TABLE OF CONTENT

Ta	ble of (content	1
Belle II and B physics			5
0.1	Chara	acteristics of probability distribution	
	0.1.1	Cumulative distributions	11
	0.1.2	Expectation values	11
	0.1.3	Distribution moments. Mean and variance	12
	0.1.4	The covariance	12
0.2	Some common probability distributions		12
	0.2.1	The binomial distribution	12
	0.2.2	The Poisson distribution	14
	0.2.3	The Gaussian distribution	16

Belle II school lectures

- Yoshihide Sakai (KEK, Tsukuba): "CP violation in B decays".
- Nguyen Van Hanh (VNUA, Hanoi): "Practical statistics for particle physics analyses".
- Nguyen Thi Hong Van (IOP, VAST, Hanoi and IFIRSE, Quy Nhon): Brief course on ROOT and its application to the data analysis in high energy physics.
 - Ha Huy Bang (VNU, Hanoi): "Standard model and CP violation".
- Nguyen Anh Tuan (VNU, Hanoi): Introduction to Python for scientific computing.
 - Takanori Hara (KEK, Tsukuba): "Belle II detector overview".
- Dimitri Liventsev (KEK, Tsukuba and Virginia tech, Blacksburg): Search for New Physics particles at Belle II.
- Shohei Nishida (KEK, Tsukuba): "Particle identification (from Belle to Belle II)".
 - Yukioshi Onishi (KEK, Tsukuba): "SuperKEKB".
- Dong Van Thanh (SOKENDAI and KEK, Tsukuba): Calibration and alignment for Belle II central drift chamber.
 - Karim Trabelsi (KEK, Tsukuba): Rare B decays.
 - Ikuo Ueda (KEK, Tsukuba): Computing in HEP (Belle II as illustration)".
 - Shoji Uno (KEK, Tsukuba): "Tracking devices at Belle II".
- Changzheng Yuan (IHEP, Beijing): "Hadron spectroscopy at Belle, BESIII and Belle II".

Belle II and B physics

KEKB/Belle → SuperKEKB/Belle II

KEK B-factory accelerator

(e⁺e⁻asymmetric energy collider)

Luminosity Frontier World highest Lum.

Main goal Study of CPV in B decays

Many other physics

(Rare B decays, Charm/tau physics New resonances!)

Now Upgraded to SuperKEKB/Belle II x40 Peak Luminosity x50 accumulated data

Belle II and B physics

Asymmetric B Factories ee+ σ (e⁺e⁻ \rightarrow Hadrons)(nb) Y(1S) 9 GeV 20 3.1 GeV S:B = 1:4Y(4S) $\Upsilon(2S)$ 10 Y(3S) B^0 $\overline{\mathsf{B}}^0$ 9.44 9.46 10.00 10.02 10.37 10.54 10.58 Mass (GeV/c²)

Y(4S) meson: bb bound state with mass 10.58 GeV/c2

Just above 2 x mass of B meson \rightarrow decays exclusively to B⁰ \overline{B}^0 (50%) and B⁺B⁻ (50%)

B factory: intense e+ and e- colliding beams with E_{CM} tuned to the Y(4S) mass

Use e beams with asymmetric energy → time dilation due to relativistic speeds keeps B's alive long enough to measure them (decay length ~0.25mm)

aTm 22 Nov 04 Jeffrey Berryhill (UCSB) 14

CP Violation

CPV: difference in behavior of particle and anti-particle

1964: discovered in K⁰ decay (J.Cronin, V.Fitch et. al.)
[PRL 13, 138]

Observation of $K_L \rightarrow \pi^+\pi^- \Longrightarrow CP$ Violation

[K⁰-
$$\overline{K}^0$$
 mixing]
$$\begin{cases} |K_1\rangle = |K^0\rangle + |\overline{K}^0\rangle & [CP=+1] \\ |K_2\rangle = |K^0\rangle - |\overline{K}^0\rangle & [CP=-1] \end{cases}$$

If CP conserves

$$K_1=K_S$$
, $K_2=K_L$

$$K_S \to \pi^+ \pi^- (CP = +1)$$
, $K_L \to \pi^+ \pi^- \pi^0 (CP = -1)$

Branching fraction = 2.3×10^{-3}

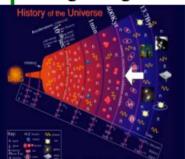
_

Why CPV is important?

