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Belle 1II school lectures

e Yoshihide Sakai (KEK, Tsukuba): ”CP violation in B decays”.

e Nguyen Van Hanh (VNUA, Hanoi): ”Practical statistics for particle
physics analyses”.

e Nguyen Thi Hong Van (IOP, VAST, Hanoi and IFIRSE, Quy Nhon):
Brief course on ROOT and its application to the data analysis in high energy
physics.

e Ha Huy Bang (VNU, Hanoi): ”Standard model and CP violation”.

e Nguyen Anh Tuan (VNU, Hanoi): Introduction to Python for scientific com-
puting.

e Takanori Hara (KEK, Tsukuba): ”Belle II detector overview”.

e Dimitri Liventsev (KEK, Tsukuba and Virginia tech, Blacksburg): Search for
New Physics particles at Belle II.

e Shohei Nishida (KEK, Tsukuba): ”Particle identification (from Belle to Belle
1),

e Yukioshi Onishi (KEK, Tsukuba): ”SuperKEKB”.

e Dong Van Thanh (SOKENDATI and KEK, Tsukuba): Calibration and alignment
for Belle II central drift chamber.

e Karim Trabelsi (KEK, Tsukuba): Rare B decays.

e Ikuo Ueda (KEK, Tsukuba): Computing in HEP (Belle II as illustration)”.

e Shoji Uno (KEK, Tsukuba): ”Tracking devices at Belle I1”.

e Changzheng Yuan (IHEP, Beijing): "Hadron spectroscopy at Belle, BESIII and
Belle I1".



Belle II and B physics

KEKB/Belle> SugerKEKB/Belle 11

KEK B—factory accelerator [uminosity Frontier
(eTe~asymmetric energy collider) World highest Lum.

Main goal _
Study of CPV in B gdege
Many other physics —
(Rare B decays,
Charm/tau physics
New resonances ! )

Now Upgraded to
SuperKEKB/Belle I
x40 Peak Luminosity
x50 accumulated data
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Belle II and B physics

Asymmetric B Factories
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Mass (Gc‘v‘s"c:)

\

Y(4S) meson: bb bound state with mass 10.58 GeV/c?

Just above 2 x mass of B meson — decays exclusively to B B® (50%) and B* B- (50%)

B factory: intense e+ and e- colliding beams with E -y, tuned to the Y (45) mass

Use e beams with asymmetric energy — time dilation due to relativistic speeds
keeps B's alive long enough to measure them (decay length ~0.25mm)

aTm?22 Nov04

Jeffrey Berryhil (UCSB)
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Search for CPV at Belle 11

CP Violation

CPV: difference in behavior of particle and anti-particle

1964: discovered in KO decay (J.Cronin, V.Fitch et. al.)
[PRL 13, 138]

Observation of K — n*n- =% CP Violation

[K°-K" mixing] ‘K,>=‘K“>+ K > (CP=+1]

K,)=|K')- K"} |CP=1]

[f CP conserves K= st K,= KL
Ksonn- (cP=+1), K-n'nn® (CP=—1)

Branching fraction = 2.3x10-3




Search for CPV at Belle 11

Why CPV is important ?

Difference between particle & anti-particle
(matter & anti-matter)

Universe: almost “matter” only (no anti-matter)

Big-Bang — N(particles) = N(anti-particles)

ig Sakhalov’s 3 conditions (1967):
1. baryon number violation

2. CP violation
3. existence of non-equiblium

CPV is a key for Existence of Universe & us !
Andrei Sakharov (1921-1989)



Search for CPV at Belle 11

CPV: Why B ?

Size of CPV in K: O(1073) ~ small

not enough information to confirm
Kobayashi-Maskawa scheme (1973) |

Specialty of B
long lifetime (~1.5 ps) |Surprise
Large B-B! mixing | LUcky!

_ (ARGUS,1987)
Various decay modes

Sanda-Bigi-Carter (1980)
Large CPV
in B-system




Search for CPV at Belle 11

e B° — B° mixing

B°-B° Mixing o

Most important role in CPV in B decays (mixing: also in K decays)

|BU}E(FM’), E}E(bd_}, where |E}ECP|B{]}

Flavor eigenstates and Mass eigenstates are different
Mass eigenstate

B} = ple‘ . q|1_3ﬂ\ (L Light Basic Quantum mechanics
Y B / "l .

