Study Status

Nguyen Thi Kim Ha

Ho Chi Minh University of Science
NuGroup Meeting, April 13th 2018

Table of Contents

(1) PMNS matrix is unitary
(2) Unitary triangle

PMNS matrix

Neutrino mixing is governed by the Pontecorvo - Maki Nakagawa - Sakata(PMNS) mixing matrix which relates the mass eigenstates to the flavor eigenstates:

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

We have

$$
U^{\dagger} U=\left(\begin{array}{ccc}
U_{e 1}^{*} & U_{\mu 1}^{*} & U_{\tau 1}^{*} \\
U_{e 2}^{*} & U_{\mu 2}^{*} & U_{\tau 2}^{*} \\
U_{e 3}^{*} & U_{\mu 3}^{*} & U_{\tau 3}^{*}
\end{array}\right)\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Similarly, $U U^{\dagger}=1$

$$
\begin{gather*}
U^{\dagger} U=U U^{\dagger}=1 \tag{1}\\
U_{i j}^{*} U_{j k}=U_{i j} U_{j k}^{*}=\delta_{i k} \tag{2}
\end{gather*}
$$

\rightarrow The PMNS mixing matrix is unitary

Unitary triangle

Unitary requires:

$$
\begin{align*}
U_{e 1}^{*} U_{e 2}+U_{\mu 1}^{*} U_{\mu 2}+U_{\tau 1}^{*} U_{\tau 2} & =0 \\
\rightarrow \vec{a}+\vec{b}+\vec{c} & =0 \tag{3}
\end{align*}
$$

Such three vectors define triangle in two dimension coordinate

Eq.(2) gives the six unitary triangles, it means these six unitary triangles have same area.
The area of triangle:

$$
\begin{align*}
S & =\operatorname{Im} \frac{1}{2}\left[a c^{*}\right]=\operatorname{Im} \frac{1}{2}\left[b a^{*}\right]=\operatorname{Im} \frac{1}{2}\left[c b^{*}\right] \\
& =\frac{1}{2} \operatorname{Im}\left[U_{e 1}^{*} U_{e 2} U_{\tau 1} U_{\tau 2}^{*}\right] \tag{4}\\
& =\frac{1}{2} \operatorname{Im}\left[U_{\mu 1}^{*} U_{\mu 2} U_{e 1} U_{e 2}^{*}\right] \\
& =\frac{1}{2} \operatorname{Im}\left[U_{\tau 1}^{*} U_{\tau 2} U_{\mu 1} U_{\mu 2}^{*}\right]
\end{align*}
$$

Jarlskog invariant:

$$
\begin{equation*}
J=\operatorname{Im}\left[U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right] \quad(\alpha \neq \beta, i \neq j) \tag{5}
\end{equation*}
$$

From Eq.(5) and Eq.(4)

$$
\begin{equation*}
J=2 S \tag{6}
\end{equation*}
$$

\rightarrow The area of unitary triangles equal to a half of Jarlskog's invariant.