Difference between particle & anti-particle (matter & anti-matter)

Universe: almost "matter" only (no anti-matter)

 $Big-Bang \rightarrow N(particles) = N(anti-particles)$



Sakhalov's 3 conditions (1967):

- 1. baryon number violation
- 2. CP violation
- 3. existence of non-equiblium

CPV is a key for Existence of Universe & us!

Andrei Sakharov (1921-1989)

CPV: Why B?

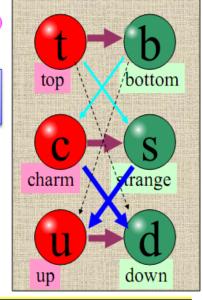
Size of CPV in K: O(10⁻³) ~ small not enough information to confirm Kobayashi-Maskawa scheme (1973)

Specialty of B
long lifetime (~1.5 ps)
Large B⁰-B⁰ mixing
(ARGUS,1987)
Various decay modes

Surprise Lucky!

Sanda-Bigi-Carter (1980)

Large CPV in B-system



11

• $B^o - \bar{B^o}$ mixing

B^0 - \overline{B}^0 Mixing (1)

Most important role in CPV in B decays (mixing: also in K decays)

$$|B^0\rangle \equiv (\overline{b}d), |\overline{B^0}\rangle \equiv (b\overline{d}), \text{ where } |\overline{B^0}\rangle \equiv CP|B^0\rangle$$

Flavor eigenstates and Mass eigenstates are different Mass eigenstate

$$|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle$$
 (L: Light) Basic Quantum me $|B_H\rangle = p|B^0\rangle - q|\overline{B}^0\rangle$ (H: Heavy)
$$\frac{q}{p} = \sqrt{\frac{M_{12}^* - (i/2)\Gamma_{12}^*}{M_{12}^* - (i/2)\Gamma_{12}}}$$

Basic Quantum mechanics

$$\frac{q}{p} = \sqrt{\frac{M_{12}^*\text{-}(\mathrm{i}/2)\Gamma_{12}^*}{M_{12}\text{-}(\mathrm{i}/2)\Gamma_{12}}}$$

Schrodinger Eq.
$$i\hbar \frac{d}{dt}\Psi(t) = H \Psi(t)$$

$$\Psi(t) = \begin{bmatrix} |B^0(t)\rangle \\ |\overline{B}^0(t)\rangle \end{bmatrix}$$

$$H = M - i\Gamma/2 = \begin{bmatrix} M_{11} - i\Gamma_{11}/2 & M_{12} - i\Gamma_{12}/2 \\ M_{12}^* - i\Gamma_{12}^*/2 & M_{22} - i\Gamma_{22}/2 \end{bmatrix}$$
 Mass matrix Hamiltonian

$$p = \frac{1}{\sqrt{2}} \frac{1 + \epsilon_B}{\sqrt{1 + |\epsilon_B|^2}}, \quad q = \frac{1}{\sqrt{2}} \frac{1 - \epsilon_B}{\sqrt{1 + |\epsilon_B|^2}}$$

CP is violated if $\epsilon_B \neq 0 \Leftrightarrow |q/p \neq 1|$

• $B^o - \bar{B^o}$ mixing

B^0 - \bar{B}^0 Mixing (2)

Time Evolution:
$$|B_{L/H}(t)\rangle \sim \exp(-im_{L/H}t - t/2\tau_{L/H}) |B_{L/H}\rangle$$

Produced as pure \overline{B}^0 and B^0

$$|B_d^0(0)\rangle \Rightarrow |B_d^0(t)\rangle = e^{-im_Bt}e^{-t/2\tau_B} \left\{ \cos(\Delta m_Bt/2) |B_d^0\rangle + \frac{iq}{p} \sin(\Delta m_Bt/2) |B_d^0\rangle \right\}$$

$$|\overline{B}_d^0(0)\rangle \Rightarrow |\overline{B}_d^0(t)\rangle = e^{-im_Bt}e^{-t/2\tau_B} \left\{ \cos(\Delta m_Bt/2) |\overline{B}_d^0\rangle + \frac{ip}{q} \sin(\Delta m_Bt/2) |B_d^0\rangle \right\}$$