B} = 4B"}- q|_Bﬂ> (H : Heavy)

Schrodinger Eq. i dcl W(t) = H ¥(t) W) _| B(t)) |

M 5=1[5/2 M,,—1'5,/2 | Mass matrix Hamiltonian

H=M-il/2 = [

©

1 1+4e€p 1 1—e€p

P=—F7mF = =
V2 /1 + |es]? V2 /1 + |es]?

CP is violated if e # 0 < |q/p # 1|



Search for CPV at Belle 11

e B° — B° mixing

B°-B° Mixing

Time Evolution : By ()~ exp(-im yt /21, 5) By

Produced as pure B®and B? | B" =( B>+ | By ))2p(9)

|Bj([]]):> |Hj(t)>= g mee !‘f{cns[ﬂm gt/ ?.)Hj\r+ iisiu[&m Ny 1)‘3 j>
P

Bj'{t]>: gmelg ™ !'5|cns(ﬂm gt/ 1) B'j>+ Ip siu(ﬂm gt/ 1)
o

- =12 = oV = -
T, 1.5 ps(10¥Sec) Amy=my -my = 3Ix107eV =0.49 ps!
(1= Ty~ T, assumed, very small theoretical expectation)

B;(ﬂ)l}fa

H'j}

‘et 1. Tl) of) K% 141 (52 ns) 2> 1¢(89 ps)
B? Initial: B Amy, =3.5x10% eV = 0.0053 ps!

Oscillate between B? and B”

o
<

. (lg/pl=1)
Unmixed: (B°B%*=e"*[1+cos(Amt)]/2
| Mixed:  [{BY[B%)? = e**[1-cos(Amt)]/2

Probability Density
= =
e e

A T M M
proper decay time, t




Search for CPV at Belle 11

e B° — B° mixing

B°-B° Mixing «

Mechanism in SM V#d t V:b
d — b
Box diagram R¢
g ) BS WE Ew ~ Bi
q o \'m\'m B N d
p \.‘[h V[TJ Vﬂ:’ ; v‘i‘d
Gg?

— 2 2 2 1\ FL” |12
Am = 6 mgm“F(m/my MoepBgafei Ve Vil
Gg = Fermi const., ngep= QCD correction factor,
F(m;?/my~) = Inami-Lim function

By, =bag parameter (hadronic corr. For vac. insertion)
fgs= Bd decay constant

Q Lattice QCD
Am — V,, : acuuracy limited by uncerteiny of By, f5,

©
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Statistics and the treatment of experimental data

0.1 Characteristics of probability distribution

Random processes are described by a probability density function (PDF).
PDF gives expected frequency of occurence.

Random variable x can be continuous or discrete.

0.1.1 Cumulative distributions

Probability of finding x with z; < x < x5 for x to be continuous

T2
P(z) = / P(z)dz (1)
And for z to be discrete )
P(z) = P(x;) (2)
i=1
The renormaliation condition for x to be continuous
/ P(z)dr =1 (3)
And for z to be discrete
> P(zi) =1 (4)

0.1.2 Expectation values

For x to be continuous
Elz] = /xP(x)dx (5)

And for x to be discrete
Bla] = Y Pl )
If f(x) is a continuous function of x then the expectation value of f(x) is

EV@ﬂsz@W@Mw (7)
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0.1.3 Distribution moments. Mean and variance

The n** moment of z about some point zg is defined as the expectation value of
(x — o)™
Only two first moments are important.

First moment about zero is called mean or average of x

w= Elz] = /xP(x)dx (8)

The second central moment is call variance

7t = Bl =) = [ (@ pfPla)is (9)

The square root of variance is call standard deviation

0.1.4 The covariance

The covariance measures linear correlation between two variables

cov(z,y) = El(x — pz)(y — fy)] (10)

® /i,: mean of z.

® /i,: mean of y.

Correlation coeficient
cov(z,y
p= oY) (1)
03.0y
e —1<p< 1.
e |p| = 1: perfectly correlated linear.

e p =0: = and y are linear independent.

