PMNS matrix is unitary Unitary triangle

Study Status

Nguyen Thi Kim Ha Ho Chi Minh University of Science

NuGroup Meeting, April 13th 2018

PMNS matrix is unitary Unitary triangle

Table of Contents

PMNS matrix

Neutrino mixing is governed by the Pontecorvo - Maki -Nakagawa - Sakata(PMNS) mixing matrix which relates the mass eigenstates to the flavor eigenstates:

$$\begin{pmatrix} \nu_{\mathsf{e}} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{\mathsf{e}1} & U_{\mathsf{e}2} & U_{\mathsf{e}3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

We have

$$U^{\dagger}U = \begin{pmatrix} U_{e1}^{*} & U_{\mu1}^{*} & U_{\tau1}^{*} \\ U_{e2}^{*} & U_{\mu2}^{*} & U_{\tau2}^{*} \\ U_{e3}^{*} & U_{\mu3}^{*} & U_{\tau3}^{*} \end{pmatrix} \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Similarly, $UU^{\dagger} = 1$

$$U^{\dagger}U = UU^{\dagger} = 1 \tag{1}$$

$$U_{ij}^* U_{jk} = U_{ij} U_{jk}^* = \delta_{ik} \tag{2}$$

P

æ

 \rightarrow The PMNS mixing matrix is unitary

Unitary triangle

Unitary requires:

$$U_{e1}^{*}U_{e2} + U_{\mu 1}^{*}U_{\mu 2} + U_{\tau 1}^{*}U_{\tau 2} = 0$$

$$\rightarrow \vec{a} + \vec{b} + \vec{c} = 0$$
(3)

Such three vectors define triangle in two dimension coordinate

Eq.(2) gives the six unitary triangles, it means these six unitary triangles have same area. The area of triangle:

$$S = Im \frac{1}{2} [ac^{*}] = Im \frac{1}{2} [ba^{*}] = Im \frac{1}{2} [cb^{*}]$$

$$= \frac{1}{2} Im [U_{e1}^{*} U_{e2} U_{\tau 1} U_{\tau 2}^{*}]$$

$$= \frac{1}{2} Im [U_{\mu 1}^{*} U_{\mu 2} U_{e1} U_{e2}^{*}]$$

$$= \frac{1}{2} Im [U_{\tau 1}^{*} U_{\tau 2} U_{\mu 1} U_{\mu 2}^{*}]$$
(4)

Jarlskog invariant:

From

$$J = Im \Big[U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \Big] \qquad (\alpha \neq \beta, i \neq j)$$
(5)
Eq.(5) and Eq.(4)

$$J=2S \tag{6}$$

 \rightarrow The area of unitary triangles equal to a half of Jarlskog's invariant.