$$\tau_B \approx 1.5 \text{ ps } (10^{-12} \text{ Sec}) \qquad \Delta m_B \equiv m_{B_B} - m_{B_L} \approx 3.1 \times 10^{-4} \text{ eV} = 0.49 \text{ ps}^{-1}$$

$$(\tau_B = \tau_H = \tau_L \text{ assumed, very small theoretical expectation})$$

$$cf) \ K^0: \tau_{KL}(52 \text{ ns}) \gg \tau_{Ks}(89 \text{ ps})$$

$$\Delta m_K = 3.5 \times 10^{-6} \text{ eV} = 0.0053 \text{ ps}^{-1}$$
Oscillate between B^0 and \overline{B}^0

$$Oscillate between B^0 and \overline{B}^0

$$Unmixed: |\langle B^0|\overline{B}^0\rangle|^2 = e^{-t/\tau} [1 + \cos(\Delta mt)]/2$$

$$Mixed: |\langle B^0|\overline{B}^0\rangle|^2 = e^{-t/\tau} [1 - \cos(\Delta mt)]/2$$$$

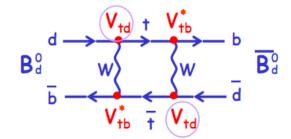
• $B^o - \bar{B^o}$ mixing

B^0 - \overline{B}^0 Mixing (3)

Mechanism in SM

Box diagram

$$\frac{\mathbf{q}}{\mathbf{p}} \cong \frac{\mathbf{V}_{\mathsf{tb}}^{\bullet} \mathbf{V}_{\mathsf{td}}}{\mathbf{V}_{\mathsf{tb}} \mathbf{V}_{\mathsf{td}}^{\bullet}}$$



$$\Delta m = \frac{G_{\rm F}^{\ 2}}{6\pi^4} \ m_{\rm B} m_{\rm t}^{\ 2} F(m_{\rm t}^{\ 2}/m_{\rm W}^{\ 2}) \eta_{\rm QCD} B_{\rm Bd} f_{\rm Bd}^{\ 2} \ |V_{\it tb}^{\ \ \star} V_{\it td}|^2$$

 G_F = Fermi const., η_{QCD} = QCD correction factor,

 $F(m_t^2/m_W^2)$ = Inami-Lim function

 B_{Bd} = bag parameter (hadronic corr. For vac. insertion)

 $f_{\rm Bd}$ = Bd decay constant

→ Lattice QCD

 $\Delta {
m m}
ightarrow V_{td}$: acuuracy limited by uncerteiny of ${
m B}_{
m Bd} f_{
m Bd}$

23

Statistics and the treatment of experimental data

0.1 Characteristics of probability distribution

Random processes are described by a probability density function (PDF). PDF gives expected frequency of occurence.

Random variable x can be continuous or discrete.

0.1.1 Cumulative distributions

Probability of finding x with $x_1 \leq x \leq x_2$ for x to be continuous

$$P(x) = \int_{x_1}^{x_2} P(x)dx$$
 (1)

And for x to be discrete

$$P(x) = \sum_{i=1}^{2} P(x_i)$$
 (2)

The renormaliation condition for x to be continuous

$$\int P(x)dx = 1 \tag{3}$$

And for x to be discrete

$$\sum_{i} P(x_i) = 1 \tag{4}$$

0.1.2 Expectation values

For x to be continuous

$$E[x] = \int xP(x)dx \tag{5}$$

And for x to be discrete

$$E[x] = \sum_{i} x_i P(x_i) \tag{6}$$

If f(x) is a continuous function of x then the expectation value of f(x) is

$$E[f(x)] = \int f(x)P(x)dx \tag{7}$$

0.1.3 Distribution moments. Mean and variance

The n^{th} moment of x about some point x_0 is defined as the expectation value of $(x-x_0)^n$.

Only two first moments are important.

First moment about zero is called mean or average of x

$$\mu = E[x] = \int x P(x) dx \tag{8}$$

The second central moment is call *variance*

$$\sigma^{2} = E[(x - \mu)^{2}] = \int (x - \mu)^{2} P(x) dx \tag{9}$$

The square root of variance is call **standard deviation**

0.1.4 The covariance

The covariance measures linear correlation between two variables

$$cov(x,y) = E[(x - \mu_x)(y - \mu_y)]$$
(10)

- μ_x : mean of x.
- μ_y : mean of y.