0.2 Some common probability distributions

0.2.1 The binomial distribution

The binomial distribution involves repeated, independent trials, which outcome
of a single trial is dichotomous.
The probability of n dichotomous trials, for example successe and failure is given

by |
P) = o (=) (12)

12



Where x is number of successes (or failures), p is probability of success in a single
trial.

e x events occur with probability p each.

e n — x events occur with probability 1 — p each.

e Note that P(z) is the 2" term of binomial expansion

(at+b)" =) Cia""t* (13)
k=0
Mean of binomaial distribution is defined as the following

p=> xPx)=> = x;béx — 1)!pm(1 —p)""

r=1

Let N=n—1and y = x — 1, we can rewrite the above equation as

n N

n! Y
we= ;(n—x)!(x—l)!pm(l_p)n =

(N +1)!

iy P

= (N+1p> pr(l —p)N V= (N+1)plp+ (1 —p)]"¥

Or

ft=np (14)
Variance of binomaial distribution is defined as the following
#1 : By definition

7= Yoo WP = 3 W ()
= ) (z—np)’ ! —p"(1—p)"™"
—~ (n —x)lz
— A+B+C
Where
- n! Yy - xn! - S
A = szmzf”(l—p)" :Z(n—x)!(x—l)!p (1-p)

r=1

_ Z (y + 1)(N + 1)!p(y+1)(1 _p)N—y = np + n(n . 1)]92

. n! €T n—u 2
B = —QRPZOZEWP (1—-p) = —2(np)

13



And

Hence

0® = (x—p)*P(x) = np(1 - p) (15)

#2 : By using 0” = p(2?) — [p())?
Where pu(z?) = A = np +n(n — 1)p? and [u(z)]*> = (np)?. We get the similar
result as (15)

Binomial Distribution PDF

_ n=5p=0.5

=
n
"

_n=20p=0.5

2
i
G

. n=50p=0.5

Probability
=
- e
& o
L

o
-

e
=
@
L

”””hhl.lll” ||I||.
10 20 30

Random Variable

o

40 50

Figure 1: Binomial distribution for several values of n and p

0.2.2 The Poisson distribution

Poisson distribution is the case where we take the limits p — 0 and n — oo from
binomial distribution such that np = p = const.

Poisson distribution is an appropriate model if the following asssumptions are
hold:

e r can take values: 0,1,2, ...

e Events occur independently.

e The rate at which events occur is constant.

e Two events cannot occur at exactly the same instant.

e Probability of an event in a small sub-interval is proportional to the length of

the sub-interval.

14



Let p = £. When n — oo, we have following approximations

) =nn—1)(n—-2)..n—z—-2)(n—z—-1)~n"

And -
(1—p)" "= (1 — H) (1 — H) ~e

Note that: lim, e (1 — %)n ~eH
Then the Poisson distribution is defined as

’I’L' T n—x weo_
Wp (1—p)" " = e

P = limp—oo
(x) = lim h—z

Mean of Poisson distribution

I A o Y GRS o T
MP_Zx x! _Z(a:—l)!_'ue Oﬁ_“
=0 —

r=1

Variance of Poisson distribution

pre t 2

op = pa®) = [u@)? =) 2’

z!

To—f l’-l-l z+1_
_ o = %e#_,u?:,u?_i_,u_,u?
)! x!
=0

rz—1
r=1 (
= W
(a) (b)
0.30 0.2
£ Z
z 3
2 015 -g 0.1
a o
0.00 0.0
0 2 4 1 a 1] 2 4 i) ) 10
Variable, x Variable, x
0.154 .
() 006
o 0.10 =
<} S 0.03
§ 0.05- é
o o
0.00- 0.00 4
0 10 20
Variable, x Variable, x

Figure 2: Poisson distribution for several values of u
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0.2.3 The Gaussian distribution

Gaussian is a continuous, symmetric distribution whose density is given by

P(e) = - ! ea:p(—M) (19)

or 202

Where p is expectation value and o? is variance.

Normal Distributions

1 =mean
a =standard deviation
o =variance — =i, 67=0.2

Figure 3: Gaussian distribution for several values of x4 and o?

e Derive Gaussian distribution from binomsial distribution

From the binomial distribution

n!

P(x) = mpm(l

—p)""
By using Stirling’s formula n! = n"e™"v/27n, we can rewrite the above equation as
n"e "\/2mn

P(x) = pr(l—p)"*
(=) e\ 2rx(n — x)" e~ (n=2)\ /271 (n — 1) ( )

B <Z;p (n—f)) m
We have
b () (M) e () - o ()

= ot (2]~ - (14 222

Let \=—(np—2z) = x=X\+np.

