \text{ MeV}/c^{c}$	156.24	72.03	4.65	70.00	0.47	9.08	150
$N_{\text{Michel-e}} \leq 1^{\text{d}}$	137.76	71.28	4.63	52.61	0.46	8.78	135
$\bar{\nu}$ -beam mode							
Interactions in FV	312.38	20.04	30.77	113.23	15.59	132.75	
FCFV	180.48	15.04	24.95	83.26	15.19	42.05	170
Single ring	96.06	13.52	24.28	35.41	10.98	11.87	94
Muonlike	74.52	13.40	23.96	33.56	0.09	3.52	78
$p_{\mu} > 200 \text{ MeV}/c$	74.42	13.39	23.92	33.54	0.09	3.48	78
$N_{\text{Michel-e}} \leq 1$	68.26	13.18	23.85	27.79	0.09	3.35	66

The rules for updated code (PhysRevD.96.092006)

• How to define new channel: $\nu_{\mu} + \bar{\nu}_{\mu}$ CC nonQE?

```
/* 5 */
channel(#nu mu disappearance QE) <
    @channel = #JHFplus: +:
                                            #OE:
                                                   #ERES
                                  m:
                                       m:
>
1* 6 */
channel(#nu e appearance CC) <
    @channel = #JHFplus: +: m: e: #CC:
                                                   #ERES
>
/* 7 */
channel(#nu mu beam nonQE)<
    @channel = #JHFplus: +:
                                  m:
                                       m:
                                            #OE:
                                                   #ERES
>
```

```
rule(#NU_MU_Disapperance_QE) <
    @signal = 0.7173982@#nu_mu_disappearance_QE
    @signalerror = 0.01 : 0.0001
    @background = 0.026432@#NC_bckg : 0.0078571
@#nu_e_beam : 0.21675@#nu_mu_beam_nonQE
    @backgrounderror = 0.2 : 0.0001</pre>
```

```
rule(#NU_E_Appearance_CC) <
    @signal = 0.64829@#nu_e_appearance_CC
    @signalerror = 0.01 : 0.0001 /* follow hep-
ph/0504026: 5 per cent norm errors for appearance */
    @background = 0.00020819@#nu_mu_disappearance_CC
: 0.0042492@#NC_bckg : 0.19838@#nu_e_beam : 0.17556
@#nu_e_bar_beam
    @backgrounderror = 0.05 : 0.0001 /* do
not use 0.05 for BG tilt here, since introduced twice
uncorrelated then! */</pre>
```

Precision measurement of θ_{23} and Δm_{31}^2

Generic three-flavor effects: θ_{13} and δ_{CP} 00000000

Precision measurement of θ_{23} and Δm_{31}^2

Problem 1: Warm-up

Generic three-flavor effects: θ_{13} and δ_{CP} 00000000

Precision measurement of θ_{23} and Δm_{31}^2

Problem 2: Spectral analysis vs. total rates

Precision measurement of θ_{23} and Δm_{31}^2 0000000 Generic three-flavor effects: θ_{13} and δ_{CP} 00000000

Precision measurement of θ_{23} and Δm_{31}^2

Problem 2: Spectral analysis vs. total rates

Precision measurement of θ_{23} and Δm_{31}^2

Generic three-flavor effects: θ_{13} and δ_{CP} 00000000

Precision measurement of θ_{23} and Δm_{31}^2

Problem 2: Spectral analysis vs. total rates

Precision measurement of θ_{23} and Δm_{31}^2

Generic three-flavor effects: θ_{13} and δ_{CP} 00000000

Precision measurement of θ_{23} and Δm_{31}^2

Problem 3: The octant degeneracy

 $\theta_{23} = 40^{\circ}$, sin $2\theta_{13} = 0$ and 2 years running

Confidence regions in the $\,\theta_{\,23}\text{-}\Delta\,m_{\,31}^{\,\,2}$ plane

Precision measurement of θ_{23} and Δm_{31}^2

Generic three-flavor effects: θ_{13} and δ_{CP} 00000000

Precision measurement of θ_{23} and Δm_{31}^2

Problem 3: The octant degeneracy

$\theta_{23} = 40^{\circ}$, sin $2\theta_{13} = 0.1$ and 2 years running

Precision measurement of θ_{23} and Δm_{31}^2

Generic three-flavor effects: θ_{13} and δ_{CP} 00000000

Precision measurement of θ_{23} and Δm_{31}^2

Problem 3: The octant degeneracy

 $\theta_{23} = 40^{\circ}$, sin $2\theta_{13} = 0.1$, updated sys. uncert. and 2 yrs running

Confidence regions in the $\,\theta_{23}\text{-}\Delta\,m_{31}{}^2$ plane

Precision measurement of θ_{23} and Δm_{31}^2

Generic three-flavor effects: θ_{13} and δ_{CP} 00000000

Precision measurement of θ_{23} and Δm_{31}^2

Problem 3: The octant degeneracy

 $\theta_{23} = 40^{\circ}$, sin $2\theta_{13} = 0.1$, updated sys. uncert. and 2 yrs running

Confidence regions in the $\,\theta_{23}\text{-}\Delta\,m_{31}{}^2$ plane

Precision measurement of θ_{23} and Δm_{33}^2 00000000 Generic three-flavor effects: θ_{13} and δ_{CP} $\bullet 00000000$

Generic three-flavor effects: θ_{13} and δ_{CP}

Problem 6: Confidence regions in the $\theta_{13} - \delta_{CP}$ plane $\theta_{23} = 45^{\circ}$, sin $2\theta_{13} = 0.1$

Precision measurement of θ_{23} and Δm^2_{31} 00000000

Generic three-flavor effects: θ_{13} and δ_{CP}

Problem 6: Confidence regions in the $\theta_{13} - \delta_{CP}$ **plane** $\theta_{23} = 45^{\circ}$, sin $2\theta_{13} = 0.1$, updated sys. uncert. and 2 yrs running

Precision measurement of θ_{23} and Δm^2_{31} 00000000

Generic three-flavor effects: θ_{13} and δ_{CP}

Problem 6: Confidence regions in the $\theta_{13} - \delta_{CP}$ **plane** $\theta_{23} = 45^{\circ}$, sin $2\theta_{13} = 0.1$, updated sys. uncert. and 6 yrs running

Problem 7: Improving the sensitivity by anti-neutrino running

2 years neutrino and 6 years anti-neutrino running

Problem 7: Improving the sensitivity by anti-neutrino running

2 yrs neutrino & 6 yrs anti-neutrino running & updated sys. uncert.

Confidence regions in the $\,\theta_{13}^{}\cdot\delta_{CP}^{}$ plane

Problem 7: Improving the sensitivity by anti-neutrino running

6 yrs neutrino & 18 yrs anti-neutrino running

Confidence regions in the $\,\theta_{13}\text{-}\delta_{\text{CP}}\,$ plane

Problem 8: Improving the sensitivity by incorporating reactor results

 $2~{\rm yrs}$ neutrino & 6 yrs anti-neutrino running, incorporating with Reactor2.glb

Confidence regions in the $\,\theta_{13}^{}\cdot\delta_{CP}^{}$ plane

Problem 8: Improving the sensitivity by incorporating reactor results

2 yrs neutrino & 6 yrs anti-neutrino running, updated sys. uncert., incorporating with Reactor2.glb

Problem 8: Improving the sensitivity by incorporating reactor results

6 yrs neutrino & 18 yrs anti-neutrino running, updated sys. uncert., incorporating with Reactor2.glb

Confidence regions in the $\,\theta_{13}^{}\cdot\delta_{CP}^{}$ plane