Correlation coeficient

$$\rho = \frac{cov(x,y)}{\sigma_x \cdot \sigma_y} \tag{11}$$

- \bullet $-1 \le \rho \le 1$.
- $|\rho| = 1$: perfectly correlated linear.
- $\rho = 0$: x and y are linear independent.

0.2 Some common probability distributions

0.2.1 The binomial distribution

The binomial distribution involves repeated, independent trials, which outcome of a single trial is dichotomous.

The probability of n dichotomous trials, for example successe and failure is given by

$$P(x) = \frac{n!}{(n-x)!x!} p^x (1-p)^{n-x}$$
(12)

Where x is number of *successes* (or *failures*), p is probability of success in a single trial.

- x events occur with probability p each.
- n-x events occur with probability 1-p each.
- Note that P(x) is the x^{th} term of binomial expansion

$$(a+b)^n = \sum_{k=0}^n C_k^n a^{n-k} b^k$$
 (13)

Mean of binomial distribution is defined as the following

$$\mu = \sum_{x=0} x P(x) = \sum_{x=1} \frac{n!}{(n-x)!(x-1)!} p^x (1-p)^{n-x}$$

Let N = n - 1 and y = x - 1, we can rewrite the above equation as

$$\mu = \sum_{x=1}^{n} \frac{n!}{(n-x)!(x-1)!} p^{x} (1-p)^{n-x} = \sum_{y=0}^{N} \frac{(N+1)!}{(N-y)!(y)!} p^{y+1} (1-p)^{N-y}$$

$$= (N+1) p \sum_{y=0}^{N} \frac{(N)!}{(N-y)!(y)!} p^{y} (1-p)^{N-y} = (N+1) p [p+(1-p)]^{N}$$

$$= (N+1) p$$

Or

$$\mu = np \tag{14}$$

Variance of binomial distribution is defined as the following #1: By definition

$$\sigma^{2} = \sum_{x=0}^{n} (x - \mu)^{2} P(x) = \sum_{x=0}^{n} (x - \mu)^{2} \frac{n!}{(n-x)! x!} p^{x} (1-p)^{n-x}$$

$$= \sum_{x=0}^{n} (x - np)^{2} \frac{n!}{(n-x)! x!} p^{x} (1-p)^{n-x}$$

$$= A + B + C$$

Where

$$A = \sum_{x=0}^{n} x^{2} \frac{n!}{(n-x)!x!} p^{x} (1-p)^{n-x} = \sum_{x=1}^{n} \frac{xn!}{(n-x)!(x-1)!} p^{x} (1-p)^{n-x}$$
$$= \sum_{y=0}^{N} \frac{(y+1)(N+1)!}{(N-y)!y!} p^{(y+1)} (1-p)^{N-y} = np + n(n-1)p^{2}$$

$$B = -2np \sum_{x=0}^{n} x \frac{n!}{(n-x)!x!} p^{x} (1-p)^{n-x} = -2(np)^{2}$$

And

$$C = \sum_{x=0}^{n} (np)^{2} \frac{n!}{(n-x)!x!} p^{x} (1-p)^{n-x} = (np)^{2}$$

Hence

$$\sigma^2 = \sum_{x} (x - \mu)^2 P(x) = np(1 - p)$$
 (15)

#2: By using $\sigma^2 = \mu(x^2) - [\mu(x)]^2$

Where $\mu(x^2) = A = np + n(n-1)p^2$ and $[\mu(x)]^2 = (np)^2$. We get the similar result as (15)

$$\sigma^2 = \mu(x^2) - [\mu(x)]^2 = np(1-p)$$

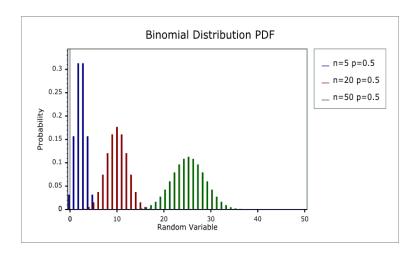


Figure 1: Binomial distribution for several values of n and p

0.2.2 The Poisson distribution

Poisson distribution is the case where we take the limits $p \to 0$ and $n \to \infty$ from binomial distribution such that $np = \mu = const.$

Poisson distribution is an appropriate model if the following asssumptions are hold:

- x can take values: 0, 1, 2, ...
- Events occur independently.
- The rate at which events occur is constant.
- Two events cannot occur at exactly the same instant.
- Probability of an event in a small sub-interval is proportional to the length of the sub-interval.