16



By using In(1 + z) = = — 1z + ..., we get

L = —(A+np)ln (1+n—/\p) — ({1 =p) = A)In (1_ﬁ)

= ) (S ) -9 -0 (-t e )

np 2 (np)? 1-p) 2n%(1-p)?
= )\_2+)\ l)\—z%— A+ X E X +
B np 2np n(l—p) 2n(l—p)
2 )\2
~ _)\_ﬂ+)\_2n(1—p)
. A
2np(1 — p)
Then

(@)z n(l-p\"" _ iy
X n—x

n n
2rx(n —x) \/27‘(‘()\ + np)(n(l —p) — )
N 1
2mnp(l = p)
Therefore we finally get
1 I G
P(l’) = e 2np(l-p)
v 2mnp(1 — p)
Note that p = np and 02 = np(1 — p). The Gaussian distribution is then defined as
1 2 —u)?
P(z) = s (20)
ovV2rm

e Derive Gaussian distribution from Poisson distribution

The Poisson distribution is of the form

T ,—p
P(z) = £

z!

Use the Stirling’s formula z! = z%¢~*v/27x and let x = p(1 + X), where g > 1 and
A1

rre~%\/2mx T \V2rzx

HAFA) - = (p—p(142)) 1 -
N (N(l + )\)) V2ru(l+ A) V2 (14 M)A 4 1/2

17



We see that for p> 1 and A < 1

Inf(1+ N0 172 = (u+pA+1/2)In(1 4+ A) = (u+ pA+ 1/2)(A — A2/2+ ...)
%

P

= (1+ NP 1 1/2 =~ e

Q

It’s then followed that

P(a) 1 _% 1 _(zgm?
T) = e = e n
V2T V2T

Note that, for Poisson distribution o2 = u. By substituting this into the above equa-
tion, we get exactly the same formula as (20).

e Derive Gaussian distribution from another way

Consider we are aiming at the origin of a xy,lane with darts. Assume that:

+1 : Deviation of darts not depend on the origin.

+2 : Deviation in orthogonal directions are independent.

+3 : Large deviation is less likely than small deviation.

Probability that the darts falls in interval [z, z + Az] is

P(x)dx

Similarly for interval [y, y + Ay]
Probability of falling in area dA is

P(x)P(y)AxAy
If we are aiming offset of the origin by a constant u, then
P(z,y) = P(z + p)P(y + p)AzAy = g(z,y)AzAy

Where g(z,y) = Pz + p)P(y + p).
In term of polar coordiantes where x = r cosf,y = rsinf, g(r, ) is dependent on

r, but not dependent on 6. Then
dg
do

Pz +p)P'(y + p
& P+ p)P'(y+p

=0=

, dx
+P(:E+,u)P(y+,u)d9 0

)
)7’ cos@ P'(x + p)P(y + p)rsinf =0

& Plz+p)P'(y+pe—Plx+p)Ply+py=0
Plla+p) _ Ply+np

= = =C; Vx,ye R
sP(x+p)  yPly+np) Y

18



We solve for P(z + )

P'(z+ p) ca?
720 P :A 2
TPt ) = (x+p) e

> Pla) = Pz — ) +p) = AT

From assumption +3, we see that C' must be negative then

—C(z—p)?
2

P(zx) = Ae ;o C>0

Normalized condition

+o0 2 +o00o 2
—C(z—p) =C(z—p) 1
/ Ae™ 2 dx=1 = / e~ 2z dox=—
—00 —00 A

Use the Gaussian integral f_Jr;o ema(@th)? gy — VI =

T ceew? 1
e~ 2 dor=%—
_ =A

C
A=1/—
= 2T
Then
P(x) = ¢ e (o)’
2T

Let i and o are the mean and the variance of the distribution, respectively. The
variance is

Where

\/ / 22e7e @1

+o0 y —C 2
\/%/_m (x + p)‘e2 “dx
C 400 +o00 00
\/—/ a:ezmd:v%—\/ / 2,ua:ezmdx+\/ / ,uezmda:
< arlee N
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Then 02 = é, and therefore we find exactly the same form as (20)
1 (@—p)®
P(x) = e 22

o\ 2w
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