Let $p = \frac{\mu}{n}$. When $n \to \infty$, we have following approximations

$$\frac{n!}{(n-x)!} = n(n-1)(n-2)...(n-x-2)(n-x-1) \approx n^x$$

And

$$(1-p)^{n-x} = \left(1 - \frac{\mu}{n}\right)^{-x} \left(1 - \frac{\mu}{n}\right)^n \approx e^{-\mu}$$

Note that: $\lim_{n\to\infty} \left(1-\frac{\mu}{n}\right)^n \approx e^{-\mu}$

Then the Poisson distribution is defined as

$$P(x) = \lim_{n \to \infty} \frac{n!}{(n-x)! x!} p^x (1-p)^{n-x} = \frac{\mu^x}{x!} e^{-\mu}$$
 (16)

Mean of Poisson distribution

$$\mu_P = \sum_{x=0} x \frac{\mu^x e^{-\mu}}{x!} = \sum_{x=1} \frac{\mu^x e^{-\mu}}{(x-1)!} = \mu e^{-\mu} \sum_{x=0} \frac{\mu^x}{x!} = \mu$$
 (17)

Variance of Poisson distribution

$$\sigma_P^2 = \mu(x^2) - [\mu(x)]^2 = \sum_{x=0} x^2 \frac{\mu^x e^{-\mu}}{x!} - \mu^2$$

$$= \sum_{x=1} x \frac{\mu^x e^{-\mu}}{(x-1)!} - \mu^2 = \sum_{x=0} \frac{(x+1)\mu^{x+1}}{x!} e^{-\mu} - \mu^2 = \mu^2 + \mu - \mu^2$$

$$= \mu$$
(18)
$$\frac{1}{2} \frac{1}{2} \frac{$$

Figure 2: Poisson distribution for several values of μ

0.2.3 The Gaussian distribution

Gaussian is a continuous, symmetric distribution whose density is given by

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (19)

Where μ is **expectation value** and σ^2 is **variance**.

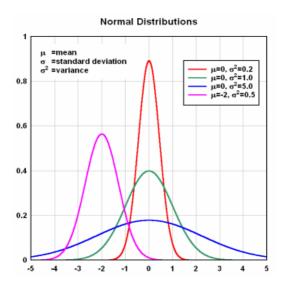


Figure 3: Gaussian distribution for several values of μ and σ^2

• Derive Gaussian distribution from binomial distribution From the binomial distribution

$$P(x) = \frac{n!}{(n-x)!x!}p^{x}(1-p)^{n-x}$$

By using Stirling's formula $n! = n^n e^{-n} \sqrt{2\pi n}$, we can rewrite the above equation as

$$P(x) = \frac{n^n e^{-n} \sqrt{2\pi n}}{x^x e^{-x} \sqrt{2\pi x} (n-x)^{n-x} e^{-(n-x)} \sqrt{2\pi (n-x)}} p^x (1-p)^{n-x}$$
$$= \left(\frac{np}{x}\right)^x \left(\frac{n(1-p)}{n-x}\right)^{n-x} \sqrt{\frac{n}{2\pi x (n-x)}}$$

We have

$$L = \ln\left[\left(\frac{np}{x}\right)^x \left(\frac{n(1-p)}{n-x}\right)^{n-x}\right] = -x\ln\left(\frac{x}{np}\right) - (n-x)\ln\left(\frac{n-x}{n(1-p)}\right)$$
$$= -x\ln\left(\frac{x}{np}\right) - (n-x)\ln\left(1 + \frac{np-x}{n(1-p)}\right)$$

Let
$$\lambda = -(np - x) \implies x = \lambda + np$$
.

By using $\ln(1+x) \approx x - \frac{1}{2}x^2 + ...$, we get

$$L = -(\lambda + np) \ln \left(1 + \frac{\lambda}{np} \right) - (n(1-p) - \lambda) \ln \left(1 - \frac{\lambda}{n(1-p)} \right)$$

$$= -(\lambda + np) \left(\frac{\lambda}{np} - \frac{1}{2} \frac{\lambda^2}{(np)^2} + \dots \right) - (n(1-p) - \lambda) \left(-\frac{\lambda}{n(1-p)} - \frac{1}{2} \frac{\lambda^2}{n^2(1-p)^2} + \dots \right)$$

$$= -\left(\frac{\lambda^2}{np} + \lambda - \frac{1}{2} \frac{\lambda^2}{np} + \dots \right) - \left(-\lambda + \frac{\lambda^2}{n(1-p)} - \frac{1}{2} \frac{\lambda^2}{n(1-p)} + \dots \right)$$

$$\approx -\lambda - \frac{\lambda^2}{2np} + \lambda - \frac{\lambda^2}{2n(1-p)}$$

$$= -\frac{\lambda}{2np(1-p)}$$

Then

$$\left(\frac{np}{x}\right)^x \left(\frac{n(1-p)}{n-x}\right)^{n-x} = e^{-\frac{\lambda^2}{2np(1-p)}}$$

And for $n \to \infty$

$$\sqrt{\frac{n}{2\pi x(n-x)}} = \sqrt{\frac{n}{2\pi(\lambda+np)(n(1-p)-\lambda)}}$$

$$\approx \frac{1}{\sqrt{2\pi np(1-p)}}$$

Therefore we finally get

$$P(x) = \frac{1}{\sqrt{2\pi n p(1-p)}} e^{-\frac{\lambda^2}{2np(1-p)}}$$

Note that $\mu = np$ and $\sigma^2 = np(1-p)$. The Gaussian distribution is then defined as

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (20)

• Derive Gaussian distribution from Poisson distribution

The Poisson distribution is of the form

$$P(x) = \frac{\mu^x e^{-\mu}}{x!}$$

Use the Stirling's formula $x! = x^x e^{-x} \sqrt{2\pi x}$ and let $x = \mu(1 + \lambda)$, where $\mu \gg 1$ and $\lambda \ll 1$

$$P(x) = \frac{\mu^x e^{-\mu}}{x^x e^{-x} \sqrt{2\pi x}} = \left(\frac{\mu}{x}\right)^x \frac{e^{-(\mu - x)}}{\sqrt{2\pi x}}$$

$$= \left(\frac{\mu}{\mu(1+\lambda)}\right)^{\mu(1+\lambda)} \frac{e^{-(\mu-\mu(1+\lambda))}}{\sqrt{2\pi\mu(1+\lambda)}} = \frac{1}{\sqrt{2\pi\mu}} \frac{e^{-\mu\lambda}}{(1+\lambda)^{\mu(1+\lambda)} + 1/2}$$

We see that for $\mu \gg 1$ and $\lambda \ll 1$

$$\ln[(1+\lambda)^{\mu(1+\lambda)} + 1/2] = (\mu + \mu\lambda + 1/2)\ln(1+\lambda) = (\mu + \mu\lambda + 1/2)(\lambda - \lambda^2/2 + ...)$$

$$\approx \mu\lambda + \frac{\mu\lambda^2}{2}$$

$$\Rightarrow (1+\lambda)^{\mu(1+\lambda)} + 1/2 \approx e^{\mu\lambda + \frac{\mu\lambda^2}{2}}$$

It's then followed that

$$P(x) = \frac{1}{\sqrt{2\pi\mu}} e^{-\frac{\mu\lambda^2}{2}} = \frac{1}{\sqrt{2\pi\mu}} e^{-\frac{(x-\mu)^2}{2\mu}}$$

Note that, for Poisson distribution $\sigma^2 = \mu$. By substituting this into the above equation, we get exactly the same formula as (20).

• Derive Gaussian distribution from another way

Consider we are aiming at the origin of a xy_plane with darts. Assume that:

+1: Deviation of darts not depend on the origin.

+2: Deviation in orthogonal directions are independent.

+3: Large deviation is less likely than small deviation.

Probability that the darts falls in interval $[x, x + \Delta x]$ is

Similarly for interval $[y, y + \Delta y]$

Probability of falling in area dA is

$$P(x)P(y)\Delta x\Delta y$$

If we are aiming offset of the origin by a constant μ , then

$$P(x,y) = P(x+\mu)P(y+\mu)\Delta x \Delta y = g(x,y)\Delta x \Delta y$$

Where $g(x, y) = P(x + \mu)P(y + \mu)$.

In term of polar coordinates where $x = r \cos \theta$, $y = r \sin \theta$, $g(r, \theta)$ is dependent on r, but not dependent on θ . Then

$$\frac{dg}{d\theta} = 0 \Rightarrow$$

$$P(x+\mu)P'(y+\mu)\frac{dy}{d\theta} + P'(x+\mu)P(y+\mu)\frac{dx}{d\theta} = 0$$

$$\Leftrightarrow P(x+\mu)P'(y+\mu)r\cos\theta - P'(x+\mu)P(y+\mu)r\sin\theta = 0$$

$$\Leftrightarrow P(x+\mu)P'(y+\mu)x - P'(x+\mu)P(y+\mu)y = 0$$

$$\Rightarrow \frac{P'(x+\mu)}{xP(x+\mu)} = \frac{P'(y+\mu)}{yP(y+\mu)} = C; \quad \forall x, y \in R$$

We solve for $P(x + \mu)$

$$\frac{P'(x+\mu)}{xP(x+\mu)} = C \quad \Rightarrow \quad P(x+\mu) = Ae^{\frac{Cx^2}{2}}$$

$$\Rightarrow \quad P(x) = P((x-\mu) + \mu) = Ae^{\frac{C(x-\mu)^2}{2}}$$

From assumption +3, we see that C must be negative then

$$P(x) = Ae^{\frac{-C(x-\mu)^2}{2}}; \quad C > 0$$

Normalized condition

$$\int_{-\infty}^{+\infty} A e^{\frac{-C(x-\mu)^2}{2}} dx = 1 \quad \Rightarrow \int_{-\infty}^{+\infty} e^{\frac{-C(x-\mu)^2}{2}} dx = \frac{1}{A}$$

Use the Gaussian integral $\int_{-\infty}^{+\infty} e^{-a(x+b)^2} dx = \sqrt{\frac{\pi}{a}} \implies$

$$\int_{-\infty}^{+\infty} e^{\frac{-C(x-\mu)^2}{2}} dx = \frac{\frac{2\pi}{C}}{=\frac{1}{A}}$$

$$\Rightarrow A = \sqrt{\frac{C}{2\pi}}$$

Then

$$P(x) = \sqrt{\frac{C}{2\pi}}e^{\frac{-C}{2}(x-\mu)^2}$$

Let μ and σ^2 are the mean and the variance of the distribution, respectively. The variance is

$$\sigma^2 = \mu(x^2) - [\mu(x)]^2$$

Where

$$\begin{split} \mu(x^2) &= \sqrt{\frac{C}{2\pi}} \int_{-\infty}^{+\infty} x^2 e^{\frac{-C}{2}(x-\mu)^2} dx \\ &= \sqrt{\frac{C}{2\pi}} \int_{-\infty}^{+\infty} (x+\mu)^2 e^{\frac{-C}{2}x^2} dx \\ &= \sqrt{\frac{C}{2\pi}} \int_{-\infty}^{+\infty} x^2 e^{\frac{-C}{2}x^2} dx + \sqrt{\frac{C}{2\pi}} \int_{-\infty}^{+\infty} 2\mu x e^{\frac{-C}{2}x^2} dx + \sqrt{\frac{C}{2\pi}} \int_{-\infty}^{+\infty} \mu^2 e^{\frac{-C}{2}x^2} dx \\ &= \sqrt{\frac{C}{2\pi}} \sqrt{\frac{2\pi}{C}} \frac{1}{C} + \sqrt{\frac{C}{2\pi}} .0 + \sqrt{\frac{C}{2\pi}} \sqrt{\frac{2\pi}{C}} \mu^2 \\ &= \frac{1}{C} + \mu^2 \end{split}$$

Then $\sigma^2 = \frac{1}{C}$, and therefore we find exactly the same form as (20)

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$